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1. Introduction

In the last five years, there has been great interest amongst policy-makers in extracting information

from the prices of financial assets. Options prices, in particular, have proved to be be a particular rich

source of information since they enable the extraction of a complete implied risk-neutral probability

density function (RNDs) for the assets, interest rates and commodity prices upon which they trade.

These RNDs have proven particularly useful in interpreting the market’s assessment of the balance of

risks associated with future movements in asset prices.

Reflecting this interest, a relatively large number of papers have been published that set out alternative

techniques for the estimation of implied RNDs with examples of their application to particular

markets. Despite this wide range of papers, nearly all are based on one of three basic approaches:

• estimating the parameters of a particular stochastic process for the underlying asset price from

options prices and constructing the implied RND from the estimated process - see Malz(1995) and

Bates(1996) for examples that incorporate jump processes;

• fitting a particular parametric functional form for the terminal asset price, for example a mixture of

lognormals directly to options prices - see Bahra (1996,1997) and Melick and Thomas (1997);

• interpolating across the the call pricing function or the volatility smile, following Shimko (1993),

and employing the Breeden and Litzenberger (1978) result that the implied distribution may be

extracted by calculating the second partial derivative of that function with respect to the strike

price.

The first approach has the disadvantage that it is based on a particular stochastic process: we cannot

observe whether the assumed process can capture the density functions that are implicit within

options’ prices. In this paper we focus on the second and third approaches which are more flexible

since by trying to estimate the density function directly they are consistent with many different

stochastic processes.
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Given these alternative techniques, a natural question is:  “Which technique performs the best?” A key

concern is the accuracy and stability of the estimated RNDs. Suppose we observe an estimated RND

that displays bi-modality or “spikes.”1 Should we interpret this as reflecting actual expectations or

estimation errors? If we believe it to be the latter then the value of using implied RNDs is seriously

diminished.

This paper attempts to address these concerns. It examines the empirical performance of two

approaches to RND estimation by testing the ability of alternative techniques’ ability to recover the

implied density function from a set of simulated prices. The simulated prices are generated from a

quite general stochastic volatility model set out in Heston (1993). By using simulated prices, rather

than actual prices, we can compare estimated RNDs against the “true” RND implied by the underlying

price process. We test not just the stability of estimated RNDs and their robustness to small errors as

in Bliss and Panigirtzoglou (1999), but also their ability to closely recover the summary statistics from

the true density function given sufficient data.

The paper is organised as follows. Section two sets out the two estimation techniques that we

compare. Section three sets out the approach we will use for assessing the performance of the

alternative methodologies. Section four presents results for European-style options and section five

concludes.

2. Alternative Techniques for Estimating Implied RNDs from Options’ Prices

2.1 Underlying Economics

In this section we examine the two estimation approaches that are tested within this paper. Both may

be derived from the Cox and Ross (1976) pricing model. This model gives current time t European-

style call option prices as the risk-neutral expected payoff of the option at expiry T, discounted back at

the risk-free rate:

( )C S X e S X g S dSr
T T T

X

( , , ) ( )τ τ= −−
∞

∫     (1)

                                               
1 See Bahra(1996) for examples of such spiked distributions when using the mixture of lognormals approach.
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where ST is the terminal underlying asset price at T, g(ST) is its RND, X is the strike price and r and

τ=T-t are the risk-free rate and the maturity of the option respectively. The put price can be recovered

either through put-call-parity or by replacing the payoff of the call (ST-X) with the payoff of the put

(X-ST) in the above formula and by integrating from zero to the strike price.

The first estimation approach tested in this paper involves specifying a particular parametric functional

form for the RND g(ST) and fitting this distribution to the observed range of strike prices via non-

linear least squares. Although a range of functional forms have been suggested, the most commonly

used is a mixture of two lognormals2. The form chosen should be sufficiently flexible to capture the

features of distributions that we might expect to find implicit within the data - excess kurtosis, either

positive or negative skewness, and perhaps bi-modality. The mixture of lognormals is parsimonious

because it matches these criteria with just five parameters to be estimated.

The mixture lognormal is given by:

( ) ( ) ( )g S L LT( ) , ,= + −θ α β θ α β1 1 2 21 (2)

where θ α α β β, , , ,1 2 1 2  are the parameters to be estimated. The fitted call and put prices are given by3:

( ) ( ) ( ) ( )( )$( , , ) , ,C S X e S X L L dSi
r

T i T
X i

τ θ α β θ α βτ= − + −−
∞

∫ 1 1 2 21 (3)

( ) ( ) ( ) ( )( )$ ( , , ) , ,P S X e X S L L dSi
r

i T T

X i

τ θ α β θ α βτ= − + −− ∫ 1 1 2 2
0

1
1

.

To fit the parameters of the RND we minimise the following:

( ) ( )min $ $
, , , , , , , ,α β α β θ τ τ τ τ1 1 2 2

2 2

11
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m

− + −
==
∑∑ (4)

                                               
2 See Bahra (1996,1997) and Melick and Thomas (1997)
3 As explained in Bahra (1997) for the futures options traded at LIFFE that have futures-style margining, the discount
factor disappears.
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The second approach to estimating implied RNDs that we test here which we term the “smile”

approach, exploits the result derived by Breeden and Litzenberger (1978) that the RND can be

recovered by calculating the second partial derivative of the call-pricing function with respect to the

strike price. This result can be derived simply by taking the second partial derivative of equation (1)

with respect to the strike price to get:

( )∂
∂

τ
2

2

C
X

e g Sr
T= − (5)

So we just have to adjust up the second partial derivative by exp(rτ) to get the RND g(ST). In practice

we only have a discrete set of strike prices. So to obtain an estimate of the continuous call-pricing

function we need to interpolate across the discrete set of prices. Following Shimko(1993) this

interpolation can be done by interpolating across the volatility smile and using Black-Scholes to

transform this back to prices. The reason for doing this rather than interpolating the call-pricing

function directly is that it is difficult to fit accurately the shape of the latter. And since we are

interested in the convexity of that function any small errors will tend to be magnified into large errors

in the final estimated RND.

Shimko (1993) used a quadratic functional form to interpolate across the volatility smile. Instead, we

follow Bliss and Panigirtzolglou (1999) and use a cubic smoothing spline to interpolate in a similar

way to Campa and Chang (1998). This is a more flexible non-parametric curve that gives us control on

the amount of smoothing of the volatility smile, and hence the smoothness of the estimated RND. But

following Malz (1997), Bliss and Panigirtzoglou (1999) also first calculate the Black-Scholes deltas of

the options and use delta rather than strike to measure the money-ness of options. In practice this

makes interpolation of the volatility smile even easier, since it becomes a simpler shape to approximate

in “delta-space”. Finally, to generate the implied RND we calculate the second partial derivative with

respect to strike price numerically as for (5) and adjust for the effect of the discount factor.

