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Foreword

In recent years, central banks have increasingly used option markets to construct measures of market
conditions and market participants’ expectations. Most recently, techniques have been developed that
use option prices to estimate or recover the entire expected distribution (probability density function,
PDF) of future financial asset prices such as interest rates, exchange rates and equity prices. These
PDFs allow for a more complete characterisation of the state of market expectations.

There are a number of different techniques currently used to estimate PDFs from option prices, and in
some cases they have produced different results. There is at this point no consensus on which
technique should be used in which situation. Moreover, opinion differs as to how PDFs should be
interpreted. As the use of estimated PDFs has become increasingly popular in the central banking
community, the BIS decided to organise a one-day workshop on estimation and interpretation of
PDFs. The workshop was held in Basel on 14 June 1999 and organised by Gabriele Galati of the BIS
and William Melick of Kenyon College, Ohio; it brought together experts from central banks,
academia and the investment community. The background paper by Kevin Chang and William Melick
provides an overview of the issues involved in the estimation and interpretation of PDFs.

The workshop was divided into two sessions. The first session addressed issues related to the
estimation techniques. Before the workshop, participants received a common data set of settlement
price data for options on eurodollar futures between 1 September 1998 and 30 November 1998.
Participants were asked to estimate an implied PDF using their own technique for each trading day in
the data set and to provide a standard set of summary statistics. The results, which are summarised in a
note by William Melick, were discussed at the beginning of the first session.

Three papers were then presented. The paper by Neil Cooper (Bank of England) compared the
accuracy of alternative estimation techniques using simulated distributions and applying a Monte
Carlo test. The paper by Sophie Coutant (Bank of France) provided a theoretical framework for
separating the risk-neutral density function from a risk-aversion function. She then estimated these
functions using data on CAC options. Des McManus (Bank of Canada) applied alternative techniques
to estimate PDFs from eurodollar futures and used different statistics to evaluate their performance.

The second session focused on applications of PDFs and on issues related to their economic
interpretation. Gordon Gemmill (City University Business School) analysed the behaviour of PDFs
estimated from FT-SE 100 option prices around a number of “crash episodes” and several election
dates in the United Kingdom and evaluated their predictive content. José Campa (New York
University), Kevin Chang (Credit Suisse First Boston) and James Refalo (New York University) used
option data from Brazil to describe expectations of the real/dollar exchange rate and analysed the
credibility of different exchange rate regimes. Finally, the paper by Jorge Barros Luís and Bernardino
Adão (Bank of Portugal) used PDFs to evaluate expectations regarding interest rate convergence in
Europe in the run-up to monetary union.

The BIS hopes that circulation of these conference proceedings will stimulate further discussion and
research on implied PDFs. As the papers in this volume make clear, these PDFs offer an important
new means of characterising market expectations. However, the papers also make clear the difficulties
and caveats involved in interpreting these characteristics.
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Workshop on estimating and interpreting probability density functions
14 June 1999

Background note

P H Kevin Chang and William R Melick

Starting in the late 1980s, financial and economic researchers became increasingly sophisticated in

their attempts to analyze market expectations embedded in option prices. Moving beyond the study of

implied Black-Scholes volatilities, this body of work has focused on the recovery of either the

stochastic process followed by the underlying asset price or the density function from which the asset

price at expiration will be drawn. The workshop was meant to share information and results on the

latter exercise, the estimation of terminal (at expiration) probability density functions (PDFs) implied

by option prices. Toward that end, this note is meant to provide some context reading the papers

presented at the workshop. The first section of the note provides a brief overview (taxonomy) of the

various methods used to estimate PDFs. The second section discusses issues of interpretation,

providing an initial exploration of possible lines for future research.

I. Estimation of PDFs

In other surveys of PDF recoveries (in particular see Bahra (1997), techniques have been classified as

falling into one of four areas: I) recovery of the stochastic process for the price of the underlying asset,

with the PDF obtained as a by-product of the exercise, II) a functional form for the PDF is assumed

with the parameters for the function estimated by minimizing the difference between actual and

predicted option prices, III) smoothing techniques that relate option prices in some fashion to only

exercise prices, allowing for the recovery of the PDF through differentiation, and IV) non-parametric

techniques.

For purposes of this workshop; however, it may be more useful to follow a slightly different tack.

Setting aside the methods that focus on the stochastic process1, it is possible to classify the remaining

techniques into two broad categories, based on the risk-neutral valuation equation and its second

derivative. It is hoped that this classification scheme, although not perfect, will shed more light on the

methodology behind the various techniques.

                                                          
1 Readers interested in the recovery of the stochastic process should consult the articles by Bates (1991 and 1996a and
1996b) and Malz (1996). Estimates of deterministic local volatility are viewed as essentially recovering the stochastic process
followed by the asset price. See Bodurtha and Jermakyan (1999), Levin (1998), and Levin, Mc Manus, and Watt (1999) for
more on this technique.



2

For the simplest case of European options, and as shown by Cox and Ross (1976), the price of the call

option with strike X can be written in terms of the risk-neutral PDF for the underlying price ( ( )Sf )

by

( ) ( )dSSfXSeXc
X

Tr ∫
∞

⋅− ⋅−⋅=][ (1)

where Tre ⋅− is the relevant discount factor. As shown by Breeden and Litzenberger (1978), ( )Sf  can

be isolated by differentiating equation (1) twice, yielding2

( )Sfe
X

Xc Tr ⋅=
∂

∂ ⋅−
2

2 ][
(2)

These two equations provide a convenient means for classifying the different techniques used for

recovering PDFs.3 Roughly half of the techniques essentially work with equation (1) - using

assumptions about the form or family of the PDF, and evaluations of the integral in equation (1), to

estimate the parameters of the PDF such that predicted option prices best fit the observed option

prices. The remaining techniques exploit equation (2), using a variety of means to generate the

function ][Xc and then differentiating the function (either numerically or analytically) to obtain the

PDF. Some of the very first PDF recoveries were based on equation (2), therefore they are discussed

first.

A. Methods Based on Equation (2)

Making use of equation (2), Shimko (1993) was one of the first to recover the risk-neutral PDF. This

technique uses the Black-Scholes formulae to translate a scatter-plot of option prices against strike

prices into a scatter plot of implied volatilities against strike prices (the smile relationship). The points

in the scatter plot are then used to fit a quadratic equation relating the volatility to the strike price. This

then allows for the Black-Scholes equation to be written in terms of only the strike price (rather than

the strike price and volatility), giving an equation that relates the option’s price to only the strike price.

This equation is then differentiated twice to obtain the PDF. For ranges outside of the observed strike

prices, lognormal distributions are grafted on to the tails of the PDF, using the condition that the PDF

has to integrate to one to pin down the parameters of the PDF.

The technique of Malz (1997) also makes use of equation (2). Using data taken from the over-the-

counter (OTC) foreign exchange options market, Malz obtains, without any translation, a scatter plot

of implied volatility against delta (a measure of moneyness). He then fits a particular functional form

to this scatter-plot, such that each point lies on the line. Like Shimko (1993), this then allows the

                                                          
2 By similar reasoning, the cumulative distribution function (CDF) can be obtained by differentiating a single time. This
technique is used by Neuhaus (1995).
3 Ignoring any complications introduced by American options.
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option pricing equation to be written only in terms of the strike price. This equation is then

differentiated (numerically) to obtain the CDF and PDF. Unlike Shimko (1993), Malz does not make

special allowances for the tails, instead allowing the fitted curve to cover the entire range of possible

deltas, hence the entire support of the density function.

Neuhaus (1995) also makes use of equation (2), although he chooses to differentiate a single time to

recover the CDF. The derivatives are numerical and discrete in that he uses only the available strikes.

Unlike Shimko and Malz he does not construct a smooth equation relating the option’s price to the

strike price. This can be seen as an advantage or disadvantage, however, it only allows for probability

calculations at and between strike prices.

Jackwerth and Rubinstein (1996) propose a maximum smoothness criteria that essentially uses a

butterfly spread variant of equation (2) to minimize the curvature in the resulting implied PDF.

)LQDOO\��$ W�6DKDOLD�DQG�/R��������XVH�D�QRQ�SDUDPHWULF�PHWKRG�WR�JHQHUDWH�D�UHODWLRQVKLS�EHWZHHQ�WKH

option price and the strike price. In a data-intensive method that makes use of a cross-sectional time-

series of option prices and strikes (rather than just a single day’s cross-section of option prices and

strikes as is used in all other studies considered herein), they utilize the Nardaraya-Watson non-

parametric kernel regression to estimate the functional form that relates the call price to the strike

price. The second derivative of this function then gives the PDF.

B. Methods Based on Equation (1)

The other studies considered in this note essentially make use of equation (1), typically using an

nonlinear optimization method to find the exact form of the PDF that produces predicted option prices

that are “close” to the observed option prices. These techniques differ in the amount of structure they

place on the PDF to be derived.

Sherrick, Garcia and Tirupattur (1996), using prices for options on soybean futures contracts, specify a

Burr III PDF. As in several other studies, the estimate the parameters of the density by minimizing the

sum of squared option pricing errors.

Melick and Thomas (1997), using a model proposed by Ritchey (1990), specify that the PDF is to be a

mixture of lognormal densities, providing bounds on American options on futures that are similar to

equation (1) in that they are written in terms of the PDF. In their application to the crude oil market,

they use a mixture of three lognormals, other analysts applying their technique have often used a

mixture of two lognormals.4 Mizrach (1996) also specifies that the density is a mixture of lognormals.

In a similar vein, Söderlind and Svensson (1998) stipulate that the discount factor and the underlying

asset price be drawn from a mixture of bivariate normal distributions.
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Several techniques have been proposed that place less structure on the functional form of the PDF.

Rubinstein (1994), using a lognormal assumption, pre-specify prior terminal nodes (probabilities) for a

binomial tree. Posterior terminal node probabilities are then calculated by deviating as little as possible

from the prior nodes such that the predicted option prices fall between the observed bid/ask option

prices and that other arbitrage possibilities are eliminated.

In a related approach, Buchen and Kelley (1996) propose a maximum entropy estimate of the

distribution. They also use the lognormal density as a prior and find that the resulting PDF will be the

product of piece-wise uniform-exponential distributions.

Finally, Madan and Milne (1994) propose a finite Hermite polynomial expansion to estimate the PDF,

generalizing on the Black-Scholes assumption of a single lognormal PDF. Although they do not

recover the complete PDF, Corrado and Su (1996) follow a very similar approach to recover implied

measures of skewness and kurtosis.

C. Existing comparisons5

Several studies have compared some of the methods for recovering the PDF. Bahra (1997) essentially

directly implements equation (2) using butterfly spread prices as well as using the methods of Shimko

(1993) and Melick and Thomas (1997). In the study he uses options prices from LIFFE (FTSE 100,

Long Gilt, Euromark, Bund and Short-sterling) and the PHLX (exchange rates). However, a formal

comparison of the techniques was beyond the scope of his paper.

Campa, Chang and Reider (1998) compare a modified version of the Shimko (1993) technique and the

techniques of Rubinstein (1994) and Melick and Thomas (1997) using data from the OTC currency

markets. They find that the three methods produce “remarkably similar PDFs” and note that each

approach has its strengths and weaknesses. For the balance of the paper they report results using the

method of Rubinstein (1994).

Jondeau and Rockinger (1997) compare the techniques of Melick and Thomas (1997), Madan and

Milne (1994), Corrado and Su (1996) along with the stochastic process techniques of Malz (1996) and

Heston (1993). They use data for two dates from the OTC market for options on the FF/DM exchange

rate. They find the fit of the Melick and Thomas approach to be very good, but prefer the stochastic

process approach of Malz (1996) for ease of interpretation.

Coutant, Jondeau and Rockinger (1998) compare the techniques of Melick and Thomas (1997), Madan

and Milne (1994) and Buchen and Kelley (1996). They find that the three methods yield similar PDFs,

                                                                                                                                                                                     
4 See Bahra (1997) and Campa, Chang and Reider (1998).
5 This note only discusses papers issued prior to the workshop. The paper presented at the workshop by Des
McManus (contained in this volume) also compares several of the estimation techniques.
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although they prefer the Hermite expansion of Madan and Milne (1994) for reasons of robustness and

ease of calculation.

II. Interpreting PDFs

A. Why use PDFs to study asset prices?

A central motivation for computing PDFs from observed options data is to understand how the

distribution implied by market prices differs from a theoretical distribution assumed a priori, which in

finance is usually the lognormal. Typically, this divergence from the lognormal is meant to be of some

qualitative importance and not merely superficial. For example, computation of the implied PDF may

reveal that market expectations are in fact characterized by multiple modes, or a degree of skewness

and kurtosis significantly different from that found in the lognormal distribution.

