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1. Introduction 

Regular assessments of the default risk of bank clients and estimations of credit risk at the portfolio 
level are becoming a necessity for banks in their daily operations. The design of optimal lending 
contracts and the need to conform to new regulatory trends constitute at least two reasons why banks 
have to pay closer attention to quantitative methods for assessing the credit risk of their clients. While 
primarily designed for use in commercial banks, credit risk models have recently started to attract the 
attention of other groups of economic professionals. It is the supervisory function of central banks that 
is mostly triggering the interest in examining credit risk models in this environment. In addition, an 
overall assessment of the creditworthiness of domestic firms has implications for the conduct of 
monetary policy. These and other reasons have prompted several central banks in Europe to develop 
and implement their own models for monitoring the financial situation of domestic firms and the lending 
performance of domestic banks.2 

The objective of this paper is to develop an assessment technique for analysing the impact of different 
risk-based capital requirement rules on the potential needs for capital in the Czech banking sector. For 
this purpose, we apply these methods to an artificially constructed risky loan portfolio. The latter 
reflects a number of prominent features of Czech non-financial borrowers. 

When defining the creditworthiness characteristics of the loan portfolio, we apply the Moody’s KMV 
method for rating private firms. To determine capital requirements for this portfolio, we use the New 
Basel Capital Accord (NBCA) and the CreditMetrics and CreditRisk+ models. In the context of 
CreditMetrics, we are able to conduct stress testing to gauge the impact of interest rate uncertainty 
(eg caused by changes in monetary policy and different reactions of the yield curve to these changes) 
on economic capital calculations. In addition, we describe an independent debt valuation model similar 
to that of KMV and outline the techniques for its numerical implementation. The proposed model has a 
substantial advantage over the previously mentioned ones in that it addresses three key problems of 
credit risk modelling. Namely, this model, although remaining in the KMV line of analysis: 

• incorporates macroeconomic systemic factors, such as position in the business cycle, 
interest rate and exchange rate volatility and the monetary policy stance, when deriving a 
valuation of bank lending risks; 

• combines the features of structural and reduced-form models of debt valuation; 

• offers a framework for assessing the influence of market risk factors on credit risk in a bank 
loan portfolio. 

In the latter respect, our model advances towards an integrated financial risk assessment 
methodology, which has recently been called for in the risk analysis literature (see, for instance, 
Barnhill and Maxwell (2002), or Hou (2002)). 

The principal feature of the paper is a comparative analysis of the predictions of these models when 
applied to an artificially created loan portfolio constructed using Czech data. Another important 
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contribution is a demonstration, even if in an incipient manner, of the way in which scarce and usually 
unavailable variables can be estimated or proxied to obtain the inputs required by the credit risk 
models. One oft-mentioned drawback of credit risk modelling is the difficulty with which the credit risk 
analyst can access the required input data. This problem was also present in our case. Although 
overcome, the data problem has had negative implications for the robustness of our results. Thus, 
from this perspective we have to look at the paper’s findings with caution. However, the insight into 
credit risk modelling that is offered here can be extended at a later stage when more data is available. 
We also hope that our findings may be of use to banking supervisors when these issues become a 
matter of regulatory practice. 

Although credit risk models often prove useful for other purposes, their main merit rests in estimating 
the capital level that banks have to maintain over the given risk horizon. The outcome is called 
regulatory capital in regulatory terms and economic capital in terms of credit risk modelling. Both 
regulatory and economic capital are supposed to cover unexpected losses resulting from banks’ 
lending operations to clients with different levels of default risk. Whereas holding regulatory capital is 
compulsory as a part of adherence to prudential regulations, holding economic capital beyond the 
minimum required level is the banks’ own choice. Worth mentioning, however, is the regulatory 
tendency to come closer to credit risk modelling and to allow banks to develop their own models for 
determining the amount of regulatory capital to hold. These models will most probably adopt and 
synthesise many features of the credit risk models already in use. This is one reason why comparing 
regulatory and economic capital today is becoming an insightful exercise for the regulatory decisions 
of the future. 

1.1 Literature review 

In June 1999, the Basel Committee on Banking Supervision released a proposal to replace the 1988 
Basel Capital Accord with a more risk-sensitive framework. A concrete proposal in the form of a 
consultative document, the New Basel Capital Accord (NBCA), was presented in January 2001. This 
document proposed new regulatory rules for banks’ capital adequacy evaluations. The main 
innovations related to credit and operational risk. In terms of credit risk, the NBCA revised the 1988 
Accord by proposing a more risk-sensitive methodology for assessing the default risk of banks’ clients. 
The risk inputs entering the final capital adequacy computations were closely related to the risk 
characteristics of individual bank clients. In this sense, the proposed methodology opted for the 
adoption of ratings (developed by external agencies or by banks themselves) in quantifying and 
signalling to the bank the default risk of individual borrowers. In a simpler version of the methodology 
(the standardised approach), ratings are directly associated with risk weights (for example, an A-rated 
asset would be assigned a risk weight of 50%, a BBB-rated asset would be assigned a risk weight of 
100%, and so on). In the more advanced internal ratings-based (IRB) approach, ratings represent the 
basis for computing the probability of an obligor’s default. Default probabilities and other risk 
characteristics (loss-given-default, exposure at default) enter more complicated formulas for 
determining the risk weights of individual assets in regulatory capital estimations. 

In the banking industry, credit risk modelling has also been explored and extended since the release 
of the four major credit risk models at the end of the last decade.3 In this paper we consider only two 
such models, CreditMetrics and CreditRisk+, which utilise, respectively, the structural and the 
reduced-form approach to modelling default risk (see Duffie and Singleton (1998)). In the structural 
approach, it is assumed that default is triggered when an unobserved variable (obligor’s firm asset 
value) falls below a certain threshold level (firm’s outstanding debt). CreditMetrics extends this 
reasoning to rating downgrades by defining rating class-specific threshold levels that mark the switch 
from one rating class to another in the event that the firm’s standardised asset returns cross these 
threshold values. In the reduced-form literature, default is modelled as an autonomous stochastic 
process that is not driven by any variable linked to the obligor firm’s capital structure or asset value. 
Particular formulations for the default process were considered in Jarrow and Turnbull (1995; 
exponential distribution), Jarrow et al (1997; a continuous Markov chain) and Duffie and Singleton 
(1998; a stochastic hazard rate process). CreditRisk+ represents the reduced-form approach by 
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assuming that the average number of defaults in each homogeneous class of obligors follows a 
Poisson distribution. The unifying element of the CreditMetrics and CreditRisk+ models is the value-at-
risk (VaR) methodology used in quantifying and provisioning for credit risk at the portfolio level. Even 
though CreditMetrics derives the portfolio value distribution and CreditRisk+ the portfolio loss 
distribution at the end of the risk horizon, both models estimate economic capital such that unexpected 
losses are covered by the estimated economic capital within an acceptable confidence level. 

The KMV model represents another step towards market-based derivation of economic capital. 
Similarly to CreditMetrics, it uses the obligor’s equity price statistics to derive the value distribution of a 
given loan. Correlations are obtained automatically from the risk factors that determine the obligor firm 
value (equity). However, this method requires the assumption of complete markets, the validity of risk 
neutral asset valuation and tradability of both the obligors’ equities and their debt in the bank portfolio. 
The KMV team offers unspecified remedies in cases where one of these preconditions is not satisfied, 
but open sources of credit risk literature offer no general solution of these problems. 

This paper proposes a way around the said difficulties in the KMV approach by resorting to the 
so-called pricing kernel methods of asset pricing (comprehensive expositions can be found in, for 
instance, Campbell et al (1997) and Cochrane (2001)). Asset tradability and market completeness are 
no longer necessary, and there are numerous possibilities for modelling default events that depend on 
systemic and idiosyncratic risk factors. Numerical approaches to calculating pricing kernel-based asset 
values have also been developed in recent years (see, for instance, Ait-Sahalia and Lo (2000), or 
Rosenberg and Engle (2002)). 