So summarising, estimation via the smile-based approach proceeds by:

• calculating implied volatilities of the call and put options;

• calculating the Black-Scholes deltas of the options using those implied volatilites;
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• constructing the volatility smile by joining the implied volatilities for out-of-the-money calls with

those of the out-of-the-money puts4;

• interpolating across the volatility smile in “delta-space” via a cubic smoothing spline;

• transforming back to a price function using the Black-Scholes model;

• taking the second partial derivation of that function with respect to strike and adjusting for the

discount factor within equation (5) to generate the final estimated RND.

3. A Monte Carlo Approach to Testing PDF Estimation Techniques

This section of the paper explains the testing procedures we will use to assess the performance of the

two estimation approaches set out above. One approach to testing these techniques is to examine how

closely they fit actual options data (for example see the approaches taken by Campa and Chang

(1998), Jondeau and Rockinger (1998) and Bliss and Panigirtzoglou (1999). But in doing so it is

difficult to assess which of the estimated RNDs most closely match the true risk-neutral density since

this is unobservable. In the absence of knowledge of what the true density function is, it is difficult to

judge this.

Instead we use simulated artificial options price data. We can simulate options prices that correspond

to a given risk-neutral density function and see whether the estimation techniques can recover the

RND. In addition following Bliss and Panigirtzoglou (1999), we also test whether the estimation

technique is robust to small errors in prices that might result in the real world from the existence of

discrete tick size intervals.

Any good RND estimation technique should be able to recover the true RND under a wide range of

market conditions: that is conditions of high and low volatility; where the true density function has

either  positive or negative skews; and where we use options across the full range of maturities that

are encountered in practice - anything from one week out to a year. So we need a way of generating

options data that match this range of conditions.

                                               
4 We use out-of-the-money options because traded volumes concentrate on at-the-money and out-of-the-money options.
Also the out-of-the-money option value is composed enitirely of the time value of the option rather than its intrinsic
value as for in-the-money options. It is the time value of the options only that reflects the shape of the RND.
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To generate sufficiently interesting “true” risk-neutral densities that incorporate the features discussed

above, we use Heston’s (1993) stochastic volatility model to generate prices. For European options,

this model has a closed form solution. Under Heston’s model, the underlying asset price dynamics are

described by the following stochastic differential equations:

( )
dS Sdt v Sdz

dv v dt v dz
t

t t v t

= +
= − +
µ
κ θ σ

1

2

(12)

Here the volatility of the underlying asset vt is also stochastic. The conditional variance vt  follows a

mean reverting process such that the volatility mean-reverts to a long run of θ  at a rate dictated

byκ . The term σ v sets the volatility of the volatility. Finally, the two Wiener processes dz1  and dz2

have a correlation given by ρ . By changing the correlation parameter we can generate skewness in

asset returns. Suppose we have a negative correlation between shocks to the asset price and volatility.

This means that as we get negative shocks to the price, volatility will tend to increase. This increase in

volatility then increases the chance that we can get further large downwards movements. Thus a

negative correlation can generate negative skewness in the unconditional distribution of returns. This

will be reflected in a downwards volatility smile in the options generated under these parameters. A

positive correlation between volatility and the asset price has the opposite effect5. 

Heston shows that for European call options6 on assets that behave according to (12) it is possible to

calculate prices with the following formula:

( )

( )( )
( ) ( )
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P y v T X
e f y v T

i
d

t
r

j t
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i
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
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


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

−

−∞

∫
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0
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2

1

τ

φ

π
φ

φ
φ

(13)

where X is the strike price, y=ln(S), i = − 1 ,

                                               
5 See Das and Sundaresan (1998) for more details on the relation between conditional skewness and kurtosis and the
parameters of this stochastic volatility model.
6 Put prices can be generated simply via put-call-parity.
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and a=κθ, b1=κ + λ - ρσv, b2=κ + λ.

To generate the true density function and its associated summary statistics we simply apply equation

(5) to (13). Figures 1 and 2 show the effect of changing ρ on the terminal asset price distribution and

on the volatility smile for options generated under this model with current and long run volatility of

30%, mean reversion κ=2 and volatility of volatility σv of 40%. We can see that the Heston model can

generate the sorts of shapes of both the volatility smile and the underlying asset distributions that can

be observed in the real world.
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Figure 1: Implied RNDs Under Alternative  
Correlation Parameters
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Figure 2: Volatility Smile Under Alternative 
Correlation Parameters
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An additional feature of the real world that we want to incorporate is the existence of errors that are

the result of discrete tick size intervals (and possibly any small violations of arbitrage within the

settlement prices used for estimation). We want our estimation methodology to be robust to these

small errors in the prices. So we perform the following test of the two RND estimation techniques.

We first establish a set of six scenarios corresponding to low and high volatility and three levels of

skewness. For each scenario we generate a set of options prices with strikes ranging from 30% out-of

the-money to 40% in-the-money. Then for each combination of scenario and maturity we use the

approach developed by Bliss and Panigirtzoglou (1999) to first shock each price by a random number

uniformly distributed from -1/2 to +1/2 a “tick size”. This tick size was chosen as 0.05 to reflect the

sorts of tick sizes that are typically found for exchange-traded options. Given these shocked prices we

fit RNDs using the two techniques described in section two and calculate the summary statistics. We

repeat this procedure of shocking the prices and then fitting the RNDs 100 times for each scenario and

maturity combination. Finally we calculate in each case the mean and standard deviation of the

calculated summary statistics and the squared pricing errors. In essense, this technique simply amounts

to a monte carlo test of the finite sample properties of the two estimators of the sort that is commonly

used within standard econometrics - see Greene (1997) Ch.5 or Davidson and McKinnon (1993) Ch.

18.

We then assess the two techniques by comparing the mean estimated summary statistics with the true

summary statistic. We are looking for a technique that has both mean estimates of the statistics that

are close to the true ones and one that has small standard deviations for the calculated statistics in the

presence of the small errors within the options prices used i.e. it is stable. We also want an estimation

procedure that performs well across the range of scenarios and maturities. The next section performs

these tests for European-style options.

4. Results

This section includes the results of the tests that we described above for the two estimation

approaches. As described above, we test performance across a range of six scenarios. The Heston

model parameters used for each scenario are set out in table 1 below. These were chosen to generate

true RNDs that corresponded to situations of negative skewness, and weak and strong positive

skewness in the terminal asset price and also conditions of low and high volatility. To generate these
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differing levels of skewness in the terminal asset price distributions, we use three different levels of the

correlation parameter -0.9, 0 and 0.9. The long run volatilities of 30% for the high volatility scenarios

were chosen on the basis of the levels of implied volatility typically seen within equity markets. The

low volatility (10%) scenarios can be thought of as consistent with levels often seen within FX and

interest rate markets7.