Computation of a PDF usually occurs in the context of a more general fundamental economic

question, often relating to a possible change in regime, or other phenomena that would affect

expectations before showing up in time series data. In certain papers [e.g. Rubinstein (1994), Ait-

Sahalia and Lo (1995), Jackwerth and Rubinstein (1996)], a PDF is computed in order to characterize

expected returns in the stock market, especially the probability of a crash or correction. In Melick and

Thomas (1997), the PDF of future oil prices reveals the effects of the Gulf war in 1991 on the

expected price of oil. Leahy and Thomas (1996) derive the PDF of the Canadian dollar-U.S. dollar

exchange rate during the October 1995 referendum on Quebec independence. In these last two papers,

the PDF is sometimes characterized by two modes corresponding to two political outcomes—war vs.

peace, or independence vs. national unity. Campa, Chang, and Reider (1997) compute PDFs on key

cross rates within the “Exchange Rate Mechanism” of the European Monetary System in order to

determine the size of ERM bandwidths consistent with market expectations of exchange rate

convergence/divergence. Campa, Chang, and Reider (1998) derive a number of exchange rate PDFs in

order to study the relation between skewness and spot, with implications for whether exchange rates

follow implicit target zones.

B. Data Limitations in Analyzing Large Potential Price Changes

A PDF-based approach to forecasting is especially useful for important potential qualitative changes in

asset prices (e.g. market crashes or booms, currency devaluations, exchange rate or interest rate regime

changes) that have influenced expectations without necessarily being detectable in time series data

directly. Often these qualitative regime changes imply a price change of a magnitude that is large

relative to day-to-day variation in the underlying asset price.



6

Yet, sometimes, the questions of greatest economic or policy interest—i.e. market expectations of

large price movements associated with a regime shift, are in fact the most difficult to answer because

of data limitations. In particular, one usually has the fewest observations of deep out-of-the-money or

deep in-the-money options. Usually at-the-money options are the most actively traded, while options

away-from-the-money are more illiquid and of less reliability. Synchronous observation of the option

price and the spot price (e.g. at the day’s close) become more difficult to coordinate, and

idiosyncracies in supply and demand conditions (e.g. a large market participant suddenly needing to

liquidate a position) play a greater role. For out-of-the-money options, bid-ask spreads become a

higher percentage of the option premium, and thus distort the underlying economic price. Thus, data

quality typically diminishes precisely in the regions of the most interest.

For certain markets, there are very few (if any) options trading with strike prices in the region of

greatest economic or policy interest. When this occurs, the PDF in these regions of analysis become

more art than science. Often, one’s inferences in these outer regions of the distribution, unfortunately,

depend more on one’s choice of estimation method or smoothing technique rather than on the data

itself. When estimating the PDF at any given point, observed prices of options with a higher and lower

strike price provide a “reality check” on how one assigns probability to that region. For strike prices

above the highest observed strike or below the lowest observed strike, it is impossible to use additional

option data to verify empirically whether one’s construction of the PDF is realistic. At best, one

constructs a PDF that is consistent with available data, internally consistent, and economically

sensible. Then, one must recognize the limitations of any inferences derived from the PDF in the

regions based on extrapolation rather than interpolation of data.

C. Evaluating PDFs Empirically

One way of judging a PDF derived from option data is its empirical performance—i.e. its ability to

predict realizations in the returns of the underlying asset. This is intrinsically a difficult proposition

because a PDF represents the range of possible realizations, and in reality, there will be only a single

realization of returns for any given forecast horizon. As long as that realization has positive probability

in the PDF, then one cannot reject that PDF.

D. Stationarity and Aggregation over Time

One approach to increasing the number of observations is to aggregate over time, using multiple

realizations to evaluate a given PDF.  For example, one could compare a year’s worth of one-month

exchange rate returns to the distribution of returns implied by a cross-section of one-month options

observed at an instant in time, say on January 1. Of course, a major drawback to this approach is the
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implicit assumption of stationarity in the distribution. The density function observed on January 1 need

not apply for the whole year, as expectations are almost certain to change—sometimes significantly—

over time.  Clearly, the briefer the time horizon of a given PDF, the more independent realizations of

returns one will observe over time.  Yet, options of very short time time-to-expiration (e.g. a few days)

rarely trade with any liquidity, presumably because bid-ask spreads would be disproportionately large

relative to the option premium.

E. Risk-neutral vs. Actual PDFs

Another difficulty in both the interpretation and evaluation of risk-neutral PDFs derived from option

prices is the impossibility of distinguishing between actual probability, in a purely statistical sense,

and the risk-neutral probability. A state that may have a relatively high probability in the risk-neutral

density may in fact have a relatively low statistical probability of actually occurring but simply have a

high valuation. For example, a stock market crash may have low statistical probability, but a dollar in

that state of nature may be very highly valued (relative to a dollar in other states of nature). This will

be reflected in the pricing kernel that transforms statistical probability into the risk-neutral probability.

From a research point of view, however, it is impossible to disentangle the contribution of statistical

probability and the contribution of relative marginal utility of different states.

In the absence of a full-scale economic model in which marginal utilities under different states of

nature are made explicit, one can at best use economic intuition to identify qualitatively how the risk-

neutral and actual distributions should be expected to differ. Most would agree that a stock market

crash is a scenario in which a one dollar payout would be relatively highly valued. With other assets, it

may be less clear. Should a given payout be more valuable when there has been a major dollar

devaluation or a major yen devaluation? Would a dollar be worth more when interest rates have

suddenly risen or suddenly fallen by 100 basis points? Answers to such questions will probably

depend on a number of factors, including: wealth asymmetries (payoffs presumably have greater

utility in lower-wealth states), policy asymmetries (one should derive higher utility from payoffs

occurring when policy is less accommodative or stimulatory), or risk-appetite asymmetries (higher

utility associated with payoffs in states of lower investor risk tolerance).

F. Peso Problems.

The presence of “peso problems” also complicates the empirical evaluation of PDFs. A small

probability, large-magnitude event can have an important influence on the shape of a PDF, even if this

event is not observed over a given finite sample period. The absence of that rare event in the data

would not necessarily invalidate the PDF. The effect of peso problems is even stronger if the low-
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probability event is associated with relatively high marginal utility (as may be the case with a stock

market crash, or an exchange rate or interest rate regime change), causing the risk-neutral probability

to appear higher than the statistically expected probability.

G. Key Advantages of PDF-Based Analysis

In spite of these complications, an analytical approach based on PDFs derived from option prices still

has much to recommend over alternatives based on time series data. Most important, since they are

based on market prices of options, PDFs are forward-looking. Thus, they are capable of incorporating

a wide range of future eventualities that simply are not captured using historical data. They do not

require a long historical time series in order to be estimated accurately, and furthermore are instantly

capable of reflecting a change in market sentiment. A sudden shift in beliefs due to a political

announcement or economic news could be immediately captured in option prices and the implied PDF.

Second, they are well-suited to capturing the uncertainty inherent in financial markets, that of

“multiple scenarios.” The shape of a potential distribution will depend on market data across multiple

strike prices rather than on a mathematical function of the standard errors of an econometric

regression. Third, PDFs are relatively free of mathematical priors imposed by a specific economic

model or structure. While some parameterization is needed in order to map a finite number of data

points into a smooth PDF, it has been shown that for certain regions representing a large percentage of

total probability, key characteristics of the derived PDFs are relatively independent of the

methodology used, suggesting some robustness to this approach. While there are dangers to over-

inference from the derived PDF, they can be applied to virtually any financial market and still provide

these key advantages over methods based solely on time series data.
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Results of the Estimation of Implied PDFs from a Common Dataset

William R. Melick

A part of the June 14, 1999 BIS workshop involved estimation of implied probability density functions

(pdfs) by a number of participants using a common dataset. In early April, each participant received

settlement price data for options on Eurodollar futures. These are American options that trade on the

Chicago Mercantile Exchange. The data covered the 61 trading days from September 1, 1998 through

November 30, 1998 for the December 1998 contract. The option strikes and the futures prices were

subtracted from 100 (with calls redefined as puts and puts redefined as calls) in order that the probability

density functions were estimated in terms of the more intuitive short-term interest rate as opposed to the

discount price. These data were chosen for two reasons 1) this particular options market is among the

most active in the world 2) the conference was attended by many central bank economists who for

monetary policy reasons are eager to learn more about movements in short-term interest rates, and 3) the

period was an active one, with the Federal Reserve lowering the federal funds rate by a total of 75 basis

points from September through November.1

It is believed that the data are of a fairly high quality. Any option that had no open interest, exercises, or

volume on a given day was excluded from the dataset. The remaining options were checked to ensure that

they satisfied arbitrage restrictions involving monotonicity, slope, concavity, and put-call parity (within

ranges that would result from the transactions costs involved in eliminating the arbitrage possibility). For

the 61 trading days there was an average of a bit more than 25 option settlement prices per day with an

average of roughly 18 unique strikes prices per day.

Each workshop participant was asked to estimate an implied PDF by whatever technique they desired for

each of the 61 trading days. The participants were asked to provide a standard set of results, namely the

mean, standard deviation, and 11 percentiles.2 A total of 19 workshop participants submitted estimates,

with 14 of those containing all percentiles for the 42 trading days from September 1, 1998 through

October 30, 1998. These 14 “complete” submissions were used in the analysis to follow.

Within the 14 submissions, a variety of techniques were used to recover the PDF. Using the taxonomy

developed in the background note, 5 of the submissions used some variant of Equation (2), either

smoothing the volatility smile and then differentiating twice to recover the PDF or using finite difference

methods on the option prices directly to recover the cumulative density function (CDF). Most of the

                                                          
1 The target federal funds rate was lowered by 25 basis points on three occasions - following the regularly scheduled FOMC
meetings held on September 29, 1998 and November 17, 1998 and following a conference call meeting of the FOMC on October
15, 1998.
2 The percentiles were 0.005, 0.001, 0.050, 0.100, 0.250, 0.500, 0.750, 0.900, 0.950, 0.990, 0.995 where percentile x is defined
as  the eurodollar rate such that there is an x chance of the eurodollar rate falling below that rate.
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remaining submissions used a method based on Equation (1), with the great majority of these using the

mixture of lognormals assumption. Finally, one submission recovered the PDF as a by-product of

specifying that the interest rate futures price follow a jump diffusion process.

I. Dispersion Across Percentiles

Given this variety of techniques, a natural first question to consider is the extent to which the different

techniques (and different estimation algorithims for a given technique) produce different results. For each

of the 42 trading days, the median estimate across the 14 participants for each of the 11 percentiles was

calculated. These median percentiles for each trading day were then subtracted from each participants’

percentile estimates for that day to create a standard measure of dispersion for each of the 11 percentiles

that could be meaningfully aggregated across time. Therefore, for each of the 11 percentiles a total of 588

(14 participants 42 days) deviations were calculated, providing a measure of the dispersion across the

estimates. Chart 1 shows the plots for the 11 percentiles and is somewhat discouraging.3 If all the

techniques yielded identical estimates then there would be no deviation from the median estimate of the

11 percentiles for any of the 14 participants on any of the 42 trading days. This would result in 588 zeroes

being plotted for each of the percentiles - Chart 1 would show just 11 points that would form a horizontal

line at zero on the vertical axis.

Obviously the actual results are nowhere near the ideal of zero dispersion, but a pattern does emerge,

namely the dispersion is greater in the lower and upper percentiles than around the 0.500 percentile. As an

example, on one trading day one participants’ estimate of the 0.005 percentile was almost 1.8 percentage

points (180 basis points) away from the median estimate of that percentile. That is, if the median estimate

for the 0.005 percentile were a 3-month Eurodollar futures rate of 3.80 percent, one of the participants’

estimates for the 0.005 percentile was 2.0 percent  Dispersion around the 0.500 percentile was much

smaller, amounting to roughly 12 basis points below and 52 basis points above the median. For example,

even on the trading day with the largest dispersion, all of the participants estimates for the 0.500

percentile fell within a range of 64 basis points. (To provide a sense of the magnitude of this dispersion

the average estimate of the 0.500 percentile across the 42 trading days at roughly 5.1 percentage points.)

However, a closer examination of the estimates indicated that almost all of the large outliers from the 11

median percentiles came from a single participant.4 Chart 1a re-plots the data from Chart 1 excluding this

participant. As can be seen (the scales on the two charts are identical) the dispersion for the 13 remaining

participants is much lower. The largest deviation from any of the median percentiles (again at the 0.005

                                                          
3 The plots for the 0.005 and 0.010 percentiles are very close together, as are the plots for the 0.990 and 0.995 percentiles.
4 The participant was not using an unusual technique, in fact the participant was using the mixture of lognormals assumption,
the most popular technique among the 14 complete submissions.
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percentile) now amounts to 96 basis points compared to 180 basis points in Chart 1. The range of

deviations from the 0.500 percentile now amounts to roughly 25 basis points compared to 64 basis points

in Chart 1.