1.2 Methodology 

Three pillars make up the main structure of our analysis. First, a tested bank loan portfolio is 
constructed in such a way as to reflect with some degree of realism the rating distribution of a pool of 
Czech bank clients. Second, we take into account the random nature of interest rates and other 
economic fundamentals that enter the loan valuation. Among other things, this means that market risk 
factors (interest rates and exchange rates) were an integral part of the capital calculations as far as 
each of the tested approaches allowed. Third, when conducting model-based economic capital 
calculations, we follow the market loan pricing point of view wherever possible (ie when the 
corresponding model allows it either explicitly or implicitly). This is done because we want to identify 
those elements of capital requirements which may be seen differently from the credit risk modelling 
and regulatory perspectives. 

Our analysis utilises a hypothetical portfolio containing 30 loans. This simplified portfolio mirrors the 
rating structure of a real loan portfolio obtained on the basis of a pool of corporate customers of six 
Czech banks.4 Since ratings are the key input in many credit risk approaches, a simplified version of 
Moody’s rating methodology for private firms has been applied to obtain ratings in our real sample of 
bank clients. Estimates of other inputs required by credit risk modelling which were not available in the 
real bank data set were obtained using aggregate data from Czech National Bank (CNB) databases. 

In an earlier paper (Derviz et al (2003)), we examined and compared the predictions of the NBCA with 
those delivered by the CreditMetrics and CreditRisk+ models. Following the January 2001 consultative 
version of the NBCA guidelines we found that in our particular example the standardised approach of 
the NBCA predicted approximately the same level of capital as the credit risk models at the 95% 
confidence level. At the 99% confidence level, the internal credit risk models predicted a higher level of 
economic capital than the NBCA standardised approach, but these estimates were still lower than the 
estimates of the NBCA IRB approach. We obtained different results when applying the NBCA 
guidelines as formulated by the third quantitative impact survey (QIS 3, October 2002). Here, the 
results of both NBCA approaches (standardised and IRB) were more similar to each other, with the 
IRB requirement being slightly lower than that of the standardised approach. The results of both 
regulatory approaches were even lower than the level of capital required by the various credit risk 
models. For ease of reference, we reproduce the regulatory capital results along with the modelled 
economic capital ones at the end of the present paper (Table 8). 
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In the context of the CreditMetrics model, we have extended the analysis of economic capital by 
allowing both the bank lending rates and the forward zero coupon rates used as discount factors in 
asset valuations to become random variables (a form of stress testing; see the details in Appendix A). 
Floating lending rates and random changes in the forward curves were all implemented using Monte 
Carlo simulations. As expected, more uncertainty associated with the evolution of these variables 
required more economic capital to be held by banks. However, the proposed changes in forward zero 
curves did not impose significantly different levels of credit risk-related economic capital as compared 
with the case of stable forward yield curves (but maintaining floating interest rates in both cases). 
Downward movements in the forward zero curves required higher levels of capital at all confidence 
levels. This is an inconvenient consequence of the existing credit models (CreditMetrics and KMV in 
particular) which we strive to overcome by proposing a model of our own. 

Our approach to modelling financial and real uncertainties is similar to Ang and Piazzesi (2003), 
although we do not orient our state-space estimation on fitting the observed yield curve. Instead, we 
estimate the pricing kernel parameters that fit the returns of a number of basic infinite maturity assets. 
The reason for this is that we need a direct connection between macroeconomic risk factors, asset 
prices and bank loan values. Looking for this connection through the prism of yield curve dynamics 
would be too circumspect for our purposes, since extracting business cycle information from the yield 
curve is a misspecification error-laden process in itself. In contrast, by allowing the model to reflect a 
one-to-one correspondence between a vector of basic assets and another vector of unobserved 
factors, we are likely to capture a latent principal component responsible for the economic activity. We 
believe that this estimated model, which we later use for simulations, contains less noise in the 
identified business cycle position of the economy than most multifactor yield curve models in the 
literature. 

The paper is structured as follows. In Section 2 we briefly describe the main characteristics of the real 
bank and test portfolios and their estimation. We also mention the reasons why the models could not 
be implemented entirely on the basis of real Czech bank data. In Section 3 we outline the 
methodologies proposed by two popular credit risk models (CreditMetrics and CreditRisk+) and 
present their economic capital estimations. Section 4 outlines our own model of risky debt, its 
valuation and the resulting economic capital requirements, going along the structural lines of the 
original KMV model. Section 5 discusses estimation procedures and outcomes. Section 6 concludes. 

2. The test portfolio 

Our bank data set contains the balance sheets and profit and loss accounts of non-financial firms that 
were granted bank loans between 1994 and 2000. The CZ-NACE classification,5 legal form and CNB 
loan classification6 (from 1997) were also available for each bank customer. Six Czech banks provided 
the data to the CNB from 1994 until 1999, of which two banks terminated cooperation in 2000. The 
banks reported only a fraction of their corporate portfolios. The exact selection procedure used by 
banks to choose particular firms is not known. Also unknown is the proportion of reported versus 
unreported clients satisfying certain criteria. In this sense, we observed a certain bias of the data 
providers towards non-reporting of loans in the last two categories (4 and 5) but were not able to 
assess the direction and magnitude of this sampling bias in our results. 

Since our main goal was to assign ratings to banks’ corporate clients, we primarily focused on their 
default behaviour. Default was defined as a credit event in which the loan classification of a certain 
company migrated from the first or second category to any of the third, fourth or fifth categories over 
the considered risk horizon. Due to the short time length of our data set we had to focus on annual 
default rates. The largest number of defaults occurring over a one-year period was recorded between 

                                                      
5 CZ-NACE (Czech abbreviation: OKEČ) represents the industry classification of economic activity in the Czech Republic. 
6 The CNB’s loan classification ranges from 1 to 5, with category 1 meaning standard, 2 watch, 3 non-standard, 4 doubtful 
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1997 and 1998, representing 8% of all firms in the sample.7 The sample-based annual default rates 
were 0.07% between 1998 and 1999 and 0% between 1999 and 2000. These low default rates may 
be partially explained by the Czech economic recovery and by more prudent bank lending behaviour 
during 1999-2000. Nevertheless, we think that the main reason is insufficient default reporting by 
banks. Therefore, we preferred to restrict the reference data set only to the accounting information 
collected in 1997 and the default events observed in 1998, assuming that default reporting by banks in 
that period was closer to the reality. While analysing a longer time period would have been highly 
valuable, we considered that the sample-based information over 1998-2000 painted a biased picture 
about corporate default and, consequently, it was not used in modelling the rating structure of the test 
portfolio. 

The annual default rate of 8% in the reference data set was significantly higher than the average value 
of 1.5% usually used by Moody’s in the context of western European economies. However, volume-
based information about the loan defaults of individuals and corporates in the entire banking sector 
revealed an annual default rate of approximately 20%. We considered that neither 1.5% nor 20% 
would be the appropriate annual default rate for our artificial portfolio8 and, in general, for a typical 
Czech bank portfolio of corporate loans. Without any other more reliable source of information, we 
used the 8% default rate as indicated by our sample bank data to calibrate the probit model. 

To assign ratings to each firm we used the calculated default rates and the tables containing 
cumulative default rates published by different rating agencies. Even though Moody’s rating 
methodology was used, we preferred to calibrate our results to Standard & Poor’s (S&P) ratings. This 
was done since (a) the NBCA assigned risk weights based on S&P ratings and (b) our inputs into the 
credit risk models were, to a great extent, based on S&P data. For calibration purposes we used the 
1996 S&P cumulative one-year default rate matrix shown in Table 1. 

 

Table 1 

S&P’s rating class-specific one-year default rates 

Rating One-year default rate (%) Cutoff values for defining ratings 
in the bank portfolio (%) 

AAA 0 – 

AA 0 – 

A 0.06 0.03 

BBB 0.18 0.12 

BB 1.06 0.62 

B 5.2 3.13 

CCC 19.79 12.495 

Source: CreditMetrics - Technical Document. 

 

The probabilities given in the second column are rating class-specific default probabilities published by 
S&P. The third column contains the probabilities that mark the transition from one rating class to 
another in our model. They are the midpoints in the intervals determined by the one-year default 
probabilities given in the second column. For example, if the estimated default probability of a certain 
firm belonged to the interval [0, 0.03), an AA rating grade was assigned to that firm. If the estimated 

                                                      
7 The reference sample included only bank clients that were present both in 1997 and 1998 (663 firms). To examine only 

one-year default behaviour, those enterprises which were already in default in 1997 were also eliminated. In the end we 
obtained a data set containing 606 firms. 