Table 1: Model parameters used under each scenario

Strong Negative Skew Strong Positive Skew

Low Volatility

Scenario 1

     κ=2,  θ2=0.1,

     σv=0.1, ρ=-0.9

Scenario 2

     κ=2,  θ2=0.1,

     σv=0.1, ρ=0

Scenario 3

     κ=2,  θ2=0.1,

     σv=0.1, ρ=0.9

High Volatility

Scenario 4

     κ=2,  θ2=0.3,

     σv=0.4, ρ=-0.9

Scenario 5

    κ=2,  θ2=0.3

    σv=0.4, ρ=0

Scenario 6

     κ=2,  θ2=0.3,

     σv=0.4, ρ=0.9

We test the performance of the two estimation techniques under each of these scenarios across four

different maturities - 2 weeks, 1 month, 3 months and 6 months. For each scenario and maturity

pairing we first generate the true RND and calculate their summary statistics - their mean, standard

deviation, skewness (the third central moment) and kurtosis (the fourth central moment). Table 2 sets

out the true summary statistics for all the maturity and scenario combinations.

                                               
7 We also assume that the market price of volatility risk is zero and that the time t conditional volatility is equal to the
long run volatility.
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Table 2: True Summary Statistics

Scenario 2 weeks 1 month 3 month 6 month
1 100.000 100.000 100.000 100.000
2 100.000 100.000 100.000 100.000

Mean 3 100.000 100.000 100.000 100.000
4 100.000 99.999 99.999 99.994
5 99.999 100.000 99.999 99.998
6 99.988 99.997 99.995 99.961

Scenario 2 weeks 1 month 3 month 6 month
1 1.958 2.878 4.956 6.966
2 1.962 2.888 5.004 7.081

Std Dev 3 1.965 2.898 5.052 7.201
4 5.849 8.555 14.524 20.099
5 5.888 8.677 15.093 21.485
6 5.921 8.799 15.687 22.900

Scenario 2 weeks 1 month 3 month 6 month
1 -0.198 -0.280 -0.418 -0.474
2 0.060 0.089 0.159 0.231

Skewness 3 0.318 0.459 0.743 0.956
4 -0.166 -0.228 -0.301 -0.265
5 0.180 0.272 0.504 0.756
6 0.523 0.776 1.346 1.840

Scenario 2 weeks 1 month 3 month 6 month
1 3.037 3.081 3.178 3.221
2 3.038 3.086 3.221 3.355

Kurtosis 3 3.160 3.344 3.930 4.599
4 2.984 2.962 2.878 2.748
5 3.119 3.269 3.809 4.616
6 3.426 4.036 6.272 9.026

For all combinations the futures price has been set at 100, so the true mean of the distributions are

equal to 1008. As we would expect, the standard deviation of the true RNDs increases with maturity

and as volatility is increased. Scenarios 1 and 4 which have a negative correlation between the

underlying asset price and volatility display negative skewness in the terminal asset price distribution.

Except for scenario four9, the kurtosis of the terminal asset price distribution is greater than three and

increases with maturity.

                                               
8 The slight differences from 100 are caused by error in the numerical integration used to calculate the summary
statistics.
9 For this scenario the combination of a high volatility of volatility and the negative correlation between volatility and
the asset price appears to reduce the probabilities attached to extreme outcomes.
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Given these true summary statistics, we proceed to test the two estimation approaches to recover

them from simulated options prices. We use equation (13) to generate European-style call and put

futures options for all the scenario and maturity pairings for strikes ranging from 70 to 140 with

strikes spaced at intervals of one apart from each other. For each pairing we then test the two

techniques by shocking the prices for the tick size errors as described above and estimating RNDs and

their summary statistics. This is repeated a hundred times for each pairing. Then for each pairing,  and

each summary statistic we calculate a measure of the mean estimate and measures of the estimates’

stability (the standard deviation, and the distance between the five and ninety five percentiles) from the

sets of a hundred estimated summary statistics under each technique. A good technique should have a

mean estimate of each of the  summary statistics that is close to the true ones and so may be said to be

unbiased. A low standard deviation of the estimated summary statistics across the full range of

scenarios and maturities indicates that the estimation technique is stable in the presence of small errors

wthin the prices.

Table 3 below gives the mean estimated summary statistics for both approaches across all the different

scenario and maturity pairings. To assess the unbiasedness of the two estimators, however, we are

interested in the difference between the true summary statistics and the mean estimates from each

approach. So table 4 calculates the difference between the true and the mean estimated statistics as a

percentage of the true value of the summary statistic: (true-mean)/true.

Examining the top two panels of table 4 we can see that the mean of the smile approach is always

almost always exactly equal to the true mean. The reason for this accuracy is that when we transform

from the volatility smile to the pricing function using Black-Scholes this constrains the mean of the

RND to be equal to the forward rate. The mixture lognormal estimation as described by equation (4)

does not explicitly constrain the mean of the RND to be equal to the forward rate, so we get small

errors between the true and actual means. This could be eliminated if we added an extra constraint to

(4) to ensure that the mean equalled the forward rate as described in Bahra (1997), but this may come

at the cost of extra instability in the fitted RNDs.



13

Table 3: Mean Estimated Summary Statistics
Smile Technique Mixture Lognormal Technique

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 100.0000 100.0000 100.0000 100.0000 1 100.1680 100.0450 100.0312 100.0525
2 100.0000 100.0000 100.0000 100.0000 2 99.9950 99.8531 99.8428 100.0006

Mean 3 100.0000 100.0000 100.0000 100.0000 Mean 3 101.9543 100.4185 100.0332 99.9818
4 100.0000 100.0000 100.0000 100.0000 4 99.8328 99.6520 100.7073 99.8851
5 100.0000 100.0000 100.0000 100.0000 5 100.0027 100.0113 100.0024 100.0000
6 100.0000 100.0000 100.0000 100.0000 6 100.2045 98.8045 99.9303 99.8592

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 1.9595 2.8787 4.9588 6.9676 1 2.6334 2.8864 4.9503 6.9544
2 2.0615 2.9891 5.0970 7.1651 2 1.9732 2.9732 5.0552 7.1094

Std Dev 3 1.9685 2.9035 5.0581 7.2073 Std Dev 3 7.4278 3.7705 5.0581 7.1893
4 5.8485 8.5588 14.5087 20.0582 4 5.8645 8.5775 15.0537 20.1169
5 5.8905 8.6778 15.0693 21.3463 5 5.8861 8.6659 15.0867 21.4762
6 5.9316 8.8035 15.5988 22.6372 6 5.9116 9.4515 15.5956 22.5237

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 -0.1848 -0.2654 -0.3915 -0.4466 1 -0.0585 -0.2709 -0.3695 -0.4148
2 0.1968 0.1898 0.2081 0.2548 2 0.0594 0.1232 0.2165 0.2408

Skewness 3 0.3132 0.4421 0.7130 0.9128 Skewness 3 0.1855 0.4236 0.6167 0.8436
4 -0.1521 -0.2076 -0.2578 -0.1960 4 0.1764 0.2543 -0.2479 -0.1381
5 0.1784 0.2692 0.4798 0.6825 5 0.1776 0.2603 0.4995 0.7504
6 0.5124 0.7505 1.2121 1.5861 6 0.1821 0.7642 1.1701 1.4949

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 3.0163 3.0363 3.0701 3.0744 1 3.0942 3.0672 3.0629 3.0668
2 3.8713 3.6523 3.4221 3.3638 2 3.0720 3.0711 3.1870 3.4901

Kurtosis 3 3.1615 3.2812 3.6934 4.1546 Kurtosis 3 2.3902 3.2004 3.5323 4.0006
4 2.9720 2.9415 2.8054 2.6707 4 3.0554 3.1175 2.7957 2.7313
5 3.0781 3.1813 3.5137 3.9345 5 3.0848 3.1811 3.7677 4.5488
6 3.3829 3.8291 5.1522 6.8006 6 3.2202 3.6502 4.9617 6.0907

The second set of panels gives the results for the estimated standard deviations. For scenarios 4 to 6

and for all scenarios with maturities of three months and above the mean estimates are close to the

true standard deviations for both techniques. In most of these cases the mean errors are less than 1%.