However, the question remains whether the dispersion in Chart 1a is significant in any sense. The answer

surely depends on the purpose to which the PDF estimation is being applied. The results shown in Chart

1a indicate that between the 0.100 and 0.900 percentiles there is not that much difference across the

techniques. That is, practitioners can have some confidence that the results they report are not overly

sensitive to the particular method they use to estimate the PDF. Outside of these percentiles, the

sensitivity to the technique increases dramatically. This increase can be a problem for some but not all

applications. For example, an analysis for policy-making purposes that uses PDF estimation to provide a

90% confidence interval for market expectations of the future short-term interest rate will not be all that

sensitive to the choice of PDF estimation technique. On the other hand, an analysis for a value-at-risk

calculation that used PDF estimation to provide a measure of the future short-term interest rate below

which there is less than a 1% chance of falling will be quite sensitive to the choice of PDF estimation

technique.

Sensitivity of the tail percentiles to the choice of estimation technique is not surprising, given that these

regions of the density have few, if any, actively traded options with strike prices in the region. As

discussed in Melick and Thomas (1997), outside of the lowest and highest available strike prices there is

an infinite variety of probability mass that can be consistent with the observed option prices. Put a little

more precisely, for example, below the lowest strike option prices only reveal information about the

combination of [ ] [ ]LL XffEXf <⋅< |Pr , where LXf  and are the underlying price and lowest strike

respectively. As the option price constrains only the value of the product there can be significant variation

across the techniques in the two terms of the product. The reported percentiles are only related to

[ ]LXf <Pr , just one term in the product, so a large dispersion in the tail percentiles across techniques

might well be expected. That is, the observed option price provides information about the product, not the

two terms, hence two methods could provide very different estimates of one of the terms so long as there

were offsetting differences in the estimates for the other term.

A final source of variation relates to the difficult nature of the estimation problem. Those techniques that

make use of equation (1) typically involve a nonlinear, constrained optimization. The particular solution

algorithm (and the parameters involved in the algorithm such as step size and convergence tolerance) can

have dramatic impacts on the estimated PDF. That is, two researchers who both use a mixture of

lognormals assumption for the form of the PDF may arrive at much different conclusions depending on

the optimization algorithm used. As discussed in McCullough and Vinod (1999) the variation across
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algorithms can be large, especially for the difficult estimations involved in a PDF recovery.5 The same

sort of problems obtain for those using techniques based on equation (2). The choice of analytic versus

numerical derivatives will create variation in the percentiles, even if each researcher is generating a strike

price option price mapping (e.g. volatility smile) in exactly the same way.

II. Effects of Large Events

The dataset also provides the opportunity to assess whether the dispersion in the estimated percentiles

increases during periods of large changes in economic conditions. Over the period September 1, 1998

through October 30, 1998 the FOMC lowered the target federal funds rate by 25 basis points on two

occasions, September 29 and October 15. The latter cut came as a great surprise to financial market

participants. Charts 2 and 3 plot the range of estimates for each of the 11 percentiles on each of the 42

trading days with vertical lines indicating the dates of the changes in the target federal funds rate.

Although there is an increase in the dispersion of the percentiles following each of the changes, the

increases are not large relative to other increases that do not coincide with FOMC policy changes.6

Conclusion

A very preliminary analysis of the submissions to the common dataset exercise suggests that measures of

tail probabilities are quite sensitive to the technique used to estimate a PDF from options prices. However,

within the 10th and 90th percentiles, sensitivity to technique is much less of an issue. Finally, a shock to

the underlying market does appear to increase the dispersion of the estimates of the PDF percentiles,

although the increase is similar to increases seen on other dates where shocks are not readily identified.

References

McCullough, B.D. and H.D. Vinod (1999), “he Numerical Reliability of Econometric Software”. Journal
of Economic Literature 37(2) June pp. 633-665.

Melick, William R. and Charles P. Thomas (1997): “Recovering an Asset's Implied PDF from Option
Prices: An Application to Crude Oil During the Gulf Crisis”. Journal of Financial and Quantitative
Analysis 32(1) March pp. 91-115.

                                                          
5 Future work on the estimates from this common dataset will compare the percentiles of a subset of the participants who are
known to be using the same technique (pdf assumption) but different optimization packages and algorithms.
6 These charts include all of the participants, like Chart 1 but unlike Chart 1a.
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Chart 1
Scatter Plot of Scaled Percentiles - Sept. 1 - Oct. 30

(Estimated Percentile - Median of Estimated Percentile)
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Chart 1a
Scatter Plot of Scaled Percentiles - Sept. 1 - Oct. 30 - Excluding One Participant

(Estimated Percentile - Median of Estimated Percentile)
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1. Introduction

In the last five years, there has been great interest amongst policy-makers in extracting information

from the prices of financial assets. Options prices, in particular, have proved to be be a particular rich

source of information since they enable the extraction of a complete implied risk-neutral probability

density function (RNDs) for the assets, interest rates and commodity prices upon which they trade.

These RNDs have proven particularly useful in interpreting the market’s assessment of the balance of

risks associated with future movements in asset prices.

Reflecting this interest, a relatively large number of papers have been published that set out alternative

techniques for the estimation of implied RNDs with examples of their application to particular

markets. Despite this wide range of papers, nearly all are based on one of three basic approaches:

• estimating the parameters of a particular stochastic process for the underlying asset price from

options prices and constructing the implied RND from the estimated process - see Malz(1995) and

Bates(1996) for examples that incorporate jump processes;

• fitting a particular parametric functional form for the terminal asset price, for example a mixture of

lognormals directly to options prices - see Bahra (1996,1997) and Melick and Thomas (1997);

• interpolating across the the call pricing function or the volatility smile, following Shimko (1993),

and employing the Breeden and Litzenberger (1978) result that the implied distribution may be

extracted by calculating the second partial derivative of that function with respect to the strike

price.

The first approach has the disadvantage that it is based on a particular stochastic process: we cannot

observe whether the assumed process can capture the density functions that are implicit within

options’ prices. In this paper we focus on the second and third approaches which are more flexible

since by trying to estimate the density function directly they are consistent with many different

stochastic processes.
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Given these alternative techniques, a natural question is:  “Which technique performs the best?” A key

concern is the accuracy and stability of the estimated RNDs. Suppose we observe an estimated RND

that displays bi-modality or “spikes.”1 Should we interpret this as reflecting actual expectations or

estimation errors? If we believe it to be the latter then the value of using implied RNDs is seriously

diminished.

This paper attempts to address these concerns. It examines the empirical performance of two

approaches to RND estimation by testing the ability of alternative techniques’ ability to recover the

implied density function from a set of simulated prices. The simulated prices are generated from a

quite general stochastic volatility model set out in Heston (1993). By using simulated prices, rather

than actual prices, we can compare estimated RNDs against the “true” RND implied by the underlying

price process. We test not just the stability of estimated RNDs and their robustness to small errors as

in Bliss and Panigirtzoglou (1999), but also their ability to closely recover the summary statistics from

the true density function given sufficient data.

The paper is organised as follows. Section two sets out the two estimation techniques that we

compare. Section three sets out the approach we will use for assessing the performance of the

alternative methodologies. Section four presents results for European-style options and section five

concludes.

2. Alternative Techniques for Estimating Implied RNDs from Options’ Prices

2.1 Underlying Economics

In this section we examine the two estimation approaches that are tested within this paper. Both may

be derived from the Cox and Ross (1976) pricing model. This model gives current time t European-

style call option prices as the risk-neutral expected payoff of the option at expiry T, discounted back at

the risk-free rate:

( )C S X e S X g S dSr
T T T

X

( , , ) ( )τ τ= −−
∞

∫     (1)

                                               
1 See Bahra(1996) for examples of such spiked distributions when using the mixture of lognormals approach.
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where ST is the terminal underlying asset price at T, g(ST) is its RND, X is the strike price and r and

τ=T-t are the risk-free rate and the maturity of the option respectively. The put price can be recovered

either through put-call-parity or by replacing the payoff of the call (ST-X) with the payoff of the put

(X-ST) in the above formula and by integrating from zero to the strike price.

The first estimation approach tested in this paper involves specifying a particular parametric functional

form for the RND g(ST) and fitting this distribution to the observed range of strike prices via non-

linear least squares. Although a range of functional forms have been suggested, the most commonly

used is a mixture of two lognormals2. The form chosen should be sufficiently flexible to capture the

features of distributions that we might expect to find implicit within the data - excess kurtosis, either

positive or negative skewness, and perhaps bi-modality. The mixture of lognormals is parsimonious

because it matches these criteria with just five parameters to be estimated.

The mixture lognormal is given by:

( ) ( ) ( )g S L LT( ) , ,= + −θ α β θ α β1 1 2 21 (2)

where θ α α β β, , , ,1 2 1 2  are the parameters to be estimated. The fitted call and put prices are given by3:

( ) ( ) ( ) ( )( )$( , , ) , ,C S X e S X L L dSi
r

T i T
X i

τ θ α β θ α βτ= − + −−
∞

∫ 1 1 2 21 (3)

( ) ( ) ( ) ( )( )$ ( , , ) , ,P S X e X S L L dSi
r

i T T

X i

τ θ α β θ α βτ= − + −− ∫ 1 1 2 2
0

1
1

.

To fit the parameters of the RND we minimise the following:

( ) ( )min $ $
, , , , , , , ,α β α β θ τ τ τ τ1 1 2 2

2 2

11

C C P Pi i i i
j

n

i

m

− + −
==
∑∑ (4)

                                               
2 See Bahra (1996,1997) and Melick and Thomas (1997)
3 As explained in Bahra (1997) for the futures options traded at LIFFE that have futures-style margining, the discount
factor disappears.



4

The second approach to estimating implied RNDs that we test here which we term the “smile”

approach, exploits the result derived by Breeden and Litzenberger (1978) that the RND can be

recovered by calculating the second partial derivative of the call-pricing function with respect to the

strike price. This result can be derived simply by taking the second partial derivative of equation (1)

with respect to the strike price to get:

( )∂
∂

τ
2

2

C
X

e g Sr
T= − (5)

So we just have to adjust up the second partial derivative by exp(rτ) to get the RND g(ST). In practice

we only have a discrete set of strike prices. So to obtain an estimate of the continuous call-pricing

function we need to interpolate across the discrete set of prices. Following Shimko(1993) this

interpolation can be done by interpolating across the volatility smile and using Black-Scholes to

transform this back to prices. The reason for doing this rather than interpolating the call-pricing

function directly is that it is difficult to fit accurately the shape of the latter. And since we are

interested in the convexity of that function any small errors will tend to be magnified into large errors

in the final estimated RND.

Shimko (1993) used a quadratic functional form to interpolate across the volatility smile. Instead, we

follow Bliss and Panigirtzolglou (1999) and use a cubic smoothing spline to interpolate in a similar

way to Campa and Chang (1998). This is a more flexible non-parametric curve that gives us control on

the amount of smoothing of the volatility smile, and hence the smoothness of the estimated RND. But

following Malz (1997), Bliss and Panigirtzoglou (1999) also first calculate the Black-Scholes deltas of

the options and use delta rather than strike to measure the money-ness of options. In practice this

makes interpolation of the volatility smile even easier, since it becomes a simpler shape to approximate

in “delta-space”. Finally, to generate the implied RND we calculate the second partial derivative with

respect to strike price numerically as for (5) and adjust for the effect of the discount factor.

So summarising, estimation via the smile-based approach proceeds by:

• calculating implied volatilities of the call and put options;

• calculating the Black-Scholes deltas of the options using those implied volatilites;
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• constructing the volatility smile by joining the implied volatilities for out-of-the-money calls with

those of the out-of-the-money puts4;

• interpolating across the volatility smile in “delta-space” via a cubic smoothing spline;

• transforming back to a price function using the Black-Scholes model;

• taking the second partial derivation of that function with respect to strike and adjusting for the

discount factor within equation (5) to generate the final estimated RND.

3. A Monte Carlo Approach to Testing PDF Estimation Techniques

This section of the paper explains the testing procedures we will use to assess the performance of the

two estimation approaches set out above. One approach to testing these techniques is to examine how

closely they fit actual options data (for example see the approaches taken by Campa and Chang

(1998), Jondeau and Rockinger (1998) and Bliss and Panigirtzoglou (1999). But in doing so it is

difficult to assess which of the estimated RNDs most closely match the true risk-neutral density since

this is unobservable. In the absence of knowledge of what the true density function is, it is difficult to

judge this.

Instead we use simulated artificial options price data. We can simulate options prices that correspond

to a given risk-neutral density function and see whether the estimation techniques can recover the

RND. In addition following Bliss and Panigirtzoglou (1999), we also test whether the estimation

technique is robust to small errors in prices that might result in the real world from the existence of

discrete tick size intervals.