8 These figures reflected assumptions that were not applicable in our case. For example, the 1.5% level was based on the 
western experience, while the 20% level was volume-based and represented both firms’ and individuals’ default behaviour. 
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default probability fell into the interval [0.03, 0.12), then an A grade was assigned and so on. Based on 
this mapping procedure, each firm present in the 2000 data set was marked with a certain rating 
grade. The resulting rating structure and the loan classification of the pooled bank portfolio for 2000 
are presented in Table 2. 

Table 2 

The pooled bank portfolio structure in 2000 
according to loan classification and ratings 

(number of firms/percentage) 

 AA A BBB BB B CCC Total 

1 15/1.45 5/0.48 26/2.51 87/8.41 580/56.04 89/8.60 802/77.49 

2 1/0.10 0 1/0.10 19/1.84 150/14.49 23/2.22 194/18.74 

3 0 0 0 0 12/1.16 11/1.06 23/2.22 

4 0 0 0 0 3/0.29 3/0.29 6/0.58 

5 0 0 0 0 1/0.10 90.87 10/0.97 

Total 16/1.55 5/0.48 27/2.61 06/10.24 746/72.08 135/13.04 1,035/100 

 

Next, we constructed an artificial portfolio incorporating as much real information as possible. We 
could not perform our risk capital estimations on the pooled bank portfolio because (a) this would have 
been extremely time-consuming and (b) many inputs required by the credit risk models were not 
available for the real bank customers. For instance, outside the ratings, the bank data set did not 
contain information regarding loan volumes or maturities, charged interest rates and borrower asset 
returns or recovery rates. Since these parameters represent required inputs into many regulatory and 
internal credit risk models, we constructed proxy variables based on data available at the macro level 
or obtained them as random drawings from known distributions. While in a reduced portfolio (like our 
testing one) the construction of the proxy variables is easily done, this construction would have been 
more difficult to produce based on a portfolio of 1,035 bank clients. In what follows we describe the 
manner in which these inputs were generated. The main information source was the CNB supervisory 
database, which contains yearly data on residual maturity of Czech bank loans, their category and the 
borrower CZ-NACE code. It also categorises loans according to the charged interest rate. 

Ratings and exposures 

The rating structure displayed in Table 2 was adjusted to reflect the following changes: 

• All bank clients in loan category 5 (loss loans) were eliminated. Such loans are usually 
covered by provisions created in the current period. Moreover, the fifth category is an 
absorbing state: a loan falling into this category has a negligible probability of recovery. 
These loans pose a vacuous problem from the risk management perspective, since their 
future status is not associated with any uncertainty. 

• The 8.6% of firms with a CCC rating were removed from category 1 and added to categories 
3 and 4. We assumed that the 8.6% outcome reflected the imperfections of our model. 
Czech banks monitor the creditworthiness of their clients, thus loans falling in the first 
category are unlikely to be granted a CCC grade. 

• The rating structure was adjusted to resemble the loan volume configuration at the end of 
December 2000 as closely as possible (as shown in Table 3). 

Now the rating structure of our test portfolio takes the form shown in Table 4. To have a fair 
representation of all ratings in each loan category, we needed a minimum of 30 assets. 

The exposure of an asset in a certain loan category represents the ratio of the total loan volume to the 
number of assets in that category. For example, all assets belonging to category 1 (21 in the test 
portfolio) would have an exposure of CZK 607.235 billion/21 = CZK 28.915 billion. 
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Table 3 

Loan volumes by category granted by 
Czech banks, as of end-2000 

Category Volume (CZK bn) Proportion (%) 

1 607.235 68.58 

2 85.811 9.69 

3 54.577 6.16 

4 26.982 3.05 

5 110.834 12.52 

Source: Czech National Bank. 

 

 

 

Table 4 

Rating structure of the artificial portfolio: 
number of assets in each loan category and rating class 

Loan category AA A BBB BB B CCC Total 

1 1 1 2 3 14 0 21 

2 0 0 0 1 2 1 4 

3 0 0 0 0 1 2 3 

4 0 0 0 0 0 2 2 

Total 1 1 2 4 17 5 30 

 

Maturities, lending and recovery rates 

Loans with a maturity exceeding five years are sparsely represented in the Czech bank portfolios. For 
this reason, we considered maturities that ranged from one to five years only. Maturity was assigned 
to individual assets by drawing random numbers from the interval [1, 5] according to the uniform 
distribution and then rounding these numbers to the nearest integer. 

We computed the mean and standard deviation of the lending rates for each loan category (using the 
SUD data set). To assign lending rates to assets in our portfolio, we randomly drew numbers from 
normal distributions described by the estimated means. Standard deviations were in general reduced 
to prevent interest rates from deviating too much from these mean values. 

We also generated collateral and recovery rates (see Derviz et al (2003) for details). The main 
characteristics of the artificial test portfolio are shown in Table 5. 

Asset return correlations 

Firms in the bank data set were grouped according to ratings and loan classification. Then we found 
the CZ-NACE category that was the most frequently represented in each group. For example, in the 
group of firms with rating AA and loan classification 1 the largest number of firms belonged to 
CZ-NACE 51. If in a certain group no dominating CZ-NACE could be found, we randomly selected the 
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representative figure from those that were present in that group. The resulting CZ-NACE structure was 
mapped to the test portfolio. Having assigned a CZ-NACE label to each asset in the test portfolio, we 
used the price index characteristic of the corresponding branch as a proxy variable for that asset’s 
returns.9 Asset return correlations were determined by computing correlations among price indices. 

 

Table 5 

Portfolio composition and individual loan characteristics 

Loan CZ-NACE Regulatory 
loan class Rating Loan 

volume1 Maturity Lending 
rate (%) 

Type of 
collateral 

Recovery 
rate (%) 

1 51 1 AA 28.916 3 6.5 6 0 
2 36 1 A 28.916 1 7.3 6 0 
3 74 1 BBB 28.916 3 7.5 6 0 
4 31 1 BBB 28.916 5 7.6 6 0 
5 74 1 BB 28.916 5 8.2 4 71.43 
6 20 1 BB 28.916 5 8.5 1 94.34 
7 51 1 BB 28.916 1 8.7 6 0 
8 28 1 B 28.916 3 8.8 2 100 
9 15 1 B 28.916 4 9.5 6 0 
10 51 1 B 28.916 2 10.5 1 94.34 
11 52 1 B 28.916 2 11.0 5 50 
12 29 1 B 28.916 1 11.1 6 0 
13 70 1 B 28.916 1 11.3 5 50 
14 74 1 B 28.916 2 11.6 4 71.43 
15 50 1 B 28.916 2 11.7 1 94.34 
16 24 1 B 28.916 1 11.9 5 50.00 
17 45 1 B 28.916 2 12.1 1 94.34 
18 60 1 B 28.916 2 12.2 1 94.34 
19 40 1 B 28.916 3 12.5 3 89.29 
20 25 1 B 28.916 2 12.6 1 94.34 
21 65 1 B 28.916 4 13.0 4 71.43 
22 51 2 BB 21.452 2 8.4 1 94.34 
23 25 2 B 21.452 5 10.4 1 94.34 
24 29 2 B 21.452 3 11.5 6 0 
25 55 2 CCC 21.452 3 13.5 5 50 
26 45 3 B 18.192 2 11.9 1 94.34 
27 28 3 CCC 18.192 5 12.4 1 94.34 
28 21 3 CCC 18.192 4 12.2 1 94.34 
29 21 4 CCC 13.491 5 14.3 4 71.43 
30 37 4 CCC 13.491 2 15.4 1 94.34 

1  In billions of Czech korunas. 

 

                                                      
9 At the outset, all price indices were deflated by the PPI in order to eliminate the systemic inflationary influence in their 

evolution. 
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3. Portfolio value and economic capital according to commercial  
risk measurement models 

3.1 CreditMetrics 

In the CreditMetrics model, risk is associated with changes in the portfolio value caused by changes in 
the credit quality of individual obligors (downgrades or default) over the considered risk horizon 
(usually one year). We have followed the two standard pillars of the CreditMetrics approach. The 
analytical pillar requires a derivation of primary risk measures such as means, variances and standard 
deviations at the asset and portfolio level. The estimation pillar implies generating a simulated portfolio 
value distribution at the risk horizon. Based on this distribution, estimates of economic capital can be 
obtained at different confidence levels. Application of the Monte Carlo simulation method to our 
portfolio in accordance with the CreditMetrics approach is described next. 