For scenarios 1 and 3 and for the two week and one month maturities however, the mixture lognormal

appears to perform significantly worse. For low times to maturity and low volatility, the mixture

lognormal over-estimates the true standard deviation on average.

The results for the higher moments are much more variable. The absolute size of the mean errors as a

proportion of the true statistic are much higher than for the first two moments. For skewness, these

figures partly over-state the problems, however, because the true skewness is close to zero for at least

scenarios 2 and 5. Compared to the mixture lognormal, the smile-based technique has less biassed

results for skewness under scenarios 1, 3, 4 and 6 - those that display more extreme levels of

skewness. But for scenarios 2 and 5 the smile-based approach does better for some maturities but

worse than the mixture lognormal for others. Like skewness, the mean errors of the kurtosis estimates

are larger and more variable than for the mean or standard deviation. Broadly, the mixture lognormal
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mean estimates are poorest for scenarios 3 and 6 in which skewness is strongest. The smile-based

approach has the poorest results for scenarios 5 and 6 when maturity is three months or above.

Table 4: Difference Between True and Mean Estimated Summary Statistics (as % of the True)
Smile Technique Mixture Lognormal Technique

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.00% 0.00% 0.00% 0.00% 1 -0.17% -0.05% -0.03% -0.05%
2 0.00% 0.00% 0.00% 0.00% 2 0.00% 0.15% 0.16% 0.00%

Mean 3 0.00% 0.00% 0.00% 0.00% Mean 3 -1.95% -0.42% -0.03% 0.02%
4 0.00% 0.00% 0.00% -0.01% 4 0.17% 0.35% -0.71% 0.11%
5 0.00% 0.00% 0.00% 0.00% 5 0.00% -0.01% 0.00% 0.00%
6 -0.01% 0.00% 0.00% -0.04% 6 -0.22% 1.19% 0.07% 0.10%

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 -0.05% -0.04% -0.05% -0.03% 1 -34.47% -0.31% 0.12% 0.16%
2 -5.09% -3.51% -1.87% -1.19% 2 -0.58% -2.96% -1.03% -0.40%

Std Dev 3 -0.18% -0.19% -0.12% -0.09% Std Dev 3 -277.99% -30.11% -0.12% 0.16%
4 0.01% -0.05% 0.10% 0.20% 4 -0.26% -0.27% -3.65% -0.09%
5 -0.04% 0.00% 0.16% 0.65% 5 0.03% 0.13% 0.04% 0.04%
6 -0.18% -0.05% 0.56% 1.15% 6 0.15% -7.42% 0.59% 1.64%

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 6.83% 5.39% 6.30% 5.81% 1 70.51% 3.44% 11.55% 12.51%
2 -229.59% -113.88% -30.89% -10.39% 2 0.51% -38.86% -36.15% -4.36%

Skewness 3 1.57% 3.72% 3.97% 4.51% Skewness 3 41.69% 7.73% 16.95% 11.75%
4 8.51% 8.82% 14.22% 26.03% 4 206.12% 211.70% 17.50% 47.91%
5 0.90% 1.20% 4.84% 9.77% 5 1.35% 4.45% 0.93% 0.80%
6 1.93% 3.24% 9.93% 13.82% 6 65.16% 1.46% 13.05% 18.78%

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.68% 1.44% 3.41% 4.54% 1 -1.89% 0.43% 3.64% 4.78%
2 -27.42% -18.34% -6.23% -0.27% 2 -1.11% 0.49% 1.07% -4.03%

Kurtosis 3 -0.04% 1.89% 6.02% 9.65% Kurtosis 3 24.36% 4.30% 10.11% 13.00%
4 0.40% 0.70% 2.53% 2.81% 4 -2.39% -5.24% 2.86% 0.60%
5 1.31% 2.68% 7.75% 14.76% 5 1.09% 2.69% 1.08% 1.45%
6 1.27% 5.14% 17.86% 24.66% 6 6.02% 9.57% 20.90% 32.52%

On the basis of these tests for the ability on average to estimate the true summary statistics, it is not

immediately obvious that one of the techniques is better than the other. The smile-based approach

does appear to do marginally better in estimating the first two moments particularly at short maturities

with low volatility. For the third and fourth moments, however, neither technique obviously out-

performs the other.

But when we look at the stability of the estimates, the story is far more clear cut. Table 5 sets out the

standard deviations of the estimated summary statistics. High standard deviations of the summary

statistics are indicative of instability in the estimated RNDs. For nearly all the scenarios the mixture

lognormal has much higher standard deviations of the estimates for all statistics than for the smile-

based approach. This mirrors Bliss and Panigirtzoglou’s (1999) findings that the mixture lognormal is

unstable using actual options data for FTSE and 3 month sterling interest rates. In particular, the
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mixture lognormal appears to perform badly under scenarios 1 and 3 and to some extent scenario 2,

when maturities of the options are one month or less. This suggests that the mixture lognormal

approach is unstable when volatility is low, the maturity of the options is low and when there is a

strong negative or positive skew.

Table 5: Standard Deviation of Summary Statistics
Smile Technique Mixture Lognormal Technique

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.0000 0.0000 0.0000 0.0000 1 4.2206 0.2585 0.0198 0.0176
2 0.0000 0.0000 0.0000 0.0000 2 0.1927 0.9256 0.7257 0.0149

Mean 3 0.0000 0.0000 0.0000 0.0000 Mean 3 11.9560 6.2271 0.3363 0.0198
4 0.0000 0.0000 0.0000 0.0000 4 0.0133 0.0390 5.7981 2.4340
5 0.0000 0.0000 0.0000 0.0000 5 0.0121 0.0137 0.0185 0.0082
6 0.0000 0.0000 0.0000 0.0000 6 0.0859 4.2933 0.0153 0.0093

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.0123 0.0110 0.0088 0.0091 1 4.3470 0.0730 0.0102 0.0107
2 0.0144 0.0137 0.0112 0.0094 2 0.0693 0.5684 0.2252 0.0126
3 0.0139 0.0123 0.0112 0.0100 3 12.2235 7.5644 0.0994 0.0116