Any good RND estimation technique should be able to recover the true RND under a wide range of

market conditions: that is conditions of high and low volatility; where the true density function has

either  positive or negative skews; and where we use options across the full range of maturities that

are encountered in practice - anything from one week out to a year. So we need a way of generating

options data that match this range of conditions.

                                               
4 We use out-of-the-money options because traded volumes concentrate on at-the-money and out-of-the-money options.
Also the out-of-the-money option value is composed enitirely of the time value of the option rather than its intrinsic
value as for in-the-money options. It is the time value of the options only that reflects the shape of the RND.
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To generate sufficiently interesting “true” risk-neutral densities that incorporate the features discussed

above, we use Heston’s (1993) stochastic volatility model to generate prices. For European options,

this model has a closed form solution. Under Heston’s model, the underlying asset price dynamics are

described by the following stochastic differential equations:

( )
dS Sdt v Sdz

dv v dt v dz
t

t t v t

= +
= − +
µ
κ θ σ

1

2

(12)

Here the volatility of the underlying asset vt is also stochastic. The conditional variance vt  follows a

mean reverting process such that the volatility mean-reverts to a long run of θ  at a rate dictated

byκ . The term σ v sets the volatility of the volatility. Finally, the two Wiener processes dz1  and dz2

have a correlation given by ρ . By changing the correlation parameter we can generate skewness in

asset returns. Suppose we have a negative correlation between shocks to the asset price and volatility.

This means that as we get negative shocks to the price, volatility will tend to increase. This increase in

volatility then increases the chance that we can get further large downwards movements. Thus a

negative correlation can generate negative skewness in the unconditional distribution of returns. This

will be reflected in a downwards volatility smile in the options generated under these parameters. A

positive correlation between volatility and the asset price has the opposite effect5. 

Heston shows that for European call options6 on assets that behave according to (12) it is possible to

calculate prices with the following formula:

( )

( )( )
( ) ( )

C S v X SP Xe P

P y v T X
e f y v T

i
d

t
r

j t

i X
i

, ,

, , ; ln Re
, , ;ln

= −

= +












−

−∞

∫

1 2

0

1
2

1

τ

φ

π
φ

φ
φ

(13)

where X is the strike price, y=ln(S), i = − 1 ,

                                               
5 See Das and Sundaresan (1998) for more details on the relation between conditional skewness and kurtosis and the
parameters of this stochastic volatility model.
6 Put prices can be generated simply via put-call-parity.
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and a=κθ, b1=κ + λ - ρσv, b2=κ + λ.

To generate the true density function and its associated summary statistics we simply apply equation

(5) to (13). Figures 1 and 2 show the effect of changing ρ on the terminal asset price distribution and

on the volatility smile for options generated under this model with current and long run volatility of

30%, mean reversion κ=2 and volatility of volatility σv of 40%. We can see that the Heston model can

generate the sorts of shapes of both the volatility smile and the underlying asset distributions that can

be observed in the real world.
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Figure 1: Implied RNDs Under Alternative  
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An additional feature of the real world that we want to incorporate is the existence of errors that are

the result of discrete tick size intervals (and possibly any small violations of arbitrage within the

settlement prices used for estimation). We want our estimation methodology to be robust to these

small errors in the prices. So we perform the following test of the two RND estimation techniques.

We first establish a set of six scenarios corresponding to low and high volatility and three levels of

skewness. For each scenario we generate a set of options prices with strikes ranging from 30% out-of

the-money to 40% in-the-money. Then for each combination of scenario and maturity we use the

approach developed by Bliss and Panigirtzoglou (1999) to first shock each price by a random number

uniformly distributed from -1/2 to +1/2 a “tick size”. This tick size was chosen as 0.05 to reflect the

sorts of tick sizes that are typically found for exchange-traded options. Given these shocked prices we

fit RNDs using the two techniques described in section two and calculate the summary statistics. We

repeat this procedure of shocking the prices and then fitting the RNDs 100 times for each scenario and

maturity combination. Finally we calculate in each case the mean and standard deviation of the

calculated summary statistics and the squared pricing errors. In essense, this technique simply amounts

to a monte carlo test of the finite sample properties of the two estimators of the sort that is commonly

used within standard econometrics - see Greene (1997) Ch.5 or Davidson and McKinnon (1993) Ch.

18.

We then assess the two techniques by comparing the mean estimated summary statistics with the true

summary statistic. We are looking for a technique that has both mean estimates of the statistics that

are close to the true ones and one that has small standard deviations for the calculated statistics in the

presence of the small errors within the options prices used i.e. it is stable. We also want an estimation

procedure that performs well across the range of scenarios and maturities. The next section performs

these tests for European-style options.

4. Results

This section includes the results of the tests that we described above for the two estimation

approaches. As described above, we test performance across a range of six scenarios. The Heston

model parameters used for each scenario are set out in table 1 below. These were chosen to generate

true RNDs that corresponded to situations of negative skewness, and weak and strong positive

skewness in the terminal asset price and also conditions of low and high volatility. To generate these
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differing levels of skewness in the terminal asset price distributions, we use three different levels of the

correlation parameter -0.9, 0 and 0.9. The long run volatilities of 30% for the high volatility scenarios

were chosen on the basis of the levels of implied volatility typically seen within equity markets. The

low volatility (10%) scenarios can be thought of as consistent with levels often seen within FX and

interest rate markets7.

Table 1: Model parameters used under each scenario

Strong Negative Skew Strong Positive Skew

Low Volatility

Scenario 1

     κ=2,  θ2=0.1,

     σv=0.1, ρ=-0.9

Scenario 2

     κ=2,  θ2=0.1,

     σv=0.1, ρ=0

Scenario 3

     κ=2,  θ2=0.1,

     σv=0.1, ρ=0.9

High Volatility

Scenario 4

     κ=2,  θ2=0.3,

     σv=0.4, ρ=-0.9

Scenario 5

    κ=2,  θ2=0.3

    σv=0.4, ρ=0

Scenario 6

     κ=2,  θ2=0.3,

     σv=0.4, ρ=0.9

We test the performance of the two estimation techniques under each of these scenarios across four

different maturities - 2 weeks, 1 month, 3 months and 6 months. For each scenario and maturity

pairing we first generate the true RND and calculate their summary statistics - their mean, standard

deviation, skewness (the third central moment) and kurtosis (the fourth central moment). Table 2 sets

out the true summary statistics for all the maturity and scenario combinations.

                                               
7 We also assume that the market price of volatility risk is zero and that the time t conditional volatility is equal to the
long run volatility.
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Table 2: True Summary Statistics

Scenario 2 weeks 1 month 3 month 6 month
1 100.000 100.000 100.000 100.000
2 100.000 100.000 100.000 100.000

Mean 3 100.000 100.000 100.000 100.000
4 100.000 99.999 99.999 99.994
5 99.999 100.000 99.999 99.998
6 99.988 99.997 99.995 99.961

Scenario 2 weeks 1 month 3 month 6 month
1 1.958 2.878 4.956 6.966
2 1.962 2.888 5.004 7.081

Std Dev 3 1.965 2.898 5.052 7.201
4 5.849 8.555 14.524 20.099
5 5.888 8.677 15.093 21.485
6 5.921 8.799 15.687 22.900

Scenario 2 weeks 1 month 3 month 6 month
1 -0.198 -0.280 -0.418 -0.474
2 0.060 0.089 0.159 0.231

Skewness 3 0.318 0.459 0.743 0.956
4 -0.166 -0.228 -0.301 -0.265
5 0.180 0.272 0.504 0.756
6 0.523 0.776 1.346 1.840

Scenario 2 weeks 1 month 3 month 6 month
1 3.037 3.081 3.178 3.221
2 3.038 3.086 3.221 3.355

Kurtosis 3 3.160 3.344 3.930 4.599
4 2.984 2.962 2.878 2.748
5 3.119 3.269 3.809 4.616
6 3.426 4.036 6.272 9.026

For all combinations the futures price has been set at 100, so the true mean of the distributions are

equal to 1008. As we would expect, the standard deviation of the true RNDs increases with maturity

and as volatility is increased. Scenarios 1 and 4 which have a negative correlation between the

underlying asset price and volatility display negative skewness in the terminal asset price distribution.

Except for scenario four9, the kurtosis of the terminal asset price distribution is greater than three and

increases with maturity.

                                               
8 The slight differences from 100 are caused by error in the numerical integration used to calculate the summary
statistics.
9 For this scenario the combination of a high volatility of volatility and the negative correlation between volatility and
the asset price appears to reduce the probabilities attached to extreme outcomes.
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Given these true summary statistics, we proceed to test the two estimation approaches to recover

them from simulated options prices. We use equation (13) to generate European-style call and put

futures options for all the scenario and maturity pairings for strikes ranging from 70 to 140 with

strikes spaced at intervals of one apart from each other. For each pairing we then test the two

techniques by shocking the prices for the tick size errors as described above and estimating RNDs and

their summary statistics. This is repeated a hundred times for each pairing. Then for each pairing,  and

each summary statistic we calculate a measure of the mean estimate and measures of the estimates’

stability (the standard deviation, and the distance between the five and ninety five percentiles) from the

sets of a hundred estimated summary statistics under each technique. A good technique should have a

mean estimate of each of the  summary statistics that is close to the true ones and so may be said to be

unbiased. A low standard deviation of the estimated summary statistics across the full range of

scenarios and maturities indicates that the estimation technique is stable in the presence of small errors

wthin the prices.

Table 3 below gives the mean estimated summary statistics for both approaches across all the different

scenario and maturity pairings. To assess the unbiasedness of the two estimators, however, we are

interested in the difference between the true summary statistics and the mean estimates from each

approach. So table 4 calculates the difference between the true and the mean estimated statistics as a

percentage of the true value of the summary statistic: (true-mean)/true.

Examining the top two panels of table 4 we can see that the mean of the smile approach is always

almost always exactly equal to the true mean. The reason for this accuracy is that when we transform

from the volatility smile to the pricing function using Black-Scholes this constrains the mean of the

RND to be equal to the forward rate. The mixture lognormal estimation as described by equation (4)

does not explicitly constrain the mean of the RND to be equal to the forward rate, so we get small

errors between the true and actual means. This could be eliminated if we added an extra constraint to

(4) to ensure that the mean equalled the forward rate as described in Bahra (1997), but this may come

at the cost of extra instability in the fitted RNDs.
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Table 3: Mean Estimated Summary Statistics
Smile Technique Mixture Lognormal Technique

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 100.0000 100.0000 100.0000 100.0000 1 100.1680 100.0450 100.0312 100.0525
2 100.0000 100.0000 100.0000 100.0000 2 99.9950 99.8531 99.8428 100.0006

Mean 3 100.0000 100.0000 100.0000 100.0000 Mean 3 101.9543 100.4185 100.0332 99.9818
4 100.0000 100.0000 100.0000 100.0000 4 99.8328 99.6520 100.7073 99.8851
5 100.0000 100.0000 100.0000 100.0000 5 100.0027 100.0113 100.0024 100.0000
6 100.0000 100.0000 100.0000 100.0000 6 100.2045 98.8045 99.9303 99.8592

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 1.9595 2.8787 4.9588 6.9676 1 2.6334 2.8864 4.9503 6.9544
2 2.0615 2.9891 5.0970 7.1651 2 1.9732 2.9732 5.0552 7.1094

Std Dev 3 1.9685 2.9035 5.0581 7.2073 Std Dev 3 7.4278 3.7705 5.0581 7.1893
4 5.8485 8.5588 14.5087 20.0582 4 5.8645 8.5775 15.0537 20.1169
5 5.8905 8.6778 15.0693 21.3463 5 5.8861 8.6659 15.0867 21.4762
6 5.9316 8.8035 15.5988 22.6372 6 5.9116 9.4515 15.5956 22.5237

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 -0.1848 -0.2654 -0.3915 -0.4466 1 -0.0585 -0.2709 -0.3695 -0.4148
2 0.1968 0.1898 0.2081 0.2548 2 0.0594 0.1232 0.2165 0.2408

Skewness 3 0.3132 0.4421 0.7130 0.9128 Skewness 3 0.1855 0.4236 0.6167 0.8436
4 -0.1521 -0.2076 -0.2578 -0.1960 4 0.1764 0.2543 -0.2479 -0.1381
5 0.1784 0.2692 0.4798 0.6825 5 0.1776 0.2603 0.4995 0.7504
6 0.5124 0.7505 1.2121 1.5861 6 0.1821 0.7642 1.1701 1.4949

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 3.0163 3.0363 3.0701 3.0744 1 3.0942 3.0672 3.0629 3.0668
2 3.8713 3.6523 3.4221 3.3638 2 3.0720 3.0711 3.1870 3.4901

Kurtosis 3 3.1615 3.2812 3.6934 4.1546 Kurtosis 3 2.3902 3.2004 3.5323 4.0006
4 2.9720 2.9415 2.8054 2.6707 4 3.0554 3.1175 2.7957 2.7313
5 3.0781 3.1813 3.5137 3.9345 5 3.0848 3.1811 3.7677 4.5488
6 3.3829 3.8291 5.1522 6.8006 6 3.2202 3.6502 4.9617 6.0907

The second set of panels gives the results for the estimated standard deviations. For scenarios 4 to 6

and for all scenarios with maturities of three months and above the mean estimates are close to the

true standard deviations for both techniques. In most of these cases the mean errors are less than 1%.