Monte Carlo simulation 

Individual random draws from a multinomial normal distribution (“scenarios” in CreditMetrics 
terminology) of asset returns contain the same number of components (real numbers) as the number 
of assets in the portfolio. Each component of each scenario is compared with predefined, rating class-
specific threshold values marking the switch from one rating class to another. In this way, within each 
scenario, a new rating is assigned to each asset (obligor) in the portfolio. 

In case of non-default, each asset i is revalued according to the formula: 
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where ri and Fi are the loan interest payments and the face value of the loan respectively, and ft
g are 

the annualised forward zero rates for the years one to Ti , applicable to the rating class g ′ (here Ti is 
the maturity of the loan). In this specification it is assumed that the present rating changes from g to g ′ 
over the one-year period. In the event of default the present value of the loan is computed as the 
product of the face value of the loan and a recovery rate. 

Note that the way of defining the future loan value as a random variable implies that the distribution of 
this variable would be taken with respect to the risk neutral probability (RNP). CreditMetrics works with 
the assumption that such a probability is well defined for the studied economy (we take a different view 
in our own model; see subsections 4.1 and 4.2). Under the risk neutral probability, in contrast to the 
“physical” one, zero forward rates are unbiased estimates of the future spot interest rates. That is, the 
capital requirements under CreditMetrics are also derived from the RNP. This might lead to certain 
discrepancies between the CreditMetrics interpretation by the market (which is based on the RNP) and 
its interpretation by the regulator (based on the physical probability). 

To obtain the portfolio value distribution and derive the economic capital requirement in accordance 
with the CreditMetrics model, we conducted a Monte Carlo simulation with 10,000 random draws. 
Each scenario contained 30 correlated random draws from the standard normal distribution. Each 
element of each scenario represented a standardised return corresponding to one of the 30 assets 
belonging to the portfolio. Comparing the elements of the scenario with the threshold values 
characteristic of each rating category, new ratings were assigned to each of the 30 assets. Summing 
up the values of the 30 assets thus obtained, a new portfolio value resulted for each scenario. Since 
eight potential new ratings were possible for each of the 30 assets at the end of the year, the total 
number of potential portfolio values was 830. In practice, this number was far lower, as some rating 
class migrations had a zero probability of realisation. Figure 1 shows the distribution of our portfolio 
value expected at the end of 2000 for the year 2001. On the horizontal axis are the non-overlapping 
intervals within which the portfolio value falls, while on the vertical axis are the frequencies with which 
these realisations occurred within each interval in our simulation. 

The economic capital is obtained as the difference between the mean of the portfolio value and a 
p-percentile (p is usually assumed to be 1%, 2% or 5%): 

Economic capital = Mean of the portfolio distribution – p-percentile 
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Figure 1 

Monte Carlo simulation for the loan portfolio value 
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In the case of a discrete portfolio distribution, the p-percentile is obtained by looking at the lowest 
portfolio value whose cumulative frequency exceeds p%. An interpretation of the p-percentile is that in 
p% of cases we can expect the portfolio value to take values lower than the p-percentile over the 
one-year period. For example, in our case we can expect that only 100 times in 10,000 cases could 
the portfolio value reach a value lower than CZK 767.89 billion (in other words we know with 99% 
probability that the portfolio value will be higher than CZK 767.89 billion at the year-end). To cover this 
high loss, however unlikely it is, the bank must keep economic capital of CZK 77.88 billion. 

The 1%- and 5%-percentiles take the values CZK 767.89 billion and CZK 796.62 billion respectively. 
Based on these estimations, the bank’s need for economic capital at different confidence levels is: 

 

1%-percentile 5%-percentile Mean 99% 
economic capital 

95% 
economic capital 

767.89 796.62 845.78 77.88 49.16 

 

Macroeconomic fundamentals and the CreditMetrics-based economic capital 

The nature of CreditMetrics makes it rather difficult to analyse the impact of shocks to real economic 
activity on the economic capital allocation. The most natural type of systemic factor analysis that can 
be conducted in the context of this model concerns the interest rate uncertainty. Subsequently, 
different business cycle developments can be accommodated in a CreditMetrics environment by 
assigning them an appropriate change in the yield curve. In Appendix A, we report the results of the 
corresponding Monte Carlo simulations for our artificial portfolio. 

It turns out that the economic capital values are very sensitive to the yield curve movements, and often 
exhibit a counter-intuitive reaction on certain interest rate developments. For instance, an average 
downward (clockwise) rotation of the yield curve, which corresponds to the expected loosening of 
monetary policy, leads to an economic capital increase. This is an inevitable consequence of the fact 
that CreditMetrics does not work with the duration characteristics of the loans. The model to be 
described in Section 4 strives to overcome this deficiency. 
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3.2 CreditRisk+ 

CreditRisk+ is suitable for assessing credit risk in portfolios containing a large number of obligors with 
small default probabilities. The model groups bank customers according to their common exposure. 
The common exposure of an obligor represents the ratio between his bank exposure and a selected 
unit of exposure (CZK 1 billion in our case). Bank clients can be grouped in homogeneous “bands” that 
contain obligors with the same common exposure. 

For obligor i , we introduce the following notations, taken from the CreditRisk+ technical document: 

Li - exposure, Pi - default probability, 
L
Li

i =ν′  - common exposure, νi - rounded common exposure, 

ε i = iν′  × Pi - expected loss. In addition, at the given Band j-level, νj is the common exposure in units of 

L, εj  = ∑
∈

ε
jBandi
i  - expected loss in Band j in units of L, µj = 

j

j

ν
ε

 - expected number of defaults in Band j . 

The risk assessment at the asset level consists in estimating the expected loss (ε i ). At the band level, 
the model estimates the average number of defaults (mj ) as the ratio of the total expected loss in the 
band (ε j) to the common exposure characteristic to the obligors from that band (νj ). 

By assumption, the distribution of the number of defaults in each band is of the Poisson type: 

Pj = P(number of defaults in Band j = k) = 
!

e
k

m jmk
j

−

 k = 0, 1,… 

Further, using the properties of probability-generating functions, the model estimates recursively the 
probabilities that the portfolio loss reaches values expressed as multiples of the unit of exposure. 

For our test portfolio, the analytical risk assessments at the asset and band level are contained in 
Tables 6 and 7. Specifically, Table 7 illustrates the partition of the portfolio into bands and the risk 
characteristics of each band. Four different bands have thus been obtained, with rounded common 
exposures of 14, 19, 22 and 29. 

For each band a probability-generating function is given by: 
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The probability-generating function for the entire portfolio is the product of the individual probability-
generating functions displayed in the last column of Table 7. In this particular example we get: 
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To derive the probabilities that loss equals multiples of the unit of exposure, CreditRisk+ constructs a 
recurrence relationship: 
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that starts with the probability of no loss: 

P0 = P(No loss) = e–m = e
∑
=

−
m

j
jm

1  = e–1.877 = 0.153 

The resulting loss distribution in the case of our portfolio is shown in Figure 2. 