Std Dev 4 0.0093 0.0095 0.0062 0.0063 Std Dev 4 0.0099 0.0093 5.4027 0.5017
5 0.0104 0.0080 0.0075 0.0065 5 0.0117 0.0092 0.0135 0.0276
6 0.0097 0.0079 0.0080 0.0068 6 0.0111 2.4101 0.0088 0.0088

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.0204 0.0192 0.0130 0.0085 1 0.2348 0.1663 0.0248 0.0142
2 0.0201 0.0234 0.0104 0.0068 2 0.1721 0.2341 0.2684 0.0165

Skewness 3 0.0191 0.0166 0.0106 0.0080 Skewness 3 0.7527 0.1899 0.1975 0.0130
4 0.0096 0.0064 0.0030 0.0021 4 0.0003 0.0458 0.0644 0.2577
5 0.0091 0.0061 0.0035 0.0027 5 0.0015 0.0055 0.0115 0.0167
6 0.0102 0.0066 0.0038 0.0028 6 0.0423 0.1839 0.0049 0.0037

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.0175 0.0156 0.0141 0.0100 1 1.5428 0.1002 0.0532 0.0335
2 0.0645 0.0333 0.0163 0.0101 2 0.0832 0.1835 0.0827 0.1190

Kurtosis 3 0.0517 0.0296 0.0215 0.0189 Kurtosis 3 0.9664 0.3374 0.2073 0.0565
4 0.0092 0.0065 0.0035 0.0022 4 0.0002 0.0185 0.1992 0.2575
5 0.0100 0.0078 0.0076 0.0069 5 0.0239 0.0274 0.0677 0.1572
6 0.0157 0.0150 0.0143 0.0139 6 0.0271 0.3777 0.0249 0.0227

Table 5 indicates that the “smile”-based estimation is far more stable than the mixture lognormal

approach. But how does the instability of the mixture lognormal estimates manifest itself? To see this

we look in detail at the estimated RNDs under scenario 3, one of the scenarios in which mixture

lognormal is most unstable, and compare them to the true RND. Figures 3,4 and 5 compare the true

RND with estimated RNDs using the two techniques for maturities of two weeks, 1 month and 3

months respectively. In each figure, the top panel displays the true RND, while the bottom two panels

each display thirty of the RNDs estimated from the previous tests for the smile-based approach and the

mixture lognormal technique.
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It is immediately clear that the smile-based RND estimates are far more stable than the mixture

lognormal RNDs. The former match the shapes of the true RND closely, particularly for the longer

maturities. At the two week maturity there is greater variation in the fitted RNDs but this is to be

expected given that the tick size errors that are added to the prices will have a greater proportionate

impact on the time value of these shorter maturity options.

The mixture lognormal distributions are highly unstable at the two week and one month maturities.

The most common - but not only - cause of this instability is the existence of “spikes” in the

distribution. The spikes occur when the variance of one of the distributions collapses. The mixture of

two distributions then looks like a single lognormal distribution with a spike, usually towards the

centre. Clearly such a spike is not contained within the true distribution and reflects estimation errors.

As the maturity of the options increases, the proportion of these spiked distributions falls. In addition

to these spiked cases, there are a few mixture lognormal RNDs which are not spiked but which display

skewness which is quite different to the true RND.

Examining further the one month mixture lognormal distributions, we can see that for a larger

proportion of cases, the mixture lognormal technique manages to get a close fit to the true distribution

than at two weeks. As we move to three months we get a higher proportion still of fitted mixture

lognormal RNDs that are close to the true distribution. At this maturity, the optimisation used to fit

the RND appears to be flipping between between two minima - one which closely matches the true

RND and one which contains a spike and hence severely mis-estimates the RND. It is the existence of

these spiked distributions that causes the increased standard deviation of the estimated summary

statistics compared with the smile-based approach.

What appears to be the key difference between the two estimation approaches is that the small errors

in the prices cause only small local errors in the estimated RNDs under the smile approach, while for

the mixture lognormal non-linear least squares estimation, the errors can be sufficient for the

minimisation to reach very different parameter estimates with large changes in the shape of the

estimated RND as a result. The end result of this is that while the bias of the mixture lognormal

estimator does not appear to be much larger than the smile-based estimator (at least for the third and

fourth moments) it is far more unstable. Since in practice we are often concerned with changes in the
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PDF from one day to another this instability is a concern and reduces the value of the mixture

lognormal technique as a practical tool.
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True RND, Scenario 3, 2 Weeks Maturity
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Figure 3

"Smile" Estimated RNDs - Scenario 3, 2 Weeks Maturity
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True RND - Scenario 3, 1 Month Maturity
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Figure 4

"Smile" Estimated RNDs - Scenario 3, 1 Month Maturity
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True RND - Scenario 3, 3 Months Maturity
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Figure 5

"Smile" Estimated PDFs - Scenario 3, 3 Months Maturity
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5. Assessing Alternative Approaches

This paper has examined two alternative approaches to estimating implied RNDs from European-style

options. The first was the commonly used mixture lognormal approach which uses non-linear least

squares estimation to fit a parametric form to observed options prices. The second approach

interpolated across the volatility smile using a cubic smoothing spline and then employed the Breeden

and Litzenberger result to recover the RND by calculating the second partial derivative of the call

pricing function with respect to the strike price.

The monte carlo tests of the two estimators in section four demonstrated that the second “smile”-

based approach performed a little better in terms of its ability to match the first two moments of the

true RND. We also saw that the higher moments appear to be much more difficult to estimate

accurately with both techniques often resulting in estimates that are on average quite a long way from

the true ones.

But we also observed that the smile-based technique was far more stable than the mixture lognormal

approach. The latter technique has severe mis-estimation problems when using options on low

volatility assets or when using low maturity (less than three months) options. This mis-estimation most

often shows up as a “spiked” distribution when one of the lognormal distribution’s estimated variance

falls to a very low level. In contrast the “smile”-based estimation appears to perform well across all

scenarios and maturities (although the existence of discrete tick size errors does create increased

instability at maturities below 1 month). These results suggest the use of the smile-based approach

over the mixture lognormal by practitioners and researchers alike. They also suggest that where the

mixture lognormal is still used that the results have to be interpreted with great caution given the

tendency of the estimation approach to severely mis-estimate the true RND.

Future work at the Bank will use the monte carlo tests set out here to examine the empirical

performance of RND estimators that use American-style options. As well as examining the accuracy

and stability of the techniques, this forthcoming work will examine how important it is to take account

of the early exercise premium when using these options.
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Discussion of Neil Cooper’s paper:

TESTING TECHNIQUES FOR ESTIMATING IMPLIED RNDS

FROM THE PRICES OF EUROPEAN-STYLE OPTIONS

by Holger Neuhaus1

What I have to say requires fifteen minutes. I have ten. So, fasten your seat belts, we are about to take

off.