For scenarios 1 and 3 and for the two week and one month maturities however, the mixture lognormal

appears to perform significantly worse. For low times to maturity and low volatility, the mixture

lognormal over-estimates the true standard deviation on average.

The results for the higher moments are much more variable. The absolute size of the mean errors as a

proportion of the true statistic are much higher than for the first two moments. For skewness, these

figures partly over-state the problems, however, because the true skewness is close to zero for at least

scenarios 2 and 5. Compared to the mixture lognormal, the smile-based technique has less biassed

results for skewness under scenarios 1, 3, 4 and 6 - those that display more extreme levels of

skewness. But for scenarios 2 and 5 the smile-based approach does better for some maturities but

worse than the mixture lognormal for others. Like skewness, the mean errors of the kurtosis estimates

are larger and more variable than for the mean or standard deviation. Broadly, the mixture lognormal
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mean estimates are poorest for scenarios 3 and 6 in which skewness is strongest. The smile-based

approach has the poorest results for scenarios 5 and 6 when maturity is three months or above.

Table 4: Difference Between True and Mean Estimated Summary Statistics (as % of the True)
Smile Technique Mixture Lognormal Technique

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.00% 0.00% 0.00% 0.00% 1 -0.17% -0.05% -0.03% -0.05%
2 0.00% 0.00% 0.00% 0.00% 2 0.00% 0.15% 0.16% 0.00%

Mean 3 0.00% 0.00% 0.00% 0.00% Mean 3 -1.95% -0.42% -0.03% 0.02%
4 0.00% 0.00% 0.00% -0.01% 4 0.17% 0.35% -0.71% 0.11%
5 0.00% 0.00% 0.00% 0.00% 5 0.00% -0.01% 0.00% 0.00%
6 -0.01% 0.00% 0.00% -0.04% 6 -0.22% 1.19% 0.07% 0.10%

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 -0.05% -0.04% -0.05% -0.03% 1 -34.47% -0.31% 0.12% 0.16%
2 -5.09% -3.51% -1.87% -1.19% 2 -0.58% -2.96% -1.03% -0.40%

Std Dev 3 -0.18% -0.19% -0.12% -0.09% Std Dev 3 -277.99% -30.11% -0.12% 0.16%
4 0.01% -0.05% 0.10% 0.20% 4 -0.26% -0.27% -3.65% -0.09%
5 -0.04% 0.00% 0.16% 0.65% 5 0.03% 0.13% 0.04% 0.04%
6 -0.18% -0.05% 0.56% 1.15% 6 0.15% -7.42% 0.59% 1.64%

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 6.83% 5.39% 6.30% 5.81% 1 70.51% 3.44% 11.55% 12.51%
2 -229.59% -113.88% -30.89% -10.39% 2 0.51% -38.86% -36.15% -4.36%

Skewness 3 1.57% 3.72% 3.97% 4.51% Skewness 3 41.69% 7.73% 16.95% 11.75%
4 8.51% 8.82% 14.22% 26.03% 4 206.12% 211.70% 17.50% 47.91%
5 0.90% 1.20% 4.84% 9.77% 5 1.35% 4.45% 0.93% 0.80%
6 1.93% 3.24% 9.93% 13.82% 6 65.16% 1.46% 13.05% 18.78%

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.68% 1.44% 3.41% 4.54% 1 -1.89% 0.43% 3.64% 4.78%
2 -27.42% -18.34% -6.23% -0.27% 2 -1.11% 0.49% 1.07% -4.03%

Kurtosis 3 -0.04% 1.89% 6.02% 9.65% Kurtosis 3 24.36% 4.30% 10.11% 13.00%
4 0.40% 0.70% 2.53% 2.81% 4 -2.39% -5.24% 2.86% 0.60%
5 1.31% 2.68% 7.75% 14.76% 5 1.09% 2.69% 1.08% 1.45%
6 1.27% 5.14% 17.86% 24.66% 6 6.02% 9.57% 20.90% 32.52%

On the basis of these tests for the ability on average to estimate the true summary statistics, it is not

immediately obvious that one of the techniques is better than the other. The smile-based approach

does appear to do marginally better in estimating the first two moments particularly at short maturities

with low volatility. For the third and fourth moments, however, neither technique obviously out-

performs the other.

But when we look at the stability of the estimates, the story is far more clear cut. Table 5 sets out the

standard deviations of the estimated summary statistics. High standard deviations of the summary

statistics are indicative of instability in the estimated RNDs. For nearly all the scenarios the mixture

lognormal has much higher standard deviations of the estimates for all statistics than for the smile-

based approach. This mirrors Bliss and Panigirtzoglou’s (1999) findings that the mixture lognormal is

unstable using actual options data for FTSE and 3 month sterling interest rates. In particular, the
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mixture lognormal appears to perform badly under scenarios 1 and 3 and to some extent scenario 2,

when maturities of the options are one month or less. This suggests that the mixture lognormal

approach is unstable when volatility is low, the maturity of the options is low and when there is a

strong negative or positive skew.

Table 5: Standard Deviation of Summary Statistics
Smile Technique Mixture Lognormal Technique

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.0000 0.0000 0.0000 0.0000 1 4.2206 0.2585 0.0198 0.0176
2 0.0000 0.0000 0.0000 0.0000 2 0.1927 0.9256 0.7257 0.0149

Mean 3 0.0000 0.0000 0.0000 0.0000 Mean 3 11.9560 6.2271 0.3363 0.0198
4 0.0000 0.0000 0.0000 0.0000 4 0.0133 0.0390 5.7981 2.4340
5 0.0000 0.0000 0.0000 0.0000 5 0.0121 0.0137 0.0185 0.0082
6 0.0000 0.0000 0.0000 0.0000 6 0.0859 4.2933 0.0153 0.0093

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.0123 0.0110 0.0088 0.0091 1 4.3470 0.0730 0.0102 0.0107
2 0.0144 0.0137 0.0112 0.0094 2 0.0693 0.5684 0.2252 0.0126
3 0.0139 0.0123 0.0112 0.0100 3 12.2235 7.5644 0.0994 0.0116

Std Dev 4 0.0093 0.0095 0.0062 0.0063 Std Dev 4 0.0099 0.0093 5.4027 0.5017
5 0.0104 0.0080 0.0075 0.0065 5 0.0117 0.0092 0.0135 0.0276
6 0.0097 0.0079 0.0080 0.0068 6 0.0111 2.4101 0.0088 0.0088

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.0204 0.0192 0.0130 0.0085 1 0.2348 0.1663 0.0248 0.0142
2 0.0201 0.0234 0.0104 0.0068 2 0.1721 0.2341 0.2684 0.0165

Skewness 3 0.0191 0.0166 0.0106 0.0080 Skewness 3 0.7527 0.1899 0.1975 0.0130
4 0.0096 0.0064 0.0030 0.0021 4 0.0003 0.0458 0.0644 0.2577
5 0.0091 0.0061 0.0035 0.0027 5 0.0015 0.0055 0.0115 0.0167
6 0.0102 0.0066 0.0038 0.0028 6 0.0423 0.1839 0.0049 0.0037

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.0175 0.0156 0.0141 0.0100 1 1.5428 0.1002 0.0532 0.0335
2 0.0645 0.0333 0.0163 0.0101 2 0.0832 0.1835 0.0827 0.1190

Kurtosis 3 0.0517 0.0296 0.0215 0.0189 Kurtosis 3 0.9664 0.3374 0.2073 0.0565
4 0.0092 0.0065 0.0035 0.0022 4 0.0002 0.0185 0.1992 0.2575
5 0.0100 0.0078 0.0076 0.0069 5 0.0239 0.0274 0.0677 0.1572
6 0.0157 0.0150 0.0143 0.0139 6 0.0271 0.3777 0.0249 0.0227

Table 5 indicates that the “smile”-based estimation is far more stable than the mixture lognormal

approach. But how does the instability of the mixture lognormal estimates manifest itself? To see this

we look in detail at the estimated RNDs under scenario 3, one of the scenarios in which mixture

lognormal is most unstable, and compare them to the true RND. Figures 3,4 and 5 compare the true

RND with estimated RNDs using the two techniques for maturities of two weeks, 1 month and 3

months respectively. In each figure, the top panel displays the true RND, while the bottom two panels

each display thirty of the RNDs estimated from the previous tests for the smile-based approach and the

mixture lognormal technique.
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It is immediately clear that the smile-based RND estimates are far more stable than the mixture

lognormal RNDs. The former match the shapes of the true RND closely, particularly for the longer

maturities. At the two week maturity there is greater variation in the fitted RNDs but this is to be

expected given that the tick size errors that are added to the prices will have a greater proportionate

impact on the time value of these shorter maturity options.

The mixture lognormal distributions are highly unstable at the two week and one month maturities.

The most common - but not only - cause of this instability is the existence of “spikes” in the

distribution. The spikes occur when the variance of one of the distributions collapses. The mixture of

two distributions then looks like a single lognormal distribution with a spike, usually towards the

centre. Clearly such a spike is not contained within the true distribution and reflects estimation errors.

As the maturity of the options increases, the proportion of these spiked distributions falls. In addition

to these spiked cases, there are a few mixture lognormal RNDs which are not spiked but which display

skewness which is quite different to the true RND.

Examining further the one month mixture lognormal distributions, we can see that for a larger

proportion of cases, the mixture lognormal technique manages to get a close fit to the true distribution

than at two weeks. As we move to three months we get a higher proportion still of fitted mixture

lognormal RNDs that are close to the true distribution. At this maturity, the optimisation used to fit

the RND appears to be flipping between between two minima - one which closely matches the true

RND and one which contains a spike and hence severely mis-estimates the RND. It is the existence of

these spiked distributions that causes the increased standard deviation of the estimated summary

statistics compared with the smile-based approach.

What appears to be the key difference between the two estimation approaches is that the small errors

in the prices cause only small local errors in the estimated RNDs under the smile approach, while for

the mixture lognormal non-linear least squares estimation, the errors can be sufficient for the

minimisation to reach very different parameter estimates with large changes in the shape of the

estimated RND as a result. The end result of this is that while the bias of the mixture lognormal

estimator does not appear to be much larger than the smile-based estimator (at least for the third and

fourth moments) it is far more unstable. Since in practice we are often concerned with changes in the
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PDF from one day to another this instability is a concern and reduces the value of the mixture

lognormal technique as a practical tool.
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Figure 3

"Smile" Estimated RNDs - Scenario 3, 2 Weeks Maturity
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True RND - Scenario 3, 1 Month Maturity
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Figure 4

"Smile" Estimated RNDs - Scenario 3, 1 Month Maturity
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True RND - Scenario 3, 3 Months Maturity
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Figure 5

"Smile" Estimated PDFs - Scenario 3, 3 Months Maturity
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5. Assessing Alternative Approaches

This paper has examined two alternative approaches to estimating implied RNDs from European-style

options. The first was the commonly used mixture lognormal approach which uses non-linear least

squares estimation to fit a parametric form to observed options prices. The second approach

interpolated across the volatility smile using a cubic smoothing spline and then employed the Breeden

and Litzenberger result to recover the RND by calculating the second partial derivative of the call

pricing function with respect to the strike price.

The monte carlo tests of the two estimators in section four demonstrated that the second “smile”-

based approach performed a little better in terms of its ability to match the first two moments of the

true RND. We also saw that the higher moments appear to be much more difficult to estimate

accurately with both techniques often resulting in estimates that are on average quite a long way from

the true ones.

But we also observed that the smile-based technique was far more stable than the mixture lognormal

approach. The latter technique has severe mis-estimation problems when using options on low

volatility assets or when using low maturity (less than three months) options. This mis-estimation most

often shows up as a “spiked” distribution when one of the lognormal distribution’s estimated variance

falls to a very low level. In contrast the “smile”-based estimation appears to perform well across all

scenarios and maturities (although the existence of discrete tick size errors does create increased

instability at maturities below 1 month). These results suggest the use of the smile-based approach

over the mixture lognormal by practitioners and researchers alike. They also suggest that where the

mixture lognormal is still used that the results have to be interpreted with great caution given the

tendency of the estimation approach to severely mis-estimate the true RND.