The economic capital is given by the difference between the p-percentile and the expected mean of 
the loss distribution: 

Economic capital = p-percentile – Expected loss. 
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Table 6 

Risk assessment at the asset level according to CreditRisk+ 

Asset i Exposure  
(CZK bn) 

Common 
exposure (νI′ ) 

Common 
exposure 

rounded to 
multiples of 
CZK 1 bn (νi ) 

Probability of 
default (Pi ) 

Expected loss 
(εI = νI′ × Pi ) 

1 28.92 28.92 29  0 0.00 
2 28.92 28.92 29  0.0006 0.02 

3 28.92 28.92 29  0.0018 0.05 

4 28.92 28.92 29  0.0018 0.05 

5 28.92 28.92 29  0.0106 0.31 

6 28.92 28.92 29  0.0106 0.31 

7 28.92 28.92 29  0.0106 0.31 

8 28.92 28.92 29  0.052 1.50 

9 28.92 28.92 29  0.052 1.50 

10 28.92 28.92 29  0.052 1.50 

11 28.92 28.92 29  0.052 1.50 

12 28.92 28.92 29  0.052 1.50 

13 28.92 28.92 29  0.052 1.50 

14 28.92 28.92 29  0.052 1.50 

15 28.92 28.92 29  0.052 1.50 

16 28.92 28.92 29  0.052 1.50 

17 28.92 28.92 29  0.052 1.50 

18 28.92 28.92 29  0.052 1.50 

19 28.92 28.92 29  0.052 1.50 

20 28.92 28.92 29  0.052 1.50 

21 28.92 28.92 29  0.052 1.50 

22 21.45 21.45 22  0.0106 0.23 

23 21.45 21.45 22  0.052 1.12 

24 20.38 20.38 22  0.052 1.12 

25 21.45 21.45 22  0.1979 4.25 

26 18.19 18.19 19  0.052 0.95 

27 18.19 18.19 19  0.1979 3.60 

28 18.19 18.19 19  0.1979 3.60 

29 13.49 13.49 14  0.1979 2.67 

30 13.49 13.49 14  0.1979 2.67 

Source: Own computation. 
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Table 7 

Band partition and risk assessment at  
the band level according to CreditRisk+ 

Band j 

Rounded 
common 

exposure in 
Band j (νj) 

Number of 
obligors in 

Band j 

Expected 
loss in Band 

j (ε j) 

Expected 
number of 
defaults in 

Band j  
(mj = ε j /νj) 

Probability-generating 
function for Band j 

1 14 2 5.340 0.381 exp(–0.381 + 0.381z14) 

2 19 3 8.147 0.429 exp(–0.429 + 0.429z19) 

3 22 4 6.704 0.305 exp(–0.305 + 0.305z22) 

4 29 21 22.092 0.762 exp(–0.762 + 0.762z29) 

Source: Own computation. 

 

Applying the CreditRisk+ approach to our portfolio, we got estimates of risk capital at different 
confidence levels as shown below. 

 

1%-percentile 5%-percentile Expected loss 99% capital 95% capital 

133 101 42.18 90.82 58.82 

Figure 2 

Loss distribution based on the CreditRisk+ model 
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4. A structural model of risky debt with a random default arrival 

We next give an outline of a model of risky debt, its valuation and the resulting economic capital 
requirements, going along the “structural” lines of the original KMV model and its ramifications. The 
term “structural” means that we make the default explicitly dependent on loan and obligor 
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characteristics. However, we borrow an additional element from the so-called “reduced-form” models 
of default (for a survey of both types of model, see Bohn (1999)), by working with a default process in 
Poissonian form. This technique was introduced by Jarrow and Turnbull (1995). We follow the variant 
utilised by Madan and Unal (1998, 1999), in that the default event arrival rate becomes a function of 
the same obligor fundamentals as the ones that drive the asset prices. However, this principle is 
developed in a way to establish a link between the default process of the abstract reduced-form 
models and the empirics inspired by the Expected Default Frequency notion of KMV. The proposed 
model allows one to deal with a loan portfolio with correlated defaults in a natural way. 

4.1 Definitions 

Consider a portfolio of n loans issued by n different companies (obligors). Loan i pays a coupon i
tc  at 

time t and the coupon plus the face value Fj at maturity T i (t =1,…, T i ). The value of the loan to firm i 

at time t is denoted by .itV  Then, Bt =∑
=

n

i

i
tV

1
 is the value of the loan portfolio to be found. 

There are N assets traded in the market, with prices j
tP  at time t ( j =1,…, N ). These assets represent 

all sources of aggregate uncertainty in the economy independent of the actions of obligors defined 
above. In this sense, the financial markets outside the considered borrower set are complete. These 
uncertainty factors will be represented by random variables x j, j =1,…, N. By x, we denote the vector 
of the unobserved state variables of the model. 

The loans are risky. If firm i generates period t-cash flow )( t
ii

t xfY =  net of all the other debt service 

obligations, then the probability of default i
tπ  on the loan is an inverse function of the difference 

i
t

i
t CY − : πi(x) = π(Yi −Ci). Here, i

t
i
t cC =  if t <T i and ii

t
i
t FcC +=  if t =T i. Hence, the variable driving 

the default rate in our model is an analogue of the distance-to-default measure used in KMV. One 
shall think of π as approaching unity when the distance to default falls to minus infinity, and 
approaching zero when it increases to plus infinity. 

The space of random events in our model is formed by pairs ω = (χ, b), where χ is a realisation of x 
and b = [b1,…, bn ], bi = S if there is no default (survival) and b i = D if firm i defaults on the loan. The 
arrival fact of the default event itself (which we represent by the Bernoulli process B i) is assumed 
independent of x, ie only the probability value of the default is x-dependent through the cash flow 
variable Y i. 

For each loan, there is collateral that is tradable and depends on the same sources of uncertainty as 
the basic assets. That is, the collateral price for loan j is equal to Z i = ζi(ω). If the loan defaults, the 
bank seizes the collateral, ie receives the value of Z i. 

There are two important cases to be distinguished with regard to the collateral prices. One possibility 
is to allow ζi to depend on both x and b. That is, this collateral is worth different amounts depending on 
whether the debt has defaulted or not. This would be the case if there were a separate structural factor 
behind the realisation of b, correlated with the market risk factors x. The same factor should be 
responsible for the value of the collateral. This situation would allow loan i to be priced in accordance 
with the risk neutral valuation principles (see an example of such a valuation in Derviz and Kadlčáková 
(2002, Section 3). It may occur when the collateral is very obligor-specific. 

However, an equally legitimate case is that of the collateral being totally unrelated to the operation of 
the firm (eg securities in its investment portfolio). Then Z i = ζi(x ) and a unique risk neutral valuation of 
the loan is impossible. In that case, one must resort to pricing techniques based on explicit individual 
portfolio optimisation. This is done next. 

4.2 The individual loan and the portfolio value 

Let us consider an optimising investor in discrete time who decides upon allocating his/her wealth 
between the existing marketable assets, ie the N traded securities, the n collateral assets and the n 
company loans (all defined above). This is a standard optimisation problem under uncertainty in 
discrete time. 
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Let g j be the stream of coupons/dividends paid out by the basic security j , and hi the same thing for 
the collateral security i . These values are unknown at the beginning of each period, when the investor 
makes the portfolio allocation decisions. Define R j as the current yield on the basic security and z i as 
the current yield on the collateral. In addition, it is convenient to use the notation y j for the continuously 
compounded current yield on basic asset j : 
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rt+1 will denote the risk-free short rate between periods t and t +1. The period utility function of the 
investor is a function of the dividend rate withdrawn after the investment strategy gains are realised: 
u = u ( ρ~ ). The ρ-dependence is of the standard Inada form. If the time preference rate of the investor 
is β∈(0, 1), the pricing kernel (stochastic discount factor, see Campbell et al (1997), or Cochrane 
(2001)) is given by: 
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The information available to the investor at time t consists of the trajectories of g, h, P and Z as well as 
the default event realisations b, all up to time t . The no-default up to time t subset of the event space 
for loan i will be denoted by .itN  Let the x-dependent statistics of the survival, i

tS τ,  between times t and 
τ ≥ t + 1, be defined as: 
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Now we apply the standard asset pricing theory results. The optimal investor behaviour implies the 
following asset pricing formulae (special cases of the discrete time consumption-based CAPM): 
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In view of our assumptions about default arrival independence on x, equation (6) can be rewritten in 
the form: 
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where, now, the conditional expectation *tE is taken only with respect to the market-wide risk factors. 
Thus, we have eliminated the firm-specific default event process B i from the debt pricing formula (6). 
Also note that the asset pricing equations (4) could be written with expectation *tE  instead of Et from 
the outset, since they are default event-independent. 