The motivation for Neil Cooper’s paper is comparably old: in 1995 when I was just finishing my

research paper I was talking a lot to Bhupi Bahra at the Bank of England and he was uncertain whether

to implement Shimko's smile approach or Melick's and Thomas' mixture of lognormals to derive

implied probability density functions. Well - you all know what the Bank eventually decided, but now

Neil Cooper tries to investigate in an objective way which of the two methods is the better one and he

does that by the following methodology:

Fig. 1 True risk-neutral density function

Neil imposes probability density distributions like the one in figure 1 – although his are fancier, of

course. He then uses this function to derive corresponding option prices which, in turn, serve as input

for the models for backing out the implied probability distribution. Eventually, the results can be

compared with the imposed distributions he started with. Moreover Neil shocks the option prices by

“half a tick size” to find out how sensitive the models are to inaccurate option prices, the inaccuracy

being caused by discrete tick-sizes.

                                                     
1 The views expressed represent exclusively the opinion of the author and do not necessarily correspond to those of the

European Central Bank.
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All in all, this is a promising approach as it is the only method that allows a comparison of the

estimates with a known probability density function. However, a relevant question is whether the

implementation of the method is close enough to reality to allow for a fair comparison of the different

approaches for backing out implied probabilities.

In this context, one observation frequently made in the real world is that one may not always have a

sufficient number of strikes and option prices to cover the whole distribution – as illustrated in

figure 2.

Fig. 2 True risk-neutral density function with missing strikes

This presentation is of course an exaggeration, but it drives home my point that if only a part of the

density function is backed out, it can be difficult to correctly allocate the missing probability mass.

When looking at the smile technique, should one, for example, extrapolate the smile or keep the

implied volatility constant at the tails?
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Some models have more problems with these errors than others do and Neil’s dataset is “too” complete

and thus leaves out an important aspect in the evaluation of different approaches chosen. As a matter

of fact, this is one issue where, as we have already discussed earlier today, the same model can yield

(slightly) different results when implemented in a (slightly) different manner.

In this context I also keep mentioning that one means for deciding on how to allocate the missing

probability mass is not to estimate the probability density function but to estimate the first derivative

of the option price with respect to the strike price, i.e. the implied (cumulative) probability

distribution. If the lowest and highest cumulative probability derived from the data are, say, 1% and

98% respectively, it can be inferred that 1% of the probability mass is missing at the lower end and 2%

at the right tail. This could, in particular, be valid for the smile technique.

Fig. 3 True risk-neutral density and cumulative distribution function with missing strikes

When comparing different approaches to recover implied probabilities, it is also important to mimic

realistically another feature of the relevant option market: the number of and distance between strike

prices. On the foreign exchange market, for example, few strike prices exist, while, say, for short-term

interest rates, some derivative exchanges provide a large number of options. The number of, and

distance between, strike prices are determined by certain rules aiming at striking a balance between

having a choice between a large number of strike prices and liquid option contracts. Looking at Neil's

paper, I have the impression that the intervals chosen between the strike prices are comparably close,

which could, in my view, favour the smile approach.

Anyway, looking at Neil’s paper more closely, in particular at the summary statistics he generated

after he had backed out the (shocked) implied probability density 100 times for each of his

scenarios/maturities, one can conclude the following. For facilitating the comparison, I categorised the
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results as g or b. G is green and good, b is brown and bad2, depending on the relative performance of

the different methods’ estimates.

Table 1: Mean of estimates

Indeed, the smile outperforms the mixture of lognormals at most occasions. However, the difference in

quality between the models is not that clear-cut. Sometimes the smile yields better results but only

marginally and the question has to be addressed: how big is big, i.e. when are results significantly

different. In this context, I would like to mention that some of the percentage mistakes presented in the

paper are misleading, in particular those where the benchmark value is close to zero. A point of greater

substance is that, as we had already discussed today, the measurement of the skewness and kurtosis by

calculating the 3rd and 4th moment is not recommendable but could be replaced by other measures.

Looking at the expected value of the smile technique, I would like to note that, even when using the

shocked option prices, the smile leads to more reliable estimates of the true distribution than the

figures provided in what Neil calls the “true” summary statistics of the imposed probability

distributions. Because of the numerical integration method used, the "true" mean is slightly different

from 100, while the smile always generates an expected value of 100. That looks very - or even too -

robust to me.

And indeed, looking at the standard deviation of the estimated summary statistics (mean, standard

deviation, skewness, and kurtosis), the smile looks very robust and fares better than the mixture of

lognormals approach.

                                                     
� In black and white copies the brown fields are the darker ones.

Table 3: Mean Estimated Summary Statistics

Smile Technique Mixture Lognormal Technique
Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month

1 100.000 100.000 100.000 100.000 1 100.168 100.045 100.031 100.053
2 100.000 100.000 100.000 100.000 2 99.995 99.853 99.843 100.001

Mean 3 100.000 100.000 100.000 100.000 Mean 3 101.954 100.419 100.033 99.982
4 100.000 100.000 100.000 100.000 4 99.833 99.652 100.707 99.885
5 100.000 100.000 100.000 100.000 5 100.003 100.011 100.002 100.000
6 100.000 100.000 100.000 100.000 6 100.204 98.804 99.930 99.859

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 1.9595 2.8787 4.9588 6.9676 1 2.6334 2.8864 4.9503 6.9544
2 2.0615 2.9891 5.0970 7.1651 2 1.9732 2.9732 5.0552 7.1094

Std Dev 3 1.9685 2.9035 5.0581 7.2073 Std Dev 3 7.4278 3.7705 5.0581 7.1893
4 5.8485 8.5588 14.5087 20.0582 4 5.8645 8.5775 15.0537 20.1169
5 5.8905 8.6778 15.0693 21.3463 5 5.8861 8.6659 15.0867 21.4762
6 5.9316 8.8035 15.5988 22.6372 6 5.9116 9.4515 15.5956 22.5237

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 -0.1848 -0.2654 -0.3915 -0.4466 1 -0.0585 -0.2709 -0.3695 -0.4148
2 0.1968 0.1898 0.2081 0.2548 2 0.0594 0.1232 0.2165 0.2408

Skewness 3 0.3132 0.4421 0.7130 0.9128 Skewness 3 0.1855 0.4236 0.6167 0.8436
4 -0.1521 -0.2076 -0.2578 -0.1960 4 0.1764 0.2543 -0.2479 -0.1381
5 0.1784 0.2692 0.4798 0.6825 5 0.1776 0.2603 0.4995 0.7504
6 0.5124 0.7505 1.2121 1.5861 6 0.1821 0.7642 1.1701 1.4949

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 3.0163 3.0363 3.0701 3.0744 1 3.0942 3.0672 3.0629 3.0668
2 3.8713 3.6523 3.4221 3.3638 2 3.0720 3.0711 3.1870 3.4901

Kurtosis 3 3.1615 3.2812 3.6934 4.1546 Kurtosis 3 2.3902 3.2004 3.5323 4.0006
4 2.9720 2.9415 2.8054 2.6707 4 3.0554 3.1175 2.7957 2.7313
5 3.0781 3.1813 3.5137 3.9345 5 3.0848 3.1811 3.7677 4.5488
6 3.3829 3.8291 5.1522 6.8006 6 3.2202 3.6502 4.9617 6.0907



5

Table 2: Standard deviation of estimates

Again, the issue is: how big is big? And: why is the smile approach looking so good? One reason is, of

course, its design: option prices are translated into implied volatilities, a smooth function is calculated

that fits the smile (in delta space) and is used to back out the density function. When the prices are

shocked by small amounts, in this case by half a tick, the shocks have a small impact on the implied

volatility, which is then smoothed away by the curve fitted to the smile. The mixture of lognormals is

more sensitive with respect to these shocks as the option prices are directly used to estimate the

density function. That is why I had a look at the option prices used, by processing some of Neil’s data

with my own model. A further reason – to be honest – was that I had marvellous results as regards the

mean and standard deviation for my own model (but less promising estimates of skew and kurtosis).