Future work at the Bank will use the monte carlo tests set out here to examine the empirical

performance of RND estimators that use American-style options. As well as examining the accuracy

and stability of the techniques, this forthcoming work will examine how important it is to take account

of the early exercise premium when using these options.
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Discussion of Neil Cooper’s paper:

TESTING TECHNIQUES FOR ESTIMATING IMPLIED RNDS

FROM THE PRICES OF EUROPEAN-STYLE OPTIONS

by Holger Neuhaus1

What I have to say requires fifteen minutes. I have ten. So, fasten your seat belts, we are about to take

off.

The motivation for Neil Cooper’s paper is comparably old: in 1995 when I was just finishing my

research paper I was talking a lot to Bhupi Bahra at the Bank of England and he was uncertain whether

to implement Shimko's smile approach or Melick's and Thomas' mixture of lognormals to derive

implied probability density functions. Well - you all know what the Bank eventually decided, but now

Neil Cooper tries to investigate in an objective way which of the two methods is the better one and he

does that by the following methodology:

Fig. 1 True risk-neutral density function

Neil imposes probability density distributions like the one in figure 1 – although his are fancier, of

course. He then uses this function to derive corresponding option prices which, in turn, serve as input

for the models for backing out the implied probability distribution. Eventually, the results can be

compared with the imposed distributions he started with. Moreover Neil shocks the option prices by

“half a tick size” to find out how sensitive the models are to inaccurate option prices, the inaccuracy

being caused by discrete tick-sizes.

                                                     
1 The views expressed represent exclusively the opinion of the author and do not necessarily correspond to those of the

European Central Bank.
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All in all, this is a promising approach as it is the only method that allows a comparison of the

estimates with a known probability density function. However, a relevant question is whether the

implementation of the method is close enough to reality to allow for a fair comparison of the different

approaches for backing out implied probabilities.

In this context, one observation frequently made in the real world is that one may not always have a

sufficient number of strikes and option prices to cover the whole distribution – as illustrated in

figure 2.

Fig. 2 True risk-neutral density function with missing strikes

This presentation is of course an exaggeration, but it drives home my point that if only a part of the

density function is backed out, it can be difficult to correctly allocate the missing probability mass.

When looking at the smile technique, should one, for example, extrapolate the smile or keep the

implied volatility constant at the tails?
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Some models have more problems with these errors than others do and Neil’s dataset is “too” complete

and thus leaves out an important aspect in the evaluation of different approaches chosen. As a matter

of fact, this is one issue where, as we have already discussed earlier today, the same model can yield

(slightly) different results when implemented in a (slightly) different manner.

In this context I also keep mentioning that one means for deciding on how to allocate the missing

probability mass is not to estimate the probability density function but to estimate the first derivative

of the option price with respect to the strike price, i.e. the implied (cumulative) probability

distribution. If the lowest and highest cumulative probability derived from the data are, say, 1% and

98% respectively, it can be inferred that 1% of the probability mass is missing at the lower end and 2%

at the right tail. This could, in particular, be valid for the smile technique.

Fig. 3 True risk-neutral density and cumulative distribution function with missing strikes

When comparing different approaches to recover implied probabilities, it is also important to mimic

realistically another feature of the relevant option market: the number of and distance between strike

prices. On the foreign exchange market, for example, few strike prices exist, while, say, for short-term

interest rates, some derivative exchanges provide a large number of options. The number of, and

distance between, strike prices are determined by certain rules aiming at striking a balance between

having a choice between a large number of strike prices and liquid option contracts. Looking at Neil's

paper, I have the impression that the intervals chosen between the strike prices are comparably close,

which could, in my view, favour the smile approach.

Anyway, looking at Neil’s paper more closely, in particular at the summary statistics he generated

after he had backed out the (shocked) implied probability density 100 times for each of his

scenarios/maturities, one can conclude the following. For facilitating the comparison, I categorised the
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results as g or b. G is green and good, b is brown and bad2, depending on the relative performance of

the different methods’ estimates.

Table 1: Mean of estimates

Indeed, the smile outperforms the mixture of lognormals at most occasions. However, the difference in

quality between the models is not that clear-cut. Sometimes the smile yields better results but only

marginally and the question has to be addressed: how big is big, i.e. when are results significantly

different. In this context, I would like to mention that some of the percentage mistakes presented in the

paper are misleading, in particular those where the benchmark value is close to zero. A point of greater

substance is that, as we had already discussed today, the measurement of the skewness and kurtosis by

calculating the 3rd and 4th moment is not recommendable but could be replaced by other measures.

Looking at the expected value of the smile technique, I would like to note that, even when using the

shocked option prices, the smile leads to more reliable estimates of the true distribution than the

figures provided in what Neil calls the “true” summary statistics of the imposed probability

distributions. Because of the numerical integration method used, the "true" mean is slightly different

from 100, while the smile always generates an expected value of 100. That looks very - or even too -

robust to me.

And indeed, looking at the standard deviation of the estimated summary statistics (mean, standard

deviation, skewness, and kurtosis), the smile looks very robust and fares better than the mixture of

lognormals approach.

                                                     
� In black and white copies the brown fields are the darker ones.

Table 3: Mean Estimated Summary Statistics

Smile Technique Mixture Lognormal Technique
Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month

1 100.000 100.000 100.000 100.000 1 100.168 100.045 100.031 100.053
2 100.000 100.000 100.000 100.000 2 99.995 99.853 99.843 100.001

Mean 3 100.000 100.000 100.000 100.000 Mean 3 101.954 100.419 100.033 99.982
4 100.000 100.000 100.000 100.000 4 99.833 99.652 100.707 99.885
5 100.000 100.000 100.000 100.000 5 100.003 100.011 100.002 100.000
6 100.000 100.000 100.000 100.000 6 100.204 98.804 99.930 99.859

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 1.9595 2.8787 4.9588 6.9676 1 2.6334 2.8864 4.9503 6.9544
2 2.0615 2.9891 5.0970 7.1651 2 1.9732 2.9732 5.0552 7.1094

Std Dev 3 1.9685 2.9035 5.0581 7.2073 Std Dev 3 7.4278 3.7705 5.0581 7.1893
4 5.8485 8.5588 14.5087 20.0582 4 5.8645 8.5775 15.0537 20.1169
5 5.8905 8.6778 15.0693 21.3463 5 5.8861 8.6659 15.0867 21.4762
6 5.9316 8.8035 15.5988 22.6372 6 5.9116 9.4515 15.5956 22.5237

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 -0.1848 -0.2654 -0.3915 -0.4466 1 -0.0585 -0.2709 -0.3695 -0.4148
2 0.1968 0.1898 0.2081 0.2548 2 0.0594 0.1232 0.2165 0.2408

Skewness 3 0.3132 0.4421 0.7130 0.9128 Skewness 3 0.1855 0.4236 0.6167 0.8436
4 -0.1521 -0.2076 -0.2578 -0.1960 4 0.1764 0.2543 -0.2479 -0.1381
5 0.1784 0.2692 0.4798 0.6825 5 0.1776 0.2603 0.4995 0.7504
6 0.5124 0.7505 1.2121 1.5861 6 0.1821 0.7642 1.1701 1.4949

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 3.0163 3.0363 3.0701 3.0744 1 3.0942 3.0672 3.0629 3.0668
2 3.8713 3.6523 3.4221 3.3638 2 3.0720 3.0711 3.1870 3.4901

Kurtosis 3 3.1615 3.2812 3.6934 4.1546 Kurtosis 3 2.3902 3.2004 3.5323 4.0006
4 2.9720 2.9415 2.8054 2.6707 4 3.0554 3.1175 2.7957 2.7313
5 3.0781 3.1813 3.5137 3.9345 5 3.0848 3.1811 3.7677 4.5488
6 3.3829 3.8291 5.1522 6.8006 6 3.2202 3.6502 4.9617 6.0907
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Table 2: Standard deviation of estimates

Again, the issue is: how big is big? And: why is the smile approach looking so good? One reason is, of

course, its design: option prices are translated into implied volatilities, a smooth function is calculated

that fits the smile (in delta space) and is used to back out the density function. When the prices are

shocked by small amounts, in this case by half a tick, the shocks have a small impact on the implied

volatility, which is then smoothed away by the curve fitted to the smile. The mixture of lognormals is

more sensitive with respect to these shocks as the option prices are directly used to estimate the

density function. That is why I had a look at the option prices used, by processing some of Neil’s data

with my own model. A further reason – to be honest – was that I had marvellous results as regards the

mean and standard deviation for my own model (but less promising estimates of skew and kurtosis).

The equation I used is an approximation of the first derivative of the option price with respect to the

strike, which yields the implied cumulative probability distribution at that strike (Ki), which I

approximate with a simple difference quotient, which in this audience does not require a lot of

explanation.3

                                                     
3 Cf. Holger Neuhaus (1995), The information content of derivatives for monetary policy – implied volatilities and

probabilities, Deutsche Bundesbank Economic Research Group, Discussion paper 3/95 (July 1995).

Ci, Ki and FT are the price of option i, its strike price and the value of the futures at the expiry of the option. To be
precise, the option in this equation should be either margined or C should already be adjusted for the discount factor (as is
the case here).

Table 5: Standard Deviation of Summary Statistics
Smile Technique Mixture Lognormal Technique

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.0000 0.0000 0.0000 0.0000 1 4.220623 0.258529 0.019781 0.01758
2 0.0000 0.0000 0.0000 0.0000 2 0.19266 0.925638 0.725677 0.014939

Mean 3 0.0000 0.0000 0.0000 0.0000 Mean 3 11.95599 6.227077 0.336293 0.019803
4 0.0000 0.0000 0.0000 0.0000 4 0.013332 0.03904 5.798117 2.433972
5 0.0000 0.0000 0.0000 0.0000 5 0.012113 0.01368 0.01845 0.008227
6 0.0000 0.0000 0.0000 0.0000 6 0.085873 4.29325 0.015288 0.009329

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.012303 0.010959 0.008757 0.009063 1 4.347047 0.072974 0.010168 0.010725
2 0.014392 0.013679 0.011181 0.009371 2 0.069271 0.568389 0.225205 0.012629
3 0.013898 0.012333 0.011182 0.010014 3 12.22352 7.564441 0.09944 0.011641

Std Dev 4 0.009302 0.009502 0.006178 0.006323 Std Dev 4 0.009903 0.009298 5.402745 0.501706
5 0.01037 0.008047 0.007502 0.006537 5 0.011721 0.009154 0.013471 0.027603
6 0.009686 0.007899 0.008014 0.006796 6 0.011146 2.410094 0.008808 0.008811

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.020438 0.019151 0.012986 0.008499 1 0.234815 0.166297 0.024775 0.014154
2 0.020113 0.023413 0.010409 0.006759 2 0.172144 0.234108 0.268442 0.016485

Skewness 3 0.019066 0.016583 0.010591 0.008017 Skewness 3 0.752712 0.189888 0.1975 0.012989
4 0.009557 0.006367 0.00304 0.002144 4 0.000301 0.045771 0.064426 0.25774
5 0.00911 0.006055 0.003462 0.002719 5 0.00151 0.005481 0.011528 0.016678
6 0.0102 0.006642 0.003844 0.002834 6 0.042258 0.183944 0.004942 0.003734

Scenario 2 weeks 1 month 3 month 6 month Scenario 2 weeks 1 month 3 month 6 month
1 0.017536 0.015553 0.014076 0.010039 1 1.542771 0.10017 0.053217 0.03349
2 0.064452 0.033344 0.016313 0.010056 2 0.083219 0.183497 0.082698 0.119001

Kurtosis 3 0.051657 0.029554 0.021507 0.018863 Kurtosis 3 0.966391 0.337422 0.207318 0.056505
4 0.009222 0.006492 0.003471 0.00217 4 0.00019 0.018513 0.199159 0.257488
5 0.010033 0.007826 0.00757 0.006854 5 0.023942 0.027396 0.067714 0.157168
6 0.015728 0.015041 0.014292 0.013867 6 0.027087 0.377703 0.024928 0.022667
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Even if one does not recognise the quotient (consisting of the difference between two option prices

divided by the difference in their strike prices) as a cumulative probability distribution, it is clear that

deep in-the-money options going deeper into the money by one unit will increase in value by the same

amount, i.e. the ratio should be exactly unity. Is this always the case in the paper? No: as one can see

in table 3, there are small problems with the true prices (having taken into account the discount factor)

Table 3: True prices and implied cumulative probability distribution values

in particular, have an influence on the results of the mixture of lognormals approach. However, does it

imply that this approach is indeed too sensitive? Not necessarily, as the prices used allow for arbitrage

and are thus “wrong”, albeit to a limited extent only. A way forward in the research would be to just

shock prices of options that are not deep in or out of the money.