Next, utilising the previously made assumption about market (in)completeness, we note that the value 
of individual loans and the loan portfolio as a whole can be calculated as soon as one reconstructs a 
formula for the pricing kernel τ

tM  from the pricing equations (4). Formally, we will be estimating and 
using the empirical pricing kernel in (7) instead of the theoretical pricing kernel (2). The empirical 
pricing kernel is a projection of the theoretical one on the space of modelled market uncertainty factors 
x. Due to the law of iterated expectations, the left-hand side of (7) is fully determined by this projection 
(since the external expectation is taken with respect to x-generated random events). One goes about 
calculating asset prices in the pricing kernel context by either setting up a parametric model for it or 
applying orthogonal basic decomposition methods known from numerical mathematics, under a 
non-parametric approach. Examples in the literature include Ait Sahalia and Lo (2000), Jackwerth 
(2000), or Rosenberg and Engle (2002). 
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We proceed by constructing a Gaussian state-space model for the pricing kernel and estimating it on 
the Czech asset data. 

4.3 A hidden factor asset pricing model 

The observation process y of our model consists of the above-mentioned traded asset yields y1,…, y N. 
The observation equations are: 

,1101 ++ ++= t
j

t
jjj

t xAxaay  j =1,…, N (8) 

Here, [ ]TNaaa 0
1
00 ,...,=  is an N × 1-vector of intercepts, a1 and A are N × n-matrices of coefficients 

with rows [ ]j
n

jj aaa 1111 ,...,=  and [ ]j
n

jj AAA ,...,1=  respectively. The n-dimensional vector x of 
unobserved state residuals follows the VAR(1)-process: 

xt+1 = bxt + Bεt+1. (9) 

Coefficient matrices b and B in (9) are of size n × n. Process ε is an n-dimensional vector of mutually 
independent standard normal errors. In general, n ≠ N and, if there is a reason to assume eg cyclical 
components in the observations, one will need to take n > N. 

Another unobserved state variable is the log of the one-period pricing kernel 1
1 log +
+ = t

tt Mm : 

mt+1 = λ0 + λ1xt + Λxt+1. (10) 

Here, λ0 is a scalar constant, whereas λ1 and Λ are row vectors of dimension n. The observation 
equation system (8) together with the state equation system (9), (10) constitutes the state-space 
representation of the present model. However, this is not the definitive representation to be estimated, 
since one must incorporate the coefficient restrictions following from the no-arbitrage pricing 
equations (4) for returns y. 

Proposition 1 The no-arbitrage pricing conditions for the asset return model defined by (8)-(10) above 
are equivalent to the following constraints on the model coefficients: 
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−λ−= ja1 = –λ1 – (Λ + Aj )b, j =1,…, N. (11) 

The proof is given in Appendix B. Note that, whereas the first equality in (11) is scalar, the second one 
is for N-dimensional row vectors. 

We are able to reduce the number of estimated parameters by simplifying the covariance structure of 
the state equation through a change of variables. Specifically, assume that B is non-singular and put 
xt = But for all t . Then: 

ut+1 = Φut + εt+1, Φ = B–1bB. (12) 

The log-pricing kernel equation is now given by: 

mt+1 = c0 + c1ut + Cut+1 (13) 

instead of (10), with c0 = λ0 , c1 = λ1B, C = ΛB. Put γ j = (Λ + Aj )B. It is easily checked that the 
no-arbitrage pricing conditions (11) of Proposition 1 imply the following equations for the observed 
yields: 
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tm , j =1,…, N. (14) 

Process u will be the state process of the definitive formulation of our model. The state equations for 
its components are in (12). The observation equations are in (14). The model written in state-space 
form in (12)-(14) contains restrictions on the fixed coefficients. After having estimated it by means of 
the Kalman filter method and obtained the (hyper)coefficients Φ, λ0 , c1, C, γ,  we can reconstruct the 
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observation equation coefficients a0, a1 by means of (10) and the coefficient matrix A by using the 
definition of γ :  

Aj = γ jB–1 – Λ = (γ j – C)B–1, j =1,…, N. (15) 

This will complete the estimation procedure for the pricing kernel and allow us to price the non-traded 
debt by means of (5). 

One-period interest rate as a basic security 

As was already mentioned, the present model is not constructed by directly fitting the yield curve. 
However, if one works with monthly data, it is convenient to take the one-month risk-free interest rate 
as one of the basic securities. Let us assign it superscript 1. Then 1

1+ty  is the continuously 
compounded one-period rate between t and t +1. We incorporate it into the model by imposing the 
requirement A1 = 0 in (8) for j =1. Equivalently, one must have γ1 = ΛB = C, then the first observation 
equation degenerates to: 

( ) ,
2 1

2
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1 tt uCc
C

y Φ+−−λ−=+  

and the coefficient recovery formulae (15) are applicable for j =2,…, N. 

All other points in the yield curve (with longer maturities) generate uncertain one-period yields, so that 
there is no need for further specialisation in the event that one would want to include any of them in 
the list of basic securities. 

5. Asset pricing data and economic capital estimation 

The sample period 1999-mid-2003 is characterised by a negative trend in the Czech interest rate and 
bond yield data (the disinflation process and the monetary policy rate convergence to the EU level). 
The model described in the previous section would require a number of messy technical adjustments 
to accommodate these non-stationary yields along with the stock return data. Since our objective is 
the modelling of real shock effects on credit risk valuation, we need a pricing kernel projected on the 
space of most relevant security returns. That is, for our purposes it is sufficient to select the stationary 
assets with a clear relation to the economic cycle and avoid the problems with fitting the yield curve 
evolution. Therefore, we have selected a four-factor model based on the following asset returns: 

• PX50 stock index return; 

• Česká pojišt’ovna (a major Czech insurance company) stock return; 

• DAX stock index return; 

• Altana (the pharmaceutical company) stock return. 

This choice is motivated by the effort to capture both internal and external risk factors for the small 
open Czech capital market with a high degree of dependence of the corresponding markets in 
Germany and the European Union. The stock index returns reflect the direct link to the Czech and 
euro area business cycles. The additional stocks (Česká pojišt’ovna on the Czech side and Altana on 
the EU side) were found to be less than perfectly correlated with the major indices. Therefore, they 
serve in the model as proxies for the countercyclical risk factors priced in the corresponding markets. 

Estimation of the empirical pricing kernel 

The unobserved state-space model covered in Section 4, implemented for the four named assets, 
contains four state variables u1, u2, u3 and u4, and their four one-period lags. According to the 
estimation outcome, the pricing kernel log, m, has the following dependence on these variables: 

m = 0.023 – 0.00376 u1(–1) + 0.0002 u2(–1) + 0.00274 u3(–1) + 0.00681 u4(–1) 

 + 0.00993 u1 + 0.00065 u2 + 0.0148 u3 + 0.0203 u4 . 

The estimated autoregression matrix Φ for the states (cf (12) in Section 4) is equal to: 
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Using the estimated state variable series, one can now establish the dependence of the obligor 
company cash flow (cf (7)) on the hidden risk factors by regressing these flows on the four state series 
(with first-order lag terms). Considering the way in which the portfolio was constructed, individual asset 
cash flows are proxied by the price indices corresponding to the relevant industries. We implement a 
seemingly unrelated regression (SUR) with the price indices acting as the dependent variables and the 
state vectors as the explanatory variables: 

Yi = β i + ∑∑
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k u uk (– 1) + ε i , i =1,…, 30. 

The coefficients β i, i
k

i
k δγ ,  facilitate the computation of the annual default probabilities for each asset. 

By assumption, year t default probability of the i-th asset is linked to the cash flow i
tY  according to the 

formula: 
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=π    i =1,…, 30,  t =1,…, 5. (16) 

Intuitively, (16) reflects the fact that high cash flow realisations would yield probabilities of default 
(PDs) close to zero while highly negative cash flows would yield PDs close to unity. The PD formulae 
are calibrated to become compatible with the S&P rating structure of the portfolio. This means that the 
parameters α i are estimated in such a way as to produce the S&P asset-specific ratings when the 
cash flows in (16) are zero. 

The recovery rates are also modelled as state-dependent variables. The last four of the six types of 
collateral considered (securities, commercial real estate, other and no collateral) are proxied by the 
following variables: 

• yields on five-year Czech government bonds; 

• the real estate price index; 

• a linear combination of the PPI and industrial production index (reflecting uncertainty 
regarding other types of collateral); and 

• an insurance sector price index. 