The equation I used is an approximation of the first derivative of the option price with respect to the

strike, which yields the implied cumulative probability distribution at that strike (Ki), which I

approximate with a simple difference quotient, which in this audience does not require a lot of

explanation.3

                                                     
3 Cf. Holger Neuhaus (1995), The information content of derivatives for monetary policy – implied volatilities and

probabilities, Deutsche Bundesbank Economic Research Group, Discussion paper 3/95 (July 1995).

Ci, Ki and FT are the price of option i, its strike price and the value of the futures at the expiry of the option. To be
precise, the option in this equation should be either margined or C should already be adjusted for the discount factor (as is
the case here).

Table 5: Standard Deviation of Summary Statistics
Smile Technique Mixture Lognormal Technique

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.0000 0.0000 0.0000 0.0000 1 4.220623 0.258529 0.019781 0.01758
2 0.0000 0.0000 0.0000 0.0000 2 0.19266 0.925638 0.725677 0.014939

Mean 3 0.0000 0.0000 0.0000 0.0000 Mean 3 11.95599 6.227077 0.336293 0.019803
4 0.0000 0.0000 0.0000 0.0000 4 0.013332 0.03904 5.798117 2.433972
5 0.0000 0.0000 0.0000 0.0000 5 0.012113 0.01368 0.01845 0.008227
6 0.0000 0.0000 0.0000 0.0000 6 0.085873 4.29325 0.015288 0.009329

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.012303 0.010959 0.008757 0.009063 1 4.347047 0.072974 0.010168 0.010725
2 0.014392 0.013679 0.011181 0.009371 2 0.069271 0.568389 0.225205 0.012629
3 0.013898 0.012333 0.011182 0.010014 3 12.22352 7.564441 0.09944 0.011641

Std Dev 4 0.009302 0.009502 0.006178 0.006323 Std Dev 4 0.009903 0.009298 5.402745 0.501706
5 0.01037 0.008047 0.007502 0.006537 5 0.011721 0.009154 0.013471 0.027603
6 0.009686 0.007899 0.008014 0.006796 6 0.011146 2.410094 0.008808 0.008811

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.020438 0.019151 0.012986 0.008499 1 0.234815 0.166297 0.024775 0.014154
2 0.020113 0.023413 0.010409 0.006759 2 0.172144 0.234108 0.268442 0.016485

Skewness 3 0.019066 0.016583 0.010591 0.008017 Skewness 3 0.752712 0.189888 0.1975 0.012989
4 0.009557 0.006367 0.00304 0.002144 4 0.000301 0.045771 0.064426 0.25774
5 0.00911 0.006055 0.003462 0.002719 5 0.00151 0.005481 0.011528 0.016678
6 0.0102 0.006642 0.003844 0.002834 6 0.042258 0.183944 0.004942 0.003734

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.017536 0.015553 0.014076 0.010039 1 1.542771 0.10017 0.053217 0.03349
2 0.064452 0.033344 0.016313 0.010056 2 0.083219 0.183497 0.082698 0.119001

Kurtosis 3 0.051657 0.029554 0.021507 0.018863 Kurtosis 3 0.966391 0.337422 0.207318 0.056505
4 0.009222 0.006492 0.003471 0.00217 4 0.00019 0.018513 0.199159 0.257488
5 0.010033 0.007826 0.00757 0.006854 5 0.023942 0.027396 0.067714 0.157168
6 0.015728 0.015041 0.014292 0.013867 6 0.027087 0.377703 0.024928 0.022667
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Even if one does not recognise the quotient (consisting of the difference between two option prices

divided by the difference in their strike prices) as a cumulative probability distribution, it is clear that

deep in-the-money options going deeper into the money by one unit will increase in value by the same

amount, i.e. the ratio should be exactly unity. Is this always the case in the paper? No: as one can see

in table 3, there are small problems with the true prices (having taken into account the discount factor)

Table 3: True prices and implied cumulative probability distribution values

in particular, have an influence on the results of the mixture of lognormals approach. However, does it

imply that this approach is indeed too sensitive? Not necessarily, as the prices used allow for arbitrage

and are thus “wrong”, albeit to a limited extent only. A way forward in the research would be to just

shock prices of options that are not deep in or out of the money.

Strike C C compounded
Probability 
distribution

71 28.94429 29.000015 1.0000
72 27.94621 28.000015 1.0000
73 26.94813 27.000015 1.0000
74 25.95006 26.000015 1.0000
75 24.95198 25.000015 1.0000
76 23.9539 24.000015 1.0000
77 22.95582 23.000015 1.0000
78 21.95774 22.000015 1.0000
79 20.95966 21.000015 1.0000
80 19.96159 20.000015 1.0000
81 18.96351 19.000015 1.0000
82 17.96543 18.000015 1.0000
83 16.96735 17.000015 1.0000005009626
84 15.96927 16.000014 1.0000
85 14.97119 15.000015 1.0000
86 13.97311 14.000014 1.0000
87 12.97504 13.000015 1.0000
88 11.97696 12.000014 1.0000005009626
89 10.97888 11.000014 1.0000001502888
90 9.980799 10.000014 0.9999999499037
91 8.98272 9.000014 1.0000001502888
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Table 4: Some shocked prices and implied cumulative probability distribution values

Shock  78 79 80 81 82
1 0.9963 0.993189 1.002543 1.011356 0.99394
2 0.999621 1.024057 1.008464 0.977107 0.993295
3 1.007501 1.004483 0.994608 1.008015 1.012959
4 0.999495 1.017243 1.005898 1.003024 0.994951
5 0.995052 0.990734 0.990985 1.001388 0.99782
6 1.010791 1.004175 0.990104 0.983198 0.992493
7 0.997608 0.984138 1.00091 1.019346 1.001663
8 1.000668 0.998463 0.984069 1.000081 1.001444
9 1.019999 0.991685 0.998495 1.014912 1.00225