Strike C C compounded
Probability 
distribution

71 28.94429 29.000015 1.0000
72 27.94621 28.000015 1.0000
73 26.94813 27.000015 1.0000
74 25.95006 26.000015 1.0000
75 24.95198 25.000015 1.0000
76 23.9539 24.000015 1.0000
77 22.95582 23.000015 1.0000
78 21.95774 22.000015 1.0000
79 20.95966 21.000015 1.0000
80 19.96159 20.000015 1.0000
81 18.96351 19.000015 1.0000
82 17.96543 18.000015 1.0000
83 16.96735 17.000015 1.0000005009626
84 15.96927 16.000014 1.0000
85 14.97119 15.000015 1.0000
86 13.97311 14.000014 1.0000
87 12.97504 13.000015 1.0000
88 11.97696 12.000014 1.0000005009626
89 10.97888 11.000014 1.0000001502888
90 9.980799 10.000014 0.9999999499037
91 8.98272 9.000014 1.0000001502888
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Table 4: Some shocked prices and implied cumulative probability distribution values

Shock  78 79 80 81 82
1 0.9963 0.993189 1.002543 1.011356 0.99394
2 0.999621 1.024057 1.008464 0.977107 0.993295
3 1.007501 1.004483 0.994608 1.008015 1.012959
4 0.999495 1.017243 1.005898 1.003024 0.994951
5 0.995052 0.990734 0.990985 1.001388 0.99782
6 1.010791 1.004175 0.990104 0.983198 0.992493
7 0.997608 0.984138 1.00091 1.019346 1.001663
8 1.000668 0.998463 0.984069 1.000081 1.001444
9 1.019999 0.991685 0.998495 1.014912 1.00225

10 1.011092 1.018889 0.981598 0.996102 1.011387
11 1.002029 1.01328 0.999109 0.993804 0.985691
12 1.016841 0.989879 0.990558 1.013711 1.003615
13 1.001403 0.98645 1.00682 0.994389 0.986779
14 1.004532 1.015066 0.98888 0.993103 1.015303
15 1.017755 0.984908 0.997246 0.996538 0.999667
16 1.003631 1.003485 1.002598 1.004908 0.995692
17 0.992376 0.998081 0.998523 1.004808 1.015937
18 1.00167 0.987514 1.00775 1.011708 0.989414
19 0.98171 1.0117 1.009924 0.978308 1.00168
20 0.999093 1.002282 1.01776 1.002007 1.00061
21 0.981344 0.997791 1.006633 1.002047 1.009586
22 1.013006 1.000001 0.983824 0.998456 1.02053
23 1.006047 0.985566 0.996316 1.008509 0.984099
24 0.993576 1.001908 1.003176 0.985739 0.988618
25 0.988323 1.005294 0.988197 1.00032 1.013966
26 0.993232 1.003898 1.010038 1.010592 0.998971
27 0.99807 0.990528 1.01003 1.006907 0.987676
28 1.021555 0.991778 0.981613 1.002087 1.009585
29 0.977072 1.000689 1.013373 0.996852 0.98623
30 0.996151 0.999982 0.997678 1.019486 1.003256

Strikes
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Conclusions

To summarise what I found out in the short time I had to look at the paper, I think that it is interesting

and a step in the right direction. Nevertheless, I have some food for thought:

• Is there “too much” data?

− Some models are designed to generate results with a very limited data set (strike prices) only,

some require more. The choice of model is likely to depend on the market to be monitored.

− The number of and interval between strike prices used in the comparison should reflect the

features of the market that should be monitored.

• Should the probability distribution be estimated rather than the density?

• Is the smile technique “too” stable?

• Is the mixture lognormals too sensitive as regards errors in prices?

• Data must not allow for arbitrage.

− This also holds true for “shocked” data.

− Only the prices of at-the-money options but not of far in-the-money or out-of-the-money

options should be shocked.

• How big is big?

− The size of the errors has to be put into perspective. Criteria used should involve also, for

example, computational costs in a broad sense (computer and software requirements, robustness

of the estimates).

− In particular, some percentage errors shown may be misleading.

• The use of the third and fourth moment is debatable.
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Discussion of Neil Cooper’s paper:

Testing techniques for estimating implied RNDs
from the prices of European-style options

Discussant: Jan Marc Berk

BIS, 14 June 1999

1. My contribution is structured as follows. I will start by giving a brief summary of the paper. This is

then followed by some comments, and I conclude by sketching some paths for future work on the

subject at hand.

Summary

2. The paper aims to compare two methods for calculating PDFs. Both methods are applied on both

European and American-style options. The performance of both methods is tested by means of Monte

Carlo analysis, although the current version of the paper only deals with comparing the methods

applied to European options. Innovative aspects of the paper include the variant used for calculating

volatility-smile-based PDFs, and the Monte Carlo experiment.

3. The methods used to construct PDFs for European options are the well-known mixture of lognormals

approach (MLN), as documented by, for example, Bahra (1997), and a method based on interpolation

of the volatility smile (IVS), as introduced by Shimko (1993). The paper slightly amends the Shimko

approach, as it uses cubic splines in stead of quadratic forms, and interpolates in delta space in stead

of volatility space. These amendments are in line with, for example, Malz (1997).

4.  PDFs for American-style options are the MLN variant introduced by Melick and Thomas (1997), and

the early exercise premium is taken into account within the IVS method by using the approximation of

Barone-Adesi and Whaley (1987).

5. The performance of both methods is compared in a Monte Carlo experiment, using simulated artificial

data in stead of observed prices. However, by using the stochastic volatility model of Heston (1993),

the author generates quite realistic data, whilst retaining the advantage of knowing the ‘true’ PDF.

6. The results form the Monte Carlo analysis, in the current version of the paper applied only to

European options, are that, on average, there is no clear winner between MLN and IVS. However, the

latter method provides far more stable estimates. The instability of MLN estimates are due to spikes,

and reflect estimation errors. Instability increases with volatility and skewness, and decreases with
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time to maturity. Based on these Monte Carlo analysis, the author expresses a preference of IVS over

MLN.

Comments

7. I find the paper of Neil Cooper very interesting, and as it is work in progress, I suspect it will become

even more interesting. The paper reflects my own experiences, or should I say frustations, with the

(in)stability of the MLN method. Without meaning to detract from the quality of the paper, there are

some points that, in my view, deserve some further consideration. Given the time constraint, I will

only briefly touch upon them here:

8. Whilst the application of the MLN method in the paper is fairly standard, the version of the IVS

method employed is more innovative. The paper could benefit form a more extensive discussion on

the effects of the amendments vis-à-vis the Shimko approach.

9. In a similar vein, no mention is made in the paper of possible drawbacks of the IVS method, such as

the problem of fitting the tails of the PDF (ie outside the observed range of strikes), and negative

probabilities.

10. The comparison of both methods is based on Monte Carlo analysis. Yet, given the results of Melick

and Thomas (1998), who find widely different results for simulations based on Monte Carlo and

bootstrap methods, and given the the assumptions underlying the MC-method (independent errors,

regularity conditions) vis-à-vis actual options prices, some attention to the validity of Monte Carlo as

a tool for comparison seems in order.

11. The comparison of both methods uses artificial data, so there is no distinction between exchange-

traded and otc data. Campa, Chang and Reider (1997) compare MLN and IVS methods using otc data,

and find that they yield similar results. Could or should the choice of method (MLN versus IVS) be

dependent on the type of data used?

12. The focus of the paper is primarily technical and not economic, which is understandable given its

objective. However, more attention to the economic aspects would seem in order, as it could provide

an answer to the question as to how important the instability of MLN based PDFs is. Clearly, this

answer depends on the purpose of the analysis using PDFs.

 Way to proceed

13. Based on my, admittedly limited, knowledge of the estimation and use of PDFs, there are two basic

questions which in my view remain to be answered in a convincing way. First, regarding the method

used to calculate PDFs, do we really need to impose so much structure? Second, regarding the

estimation of PDFs, do the data allow us to impose so much structure?
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14. My personal opinion on these questions is that we should use different methods for different purposes,

also taking the amount and types of data into account. As an economist, I would tend to say that

economic considerations should govern the purpose of the analysis, as well as that the results of the

analysis should be useful to economists. As an economist working in a monetary policy department, I

will go even one step further and state that the results of the analysis should be useful to policy

makers. Given the fairly technical nature of work involving PDFs, it is my own experience that

translating the results of PDF based analyses to policy messages is by no means an easy task.

15. Data considerations are also of importance in the choice of method. I already touched upon the

difference between exchange-traded and otc data and possible implications for the choice of

calculation method. Moreover, we all encounter situations when only a few data points are available,

or that only a limited subset of a larger set of prices reflect sufficient liquidity. In these situations, I

found entropy-based (Bayesian) methods for calculating PDFs useful. Moreover, the field of

maximum entropy econometrics has a firm statistical foundation, and provides a natural metric for

evaluating different methods.Finally, when not even a limited set of data on options prices is

available, it may be still possible to extract a PDF, using alternative methods (Hördahl, 1999).
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Abstract
The aim of this paper is to construct a time-varying estimator of the investors' risk
aversion function. Jackwerth (1996) and Aït-Sahalia and Lo (1998) show that there exists
a theoretical relationship between the Risk Neutral Density (RND), the Subjective Density
(SD), and the Risk Aversion Function. The RND is estimated from options prices and the
SD is estimated from underlying asset time series. Both densities are estimated on daily
French data using Hermite polynomials' expansions as suggested first by Madan and
Milne (1994). We then deduce an estimator of the Risk Aversion Function and show that
it is time varying.

Résumé
Nous construisons dans ce papier un estimateur variant avec le temps de la fonction
d'aversion au risque d'un investisseur. Jackwerth (1996) et Aït-Sahalia et Lo (1998)
montrent qu'il existe une relation théorique entre la densité neutre au risque, la densité
subjective et la fonction d'aversion au risque. On estime la densité neutre au risque à partir
des prix d'options et la densité subjective à partir d'une série chronologique du sous-jacent.
Chaque densité est estimée en données quotidiennes sur le marché français, en utilisant à
la suite de Madan et Milne (1994) des expansions en polynômes d'Hermite; on en déduit
alors un estimateur de la fonction d'aversion au risque pouvant varier dans le temps.
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1 Introduction

An important area of recent research in finance is devoted to the information content in

options prices that can be obtained in estimating implied Risk Neutral Densities (RND). Whereas this

density gives information about market-makers expectations concerning the future behaviour of the

underlying asset, it does not allow to infer anything related to investors' risk aversion. In return, there

exists a relationship between the risk neutral density, the subjective density (SD) and the risk

aversion function.

Although this theoretical relationship is well known, few works have been interested in the

topic in an empirical framework. To our knowledge, the two major studies which deal with are those

from Jackwerth (1996) and Aït-Sahalia and Lo (1998). On the one hand, they estimate the RND

from options prices and on the other hand they estimate the SD from time series of the underlying

asset. By comparing both densities, they conclude that risk aversion is time varying.

Following Jackwerth, and Aït-Sahalia and Lo, we extract both densities (RND and SD) and

show that investors' risk aversion function is time varying. The contribution of this study is twofold:

first, we investigate French dataset, and second we estimate the model at a daily frequency.

With regard to the RND, in addition to seminal work on options pricing by Black and Scholes

(1973) and Merton (1973), we may cite Breeden and Litzenberger (1978) who first found a

relationship between options prices and the risk neutral density. Nevertheless their method requires a

big range of strike prices; over the past few years, a whole literature has looked into the problem of

estimating the RND of the option's underlying asset. We may mention stochastic volatility models

such as Hull and White (1987), Chesney and Scott (1989) or Heston (1993); to the latter Bates

(1991 and 1996) adds a jump process in the asset return diffusion. Madan and Milne (1994) and

Jarrow and Rudd (1982) respectively approximate the RND by Hermite and Edgeworth expansions.

Rubinstein (1994), Dupire (1994) and Derman et Kani (1994) suggest to use implied binomial trees.

Bahra (1996), and Melick and Thomas (1997) assume lognormal mixture for the RND. Aït-Sahalia

(1998) uses kernels estimators of the RND. Lastly we refer to Campa, Chang and Reider (1997),

Jondeau and Rockinger (1998) or Coutant, Jondeau and Rockinger (1998) for a comparison of

several methods of extracting the RND from options prices on a particular event.

Section 2 first presents a brief review of the investment's theoretical foundations in an

economy with a single consumption good, second it describes the traditional Black and Scholes
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model and explains why this model is too far from reality. Section 3 describes the model that used:

Hermite polynomials approximations and shows how we estimate the risk neutral density using

options and the subjective density using underlying time series. Finally Section 4 first describes the

dataset and analyses statistical properties, second explains which optimisation’s proceeds are used to

estimate the models and third studies results on French daily

dataset. Section 5 concludes. Technical results are detailed in the Appendix.