As in the case of the assets’ cash flows, these variables are regressed on the state variables. By 
assumption, the recovery rates are exponential functions of the hidden risk factors u: 
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where the coefficients bi, i
kc  and i

kd  are obtained from the regressions and ai are parameters that 
calibrate the recovery rate formulae to the real recovery rates as considered in Table 5. 

The annual values of individual loans up to maturity can be calculated as soon as these intermediate 
valuation elements are available: 

( ) ( ) ( ) ( )[ ],1...11...1
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111∑
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t

iiiiiiiii
t RRcMUV    t =1,…, T i. (18) 

Here U i is the contractual loan volume and icτ  is the loan annual payment (the lending rate in the 
years prior to maturity and one plus the loan lending rate at maturity). 

We conduct a Monte Carlo simulation with 10,000 scenarios to generate the distribution of the portfolio 
value at the risk horizon. Each replica starts with the four-component state vector at the end of 2000. 
Then, the annual u vectors for the subsequent five-year period are determined using autoregressive 
state variable formulae as in (12). Additionally, each component of the vector u is shocked each year 
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with an error term randomly drawn from the standard normal distribution. Given the u-dependence of 
the pricing kernel given by (15), default probabilities (see (16)) and recovery rates (see (17)), each 
loan’s valuation is fully determined by (18). The portfolio value is obtained by summing up the 
individual loan values. This procedure is repeated 10,000 times. The mean of the portfolio distribution 
thus obtained (see Figure 3) is then used to estimate the economic capital. In our understanding the 
economic capital represents the difference between the riskless value of the portfolio and the mean 
value mentioned above. The riskless value of the portfolio is estimated assuming no default events 
taking place over the risk horizon, thus making the i

tπ  equal to zero in (18) for each i and t . 

Figure 3 

Portfolio distribution according to the pricing kernel model, 
baseline case 
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Business cycle events and economic capital in the pricing kernel model 

We are now ready to investigate the consequences of the domestic and foreign economic cycle. The 
latter case will be modelled by constructing the real shocks for Germany since there is no generally 
accepted industrial production index for the European Union or the euro area as a whole. 

The loan portfolio distributions under different macroeconomic developments in the Czech Republic 
and Germany are shown in Figure 4. In addition, Figure 5 shows the pricing kernel baseline and the 
most extreme positive/negative economic activity shock cases in comparison to the CreditMetrics 
distribution. 

When we model the different business cycle developments in the pricing kernel model, we rely on a 
shock to a corresponding state variable (the first one for the Czech business cycle and the third one 
for the German). These shocks were selected since the underlying risk factors roughly correspond to 
the normalised Czech and German industrial production indices. They also produce an almost isolated 
response in the first (PX50 exchange index) and the third (Dax) of the modelled assets. It turns out 
that the shocks we model (denoted by CZ ± 0.01, CZ ± 0.02, CZ ± 0.03 and DE ± 0.01, DE ± 0.02, 
DE ± 0.03 in Figures 4 and 5) correspond to the 1, 2 and 3% rise/decline of the Czech and German 
Industrial Production Index (IPI), respectively. 
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Figure 4 

Pricing kernel model: loan portfolio distribution under 
domestic and foreign real economic activity shifts 
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(b) Shocks to the German business cycle 
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Figure 5 

Portfolio value distributions according to the CreditMetrics 
and pricing kernel models, different growth scenarios 
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Table 8 sums up the credit risk-related estimations of economic capital in all the cases considered. For 
comparison, we have also included the regulatory capital measures for the same artificial portfolio 
(both standardised and IRB approaches) according to the original NBCA guidelines of January 2001 
and the 3rd Quantitative Impact Study of October 2002. These were obtained in our earlier paper 
(Derviz et al (2003)), where a detailed account of the calculation procedure can be found. 

6. Conclusion 

This paper has an applied objective of analysing the impact of business cycle and monetary policy on 
credit risk valuation. It does not aspire to create an empirically waterproof econometric model of 
business cycle effects on asset prices as such. That is why we are not dealing with processes for real 
economic activity, inflation and monetary policy as (either observable or hidden) explanatory factors 
for the observed security yields. Instead, we take a shortcut by assuming that at least a subset of the 
chosen basic asset yields provides a sufficient statistic of either present or future (expected) economic 
growth and of the monetary policy stance. We are interested in modelling a domestic economic 
up-/downturn with foreign development being stable, and an expansion/recession abroad with the 
domestic environment being stable. This has been identified with the corresponding behaviour of the 
chosen asset returns in both economies considered. Namely, current high/low growth is reflected in 
the high/low current values of the leading asset return. 

The model outlined in the paper is likely to be free of certain deficiencies typical to the two standard 
ones, whose application to economic capital calculations was described in detail in Section 3. For 
instance, a counter-intuitive negative dependence of the capital requirement on the market interest 
rate is an unfortunate feature of the way CreditMetrics works with the relation between the debt value 
and the economic capital. That model does not have any link from the interest rates to the firm’s ability 
to repay the loan. On the other hand, our model is able to create this link because the obligor’s net 
cash flow will usually be negatively related to the market rates of interest. Therefore, the reduction of 
the latter (such as the down-translation of the forward zero curve) increases the cash flow and, 
therewith, reduces the default event rate. 
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Table 8 

Summary of economic capital estimations 

 Regulatory 
capital 

1%-
percentile 

5%-
percentile Mean 

99% 
economic 

capital 

95% 
economic 

capital 

Non-VaR 
economic 

capital 

NBCA -  Standardised 
approach (Jan 2001) 51.84       

NBCA - IRB approach 
(Jan 2001) 165.46       

NBCA - Standardised 
approach (Oct 2002) 46.90       

NBCA - IRB approach 
(Oct 2002) 44.79       

CreditMetrics  767.90 796.62 845.78 77.89 49.16  

CreditRisk+ (Loss)  133 101 42.18 90.82 58.82  

Pricing kernel model 
baseline    768.30   64.56 

CZ–0.03    723.00   109.86 

CZ–0.02    737.94   94.93 

CZ–0.01    754.27   78.59 

CZ+0.01    775.68   57.19 

CZ+0.02    783.32   49.54 

CZ+0.03    790.24   42.63 

DE–0.03    673.73   163.14 

DE–0.02    704.80   132.06 

DE–0.01    738.20   99.66 

DE+0.01    770.62   68.24 

DE+0.02    766.15   72.71 

DE+0.03    774.14   65.72 

 

Another important advantage of the model is its ability to handle correlated defaults in a natural way. 
This is because default correlation in the model is not an exogenously given property or an ad hoc 
assumption, but instead follows by construction from the dependence of default rates on common risk 
factors. 

A certain difficulty lies in the necessity of calculating the pricing kernel recursively for multi-period loan 
contracts. However, the calculations themselves are routine and are based on well developed 
numerical techniques, allowing one to apply relatively standard software. 

Once the distribution of the loan portfolio market price has been calculated, it can be used to derive 
the bank-internal measure of economic capital. The latter shall be subsequently compared with the 
prudential capital values derived directly from regulatory principles. The difference would tell us the 
degree of discrepancy between internal risk measurement and regulatory mechanisms of risk-based 
capital allocation by the bank. 

The main conclusions of this study can be summarised as follows. 

• Bank capital on the basis of our model would react procyclically. However, this reaction 
differs substantially from loan to loan, so that certain “countercyclical” loans may even be 
assigned lower capital values under a downturn. Also, stochastic properties of the collateral 
(their non-zero covariances with the underlying systemic uncertainties) mitigate the 
procyclical economic capital allocation in our model. 
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• When floating interest rates and changes in yield curves were modelled, the estimate of 
economic capital was generally higher. This result is intuitive, as increased uncertainty 
should generally impose higher required levels of capital on banks. 

• The particular changes in the forward zero curves analysed in this paper in the CreditMetrics 
context did not impose significantly different levels of economic capital than did the case with 
stable forward zero curves. The scenario where forward zero rates fell (both translation and 
clockwise rotation) required slightly more capital, and this situation persisted at all 
considered confidence levels. 