10 1.011092 1.018889 0.981598 0.996102 1.011387
11 1.002029 1.01328 0.999109 0.993804 0.985691
12 1.016841 0.989879 0.990558 1.013711 1.003615
13 1.001403 0.98645 1.00682 0.994389 0.986779
14 1.004532 1.015066 0.98888 0.993103 1.015303
15 1.017755 0.984908 0.997246 0.996538 0.999667
16 1.003631 1.003485 1.002598 1.004908 0.995692
17 0.992376 0.998081 0.998523 1.004808 1.015937
18 1.00167 0.987514 1.00775 1.011708 0.989414
19 0.98171 1.0117 1.009924 0.978308 1.00168
20 0.999093 1.002282 1.01776 1.002007 1.00061
21 0.981344 0.997791 1.006633 1.002047 1.009586
22 1.013006 1.000001 0.983824 0.998456 1.02053
23 1.006047 0.985566 0.996316 1.008509 0.984099
24 0.993576 1.001908 1.003176 0.985739 0.988618
25 0.988323 1.005294 0.988197 1.00032 1.013966
26 0.993232 1.003898 1.010038 1.010592 0.998971
27 0.99807 0.990528 1.01003 1.006907 0.987676
28 1.021555 0.991778 0.981613 1.002087 1.009585
29 0.977072 1.000689 1.013373 0.996852 0.98623
30 0.996151 0.999982 0.997678 1.019486 1.003256

Strikes
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Conclusions

To summarise what I found out in the short time I had to look at the paper, I think that it is interesting

and a step in the right direction. Nevertheless, I have some food for thought:

• Is there “too much” data?

− Some models are designed to generate results with a very limited data set (strike prices) only,

some require more. The choice of model is likely to depend on the market to be monitored.

− The number of and interval between strike prices used in the comparison should reflect the

features of the market that should be monitored.

• Should the probability distribution be estimated rather than the density?

• Is the smile technique “too” stable?

• Is the mixture lognormals too sensitive as regards errors in prices?

• Data must not allow for arbitrage.

− This also holds true for “shocked” data.

− Only the prices of at-the-money options but not of far in-the-money or out-of-the-money

options should be shocked.

• How big is big?

− The size of the errors has to be put into perspective. Criteria used should involve also, for

example, computational costs in a broad sense (computer and software requirements, robustness

of the estimates).

− In particular, some percentage errors shown may be misleading.

• The use of the third and fourth moment is debatable.
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Discussion of Neil Cooper’s paper:

Testing techniques for estimating implied RNDs
from the prices of European-style options

Discussant: Jan Marc Berk

BIS, 14 June 1999

1. My contribution is structured as follows. I will start by giving a brief summary of the paper. This is

then followed by some comments, and I conclude by sketching some paths for future work on the

subject at hand.

Summary

2. The paper aims to compare two methods for calculating PDFs. Both methods are applied on both

European and American-style options. The performance of both methods is tested by means of Monte

Carlo analysis, although the current version of the paper only deals with comparing the methods

applied to European options. Innovative aspects of the paper include the variant used for calculating

volatility-smile-based PDFs, and the Monte Carlo experiment.

3. The methods used to construct PDFs for European options are the well-known mixture of lognormals

approach (MLN), as documented by, for example, Bahra (1997), and a method based on interpolation

of the volatility smile (IVS), as introduced by Shimko (1993). The paper slightly amends the Shimko

approach, as it uses cubic splines in stead of quadratic forms, and interpolates in delta space in stead

of volatility space. These amendments are in line with, for example, Malz (1997).

4.  PDFs for American-style options are the MLN variant introduced by Melick and Thomas (1997), and

the early exercise premium is taken into account within the IVS method by using the approximation of

Barone-Adesi and Whaley (1987).

5. The performance of both methods is compared in a Monte Carlo experiment, using simulated artificial

data in stead of observed prices. However, by using the stochastic volatility model of Heston (1993),

the author generates quite realistic data, whilst retaining the advantage of knowing the ‘true’ PDF.

6. The results form the Monte Carlo analysis, in the current version of the paper applied only to

European options, are that, on average, there is no clear winner between MLN and IVS. However, the

latter method provides far more stable estimates. The instability of MLN estimates are due to spikes,

and reflect estimation errors. Instability increases with volatility and skewness, and decreases with
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time to maturity. Based on these Monte Carlo analysis, the author expresses a preference of IVS over

MLN.

Comments

7. I find the paper of Neil Cooper very interesting, and as it is work in progress, I suspect it will become

even more interesting. The paper reflects my own experiences, or should I say frustations, with the

(in)stability of the MLN method. Without meaning to detract from the quality of the paper, there are

some points that, in my view, deserve some further consideration. Given the time constraint, I will

only briefly touch upon them here:

8. Whilst the application of the MLN method in the paper is fairly standard, the version of the IVS

method employed is more innovative. The paper could benefit form a more extensive discussion on

the effects of the amendments vis-à-vis the Shimko approach.

9. In a similar vein, no mention is made in the paper of possible drawbacks of the IVS method, such as

the problem of fitting the tails of the PDF (ie outside the observed range of strikes), and negative

probabilities.

10. The comparison of both methods is based on Monte Carlo analysis. Yet, given the results of Melick

and Thomas (1998), who find widely different results for simulations based on Monte Carlo and

bootstrap methods, and given the the assumptions underlying the MC-method (independent errors,

regularity conditions) vis-à-vis actual options prices, some attention to the validity of Monte Carlo as

a tool for comparison seems in order.

11. The comparison of both methods uses artificial data, so there is no distinction between exchange-

traded and otc data. Campa, Chang and Reider (1997) compare MLN and IVS methods using otc data,

and find that they yield similar results. Could or should the choice of method (MLN versus IVS) be

dependent on the type of data used?

12. The focus of the paper is primarily technical and not economic, which is understandable given its

objective. However, more attention to the economic aspects would seem in order, as it could provide

an answer to the question as to how important the instability of MLN based PDFs is. Clearly, this

answer depends on the purpose of the analysis using PDFs.

 Way to proceed

13. Based on my, admittedly limited, knowledge of the estimation and use of PDFs, there are two basic

questions which in my view remain to be answered in a convincing way. First, regarding the method

used to calculate PDFs, do we really need to impose so much structure? Second, regarding the

estimation of PDFs, do the data allow us to impose so much structure?
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14. My personal opinion on these questions is that we should use different methods for different purposes,

also taking the amount and types of data into account. As an economist, I would tend to say that

economic considerations should govern the purpose of the analysis, as well as that the results of the

analysis should be useful to economists. As an economist working in a monetary policy department, I

will go even one step further and state that the results of the analysis should be useful to policy

makers. Given the fairly technical nature of work involving PDFs, it is my own experience that

translating the results of PDF based analyses to policy messages is by no means an easy task.

15. Data considerations are also of importance in the choice of method. I already touched upon the

difference between exchange-traded and otc data and possible implications for the choice of

calculation method. Moreover, we all encounter situations when only a few data points are available,

or that only a limited subset of a larger set of prices reflect sufficient liquidity. In these situations, I

found entropy-based (Bayesian) methods for calculating PDFs useful. Moreover, the field of

maximum entropy econometrics has a firm statistical foundation, and provides a natural metric for

evaluating different methods.Finally, when not even a limited set of data on options prices is

available, it may be still possible to extract a PDF, using alternative methods (Hördahl, 1999).
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