• Risky debt valuation by the traditional asset pricing methods currently in use by the banking 
industry tends to generate higher loan values and reduce economic capital requirements, 
compared to other possible regulatory and model-based risk measurement methods. 
Therefore, the regulator may see an effort on the part of the banks to treat different parts of 
loans on their balances differently in terms of economic capital. The difference will go in the 
direction of reducing capital allocation (and specialising collateral requirements) in those 
segments of the loan portfolio that exhibit strong correlation with traded risks. 

• Asset pricing methods of risk measurement may lead to a better recognition of the role of the 
business cycle and other systemic macroeconomic factors in economic capital 
determination. Therefore, the feedback from the business cycle-related events in the security 
markets to economic capital, as captured in our model but also present in many existing risk 
management procedures, may make natural (and desirable) countercyclical economic 
capital adjustments possible. 

• Those methods of credit risk measurement which explicitly deal with market incompleteness 
(ie the lack of market valuation of both the loan itself and the assets of the obligor) lead to a 
better recognition of the role of the business cycle and other systemic macroeconomic 
factors in economic capital determination. Therefore, the regulator should encourage the use 
of methods that allow for countercyclical adjustments by banks of procyclically biased risk 
management procedures. 
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Appendix A: 
Yield curve fluctuations, CreditMetrics 

and economic capital 

A.1 CreditMetrics - allocation of economic capital under floating lending rates and fixed 
forward zero curves 

We assume that the mechanism of future changes in lending interest rates is as follows: 

tt
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Here σ is a normally distributed random variable, so the exponential follows a log-normal distribution. 

In this formulation, interest rates on loans preserve the markups that capture obligor-specific risk or 
liquidity premium (already incorporated in the old interest rates), but also contain a random component 
reflecting uncertainty related to the future course of the money market rate (Pribor). The random 
component does not vary across obligors. In our simulations it was obtained as a random draw from a 
log-normal distribution. The parameters (mean and standard deviation) describing the log-normal 
distribution were estimated on actual Czech data (1Y Pribor over the year 2000, a period of relative 
rate stability and no monetary policy changes). 

A.2 Monte Carlo simulation with floating interest rates 

A total number of 10,000 random draws from the standard log-normal distribution were performed to 
determine the random component of Pribor and thus the loans’ interest rates. Due to the floating 
nature of the interest rates, the valuations of each asset and of the portfolio varied in line with the 
particular values of the random draws. A total number of 10,000 portfolio values at the end of the risk 
horizon were thus obtained. Figure A1 shows the relative frequencies of these values at the year-end. 

Figure A1 

The empirical distribution of the portfolio value 
with floating interest rates 
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Note: The horizontal axis shows non-overlapping intervals that cover the entire range of the estimated portfolio values, and 
the vertical axis shows the frequencies with which the portfolio values fell into those intervals. 
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The estimation of economic capital in this case is given in Table A1. 

 

Table A1 

Capital requirements assuming different changes in 
interest rates and forward zero curves (FZCs) 

(10,000 random draws) 

 1%-percentile 5%-percentile Mean 99% ec 
capital 

95% ec 
capital 

Fixed interest and fixed FZC 767.90 796.62 845.78 77.89 49.16 
Floating interest and fixed FZC 669.65 718.48 848.33 178.69 129.85 
Upward translation of FZC 655.15 705.70 834.25 179.11 128.56 
Downward translation of FZC 672.44 724.32 856.94 184.50 132.62 
Anticlockwise rotation of FZC 668.83 722.92 839.14 170.31 116.22 
Clockwise rotation of FZC 668.83 722.92 853.01 184.18 130.09 

 

A.3 Monte Carlo simulation with floating interest rates and stochastic forward zero curves 

The next four cases retain the assumption that floating interest rates were charged by the bank on its 
loans. Additional uncertainty is added with regard to changes in forward zero curves (the discount 
factors entering the loan valuations) over the one-year period. We analysed the impact on the bank’s 
need for economic capital under the following changes in the forward zero curves: upward translation, 
downward translation, clockwise rotation and anticlockwise rotation. Rotations of the forward zero 
curves are around the point determined by the two-year forward rate. These changes are illustrated in 
Figure A2. 

Figure A2 

Simulated changes in the forward zero curves 
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We assumed that these changes reflected subjective expectations concerning the evolution of the 
Czech forward zero curves over a one-year period. They became rating class-specific by adding the 
US forward spread (the difference between the US rating class-specific and the US forward zero 
curves). We incorporated these changes into the forward zero curves in the model according to the 
formula: 
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Here ft is the original Czech forward zero rate at year t , g
ts  is the spread in forward zero rates 

characteristic of the g-th rating class at time t , and ϕt is a random draw from the normal distribution 
(thus eϕ

t is log-normally distributed). 

The proposed changes in the forward zero curves were captured in the model by considering 
particular random variables φt in (A1): 

φt = µ + ε, t =1, 2, 3, 4, for an upward translation; 

φ = –µ + ε, t =1, 2, 3, 4, for a downward translation; 

φ1 = –µ + ε, φ3 = µ + ε, φ4 = 2µ + ε, for an upward rotation; 

φ1 = µ + ε, φ3 = –µ + ε, φ4 = –2µ + ε, for a downward rotation. 

The overall effect of an upward shift in the forward zero curve is a decrease in the present value of all 
loans in the portfolio. If the bank heavily discounts the future, the opportunity cost of granting loans 
increases, since alternative assets may provide higher returns in the future. Accordingly, the present 
value of the cash flows accrued from the loans is lower compared with the case where the forward 
zero curves remain unchanged. The effect of a downward shift of the forward zero curve is the 
opposite of the one mentioned above. Rotations of the forward zero curve affect assets’ valuations 
depending on maturity. For example, the anticlockwise (upward) rotation discounts assets with a short 
maturity less and assets with a long maturity more. Therefore, the valuation of the portfolio is very 
sensitive to the portfolio composition. If more assets fall into the long-maturity category the present 
value of the portfolio tends to decrease, while if they fall into the short-maturity category the present 
value of the portfolio tends to increase. 

In all previous formulations of the ϕt distribution, the parameter µ determined the magnitude of the 
deterministic change in forward zero curves and ε added random deviations. We wanted changes in 
the deterministic part of the discount factors not exceeding 1% (thus, if for a given maturity the forward 
zero rate was 3.4%, we wanted it to deviate upward to 4.4% only). This assumption implied a value for 

µ of 0.01. In each case, ε was assumed to follow a normal distribution with mean 
2

2σ
−  and standard 

deviation σ, so that the mean of the log-normally distributed factor eε is equal to 1. Under these 
conditions ϕ became normally distributed with mean µ + m . The standard deviation σ of ε was 
estimated by computing the standard deviation of the log(1+1Y Pribor/100) variable using daily 
observations over the year 2000 after removing the trend. The same estimated values of the 
parameters µ and σ were used in all cases of random changes in forward zero curves. 

We performed Monte Carlo simulations containing 10,000 scenarios that simultaneously accounted for 
random changes in interest rates and forward zero curves. Shown next are the portfolio value 
distributions and the estimates of economic capital based on simulations that incorporated the 
proposed changes into the forward zero curves. 

Figure A3 displays the portfolio value distributions when the four forward zero curve change cases 
discussed above are compared. 
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Figure A3 

Portfolio distributions under different 
forward zero curve movements 
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Economic capital estimations at different confidence levels are displayed in Table A1. The downward 
translation and the clockwise rotation of the forward zero curves impose the highest requirements of 
economic capital in this particular example. However, economic capital seems to converge towards 
the fixed forward zero curves (with floating lending rates) case when the confidence level is reduced. 
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Appendix B: 
Proof of Proposition 1 

The pricing relation (4) for asset j can be written as [ ] 111 =++ + j
tt ym

t eE . Since both m and y j are normally 
distributed with known conditional expectations and variances for each date t , the last equation can be 
rewritten as: 
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In accordance with (8)-(10), this is equivalent to: 

0)(
2
1 2

1010 =+Λ++++Λ+λ+λ BAbxAxaabxx j
t

j
t

jj
tt  (B1) 

for all t for each j . Equations (B1) can be considered as identities involving a non-trivial vector 
autoregressive state process x . They are satisfied if and only if all coefficients on the left-hand side of 
(B1) are identically zero. This means: 
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for all j , which is equivalent to (11). 
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