2 Methodology

2.1 Implied risk aversion

The basic investment choice problem for an individual is to determine the optimal allocation

of his wealth among the available investment opportunities. We stand in a standard investment theory

(see Lucas (1978)). There is a single physical good S which may be allocated to consumption or

investment and all values are expressed in term of units of this good; there is a risk-free asset, i.e. an

asset whose return over the period is known with certainty. Any linear combination of these

securities which has a positive market value is called a portfolio. It is assumed that the investor

chooses at the beginning of a period the feasible portfolio allocation which maximises the expected

value of a Von Neumann-Morgenstern utility function for the end-of-period wealth. The only

restriction is the budget constraint. We denote this utility function by U(.), and by WT the terminal

value of the investor's wealth at time T. It is further assumed that U is an increasing strictly concave

function of the range of feasible values for W, and that U is twice-continuously differentiable. The

only information about the assets that is relevant to the investor's decision is the density probability

of WT.

In addition, it is assumed that:

Hypothesis 1: Markets are frictionless: there are no transactions costs nor taxes, and all securities

are perfectly divisible.

Hypothesis 2: There are no-arbitrage opportunities in the markets. All risk-free assets must have

the same return between t and T. This return will be denoted by rt (T) and is assumed to be known

and constant.
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Hypothesis 3: There are no institutional restrictions on the markets. Short-sales are allowed

without restriction.

As Aït-Sahalia and Lo (1998) write it, the equilibrium price of the risky asset St at date t with

a T-liquidating payoff Ψ (WT) is given by:

[ ]S E W Mt T t T= Ψ ( ) ,, (1)

M
U W
U Wt T

T

t
,

( )
( )

,= ′
′

(2)

under the true probability, where Mt,T is the stochastic discount factor between consumption at dates t

and T.

In equilibrium, investor optimally invests all his wealth in the risky stock for all t<T and then

consumes the terminal value of the stock at T, WT= ST.

If we notice by p(.) the subjective density (SD) of WT, we may rewrite (1) as:

[ ]

S W
U W
U W

p W dW

e W q W dW

e E W

t T
T

t
T T

r T T t
T T T

r T T t
t T

t

t

= ′
′

=

=

∞

− − ∞

− −

∫

∫

Ψ

Ψ

Ψ

( )
( )
( )

( )

( ) ( )

( )

( )( )

( )( ) *

0

0

with

q W
M

M p W dW
p WT

t T

t T T T
T( )

( )
( ),

,

= ∞∫0
(3)

is called the state-price density or risk neutral density (RND) which is the equivalent in a

continuous-time world of the Arrow-Debreu state-contingent claims in a discrete-time world2.

A way to specify the preference ordering of all choices available to the investor is the risk-

aversion function. A measure of this risk-aversion function is the absolute risk-aversion function A(.)

of Pratt and Arrow (see Pratt (1964)) given by:

A S
U S
U S

( )
( )
( )

.= − ′′
′

(4)

By the assumption that U is increasing (U’(S)>0) and strictly concave (U"(S)<0), function A(.) is

positive; such investors are called risk-averse. An alternative, but related measure of risk aversion is

the relative risk-aversion function:

                                                       
2 Recall that Arrow-Debreu contingent claims pay $1 in a given state and nothing in all other states.
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R S
U S
U S

S( )
( )

' ( )
.= − ′′
(5)

From (3), we can deduce than the ratio q/p is proportional to Mt,T and we can write:

ς θ θ( )
( )
( )

( )
' ( )

.,S
q S
p S

M
U S
U ST

T

T
t T

T

T
= = = ′′

(6)

where θ is a constant independent of the level of S.

Differentiating (6) with respect to ST leads to:

′ = ′′
′

ς θ( )
( )
( )

S
U S
U ST

T

T

and

− ′ = − ′′
′

=ς
ς

( )
( )

( )
( )

( )
S
S

U S
U S

A ST

T

T

T
T

We then may calculate A(.) as a function of p(.) and q(.) and we easily obtain an estimator of the

absolute risk-aversion function, which does not depend on the parameter θ:

A S
p S
p S

q S
q ST

T

T

T

T
( )

' ( )
( )

' ( )
( )

.= − (7)

At this stage, we need to specify a general form for the utility function and we add the

following hypothesis:

Hypothesis 4: We stand in a state in which investors have preferences characterised by Constant

Relative Risk Aversion (CRRA) utility functions (see Merton (1969, 1971)). Those functions have

the following

general form:

U S
S

if( ) ,=
−

≠
−1

1
1

λ

λ
λ  (8)

A S
S

( ) ,= λ
(9)

U S S if

A S
S

( ) ln( ),

( )
,

= =

=

  λ 1
1 (10)

where λ be a nonnegative parameter representing the level of investor's risk aversion.
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An estimation of the parameter λ will directly give us an idea on the investors' risk aversion

level. Once one has supposed a form for the utility function, he must specify a model to extract

subjective density p and risk neutral density q. In order to study investor's reactions across time, the

risk aversion is to be time-varying. So we replace all previous notations by pt, qt, At and λt where t

denotes all dates of our dataset. In the next section, first we give an example using the traditional

Black-Scholes model, second we explain why Black-Scholes model does not correspond to reality

and third we present an extension of Black-Scholes model: Hermite polynomials model which allows

for more properties of the data.

2.2 Hermite polynomials expansion vs Black-Scholes

Now, we wish to develop the method for a traditional option pricing model. We have to keep

in mind that we need to estimate subjective density pt and risk-neutral density qt at each date and then

extract parameter λ from these estimations.

A large part of the literature concerning options pricing is based on the Black and Scholes (1973)

model. Assets returns are lognormally distributed with known mean and variance. The underlying

asset St, t≤T follows a Brownian diffusion:

dS S dt S dWt t t t t t= +µ σ , (11)

where Wt is a Brownian motion under the subjective probability, µt is the rate of return of S under the

SD and σt is the volatility; both are supposed to be constant for a certain date t. Harrison and Kreps

(1979) show that when hypotheses (1) to (3) hold, there exists a unique risk neutral probability

equivalent to the subjective one, under which discounted prices of any asset are martingales. Under

this equivalent probability, the underlying asset price St is distributed as following:

dS r d S dt S dWt t t t t t t= − +( ) ,*σ (12)

where Wt
* is a standard Brownian motion under the risk neutral probability, dt denotes the implied

dividend at time t and σt is the volatility which appears to be the same than under the true probability.

In the Black-Scholes model, asset price St follows a lognormal under both probability3. Risk Neutral

                                                       
3 Applying Ito's formula to ln(St) and (11) gives us:

d S
dS
S S

dS dt dt dWt
t

t t
t tln( ) var( )= + −







 = −



 +1

2
1 1

22
2µ σ σ
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Density (RND), qt
BS(S,σt) and Subjective Density (SD), pt

BS(S,σt,µt) only differ in mean and are given

by:

( )
p t

BS ( , , ) exp
ln( ) ( )

( )
,S

T t S

S m

T tt t
t

t t

t

σ µ
σ π

µ
σ

=
−

−
−

−













1
2 2

2

2
(13)

( )
q t

BS ( , ) exp
ln( ) ( )

( )
S

T t S

S m r d

T tt
t

t t t

t

σ
σ π σ

=
−

−
− −

−













1
2 2

2

2
(14)

where

m x S x T tt t t( ) ln( ) ( ).= + −



 −1

2
2σ

By replacing (13) and (14) and under hypothesis (4) we directly obtain:

A S
r d

St
t t t

t

BS ( )
( )

.= − −µ
σ2

(15)

An estimation of parameters µt and σt allows us to estimate absolute risk aversion function when the

underlying follows (11).

Black and Scholes is based on the fundamental hypothesis that volatility is deterministic,

skewness and excess kurtosis are zero. Those hypotheses have been widely reconsidered on the last

few years, owing to the fact that option price at maturity is very sensitive to the underlying asset's

distribution specifications. Figure 2 shows typical volatility smiles for two dates, May 1995, 5th, date

that we can call agitated, and July 1996, 25th, date that we can call flat: we observed that implied

volatility at date t is constant neither in strike price neither in maturity; volatility is higher for small

strikes, which means that market makers will pay more for a call option on a smaller strike: this

feature will appear in the density with a presence of asymmetry; volatility smile for the second date is

very U-shape: we will notice a kurtosis effect in the density.

We impose another model for the underlying which allows for skewness and kurtosis.

Following Madan and Milne (1994) and Abken, Madan and Ramamurtie (1996), we adopt an

Hermite polynomials approximation for the density. Their model operates as follows.

First, we add the following hypotheses to hypotheses (1)-(4):

Hypothesis 5: The set of all contingent claims is rich enough to form a Hilbert space that is

separable and for which an orthonormal basis exists as a consequence. The markets are assumed to

be complete.
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Hypothesis 6: Abken, Madan and Ramamurtie suppose that under a reference measure, the asset

price evolves as (11), i.e. as a geometric Brownian motion. Then St can be written as:

S S T t T tzT t t t t= −



 − + −





exp ( )µ σ σ1
2

2 (16)

where z follows a N(0,1).

Madan and Milne (1994) assume than SD and RND may be written as a product of a change

of measure density and reference measure density n(z):

~ ( ) ( ) ( )p t
HER z z n zt= ν (17)

~ ( ) ( ) ( )q t
HER z z n zt= υ (18)

where ~ ( )p t
HER z  and ~ ( )q t

HER z  are respectively subjective and risk neutral densities. In our particular

case n(z) will be a Gaussian distribution of zero mean and unit variance. A basis for the Gaussian

reference space may be constructed by using Hermite polynomials which form an orthonormal

system for the Hilbert space4.

As we have carried out for the benchmark model, we wish to estimate time-varying risk aversion

function when supposing an Hermite polynomials expansion for the density; therefore, we need to

estimate both risk-neutral and subjective densities. Next section is divided in two parts. In a first

part, we give the way to estimate risk-neutral model from options prices, and in a second part we

show how to use these estimated parameters as observed data to estimate subjective model and

extract λt.

3 Models' specifications

3.1 Risk Neutral Model

To estimate implied volatilities risk neutral parameters we use options prices. A call option

(put option) is the right to buy (to sell) the option's underlying asset at some future date -the

                                                       
4 Hermite polynomial of order k is defined as follows:

φ ∂
∂

φ φ φ φk

k k

k k j k jz
k

n z
z n z

z z n z dz
if j k
if j k

( )
( )

!
( )

( )
, ( ) ( ) ( )= − < >= =

= ≠
= =



− ∞

+ ∞∫1 1 0
1

 with 
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expiration date- at a prespecified price -the striking price. This right has a price today that is a

function of the option's specifications. Since under the risk neutral probability discounted prices are

martingales, the current option's price may be written as the discounted end-of-period option's payoff

expectation. If we denote by Ce(t,S,K,T), a European call price of exercise price K and maturity T,

we have:

( )C t S K T e S K q S dSe t
r T T t

T t T T
t( , , , ) max , ( ) .( )( )= −− − ∞∫ 0

0
(19)

As CAC 40 options are American style options, we introduce the approach developed by Melick and

Thomas (1997) to price American options. They show that the option's price could be flanked by

two bounds representing minimal and maximal value of the price. This method can be applied to any

stochastic process if we know the shape of the future underlying's distribution. If we can bound the

option's price, we will be able to write it as a weighted sum of the bounds. The idea of the method

comes from the martingale's hypothesis of the underlying asset under the risk neutral probability.

Low and high bounds for an option call are given by:

[ ]C E S K r C t S K Tt
u

t T t e t= −max ( ) , ( ) ( , , , )1 (20)

[ ]C E S K r T C t S K Tt
l

t T t e t= −max ( ) , ( ) ( , , , ) , (21)

then the price Ca(t,St,K,T) of an American call can be written as:

C t S K T
w C w C if E S K

w C w C if E S K
a t

t
u

t
l

t T

t
u

t
l

t T

( , , , )
( ) ( )

( ) ( )
.=

+ − ≥
+ − <






1 1

2 2

1

1

  

  
(22)

Let C t S K Te t t t
HER ( , , , , , )*σ θ  be the price of a European call of strike K and maturity T where θt

*

denotes the vector of parameters that describes the risk neutral density. Under hypotheses(1)-(6),

C t S K Te t t t
HER ( , , , , , )*σ θ  is given by:

C t S K T e S K q z dz

C t S K T e a b

e t t t
r T T t

T t t t

e t t t
r T T t

k t k t
k

t

t

HER HER

HER

( , , , , , ) ( ) ~ ( , , )

( , , , , , )

* ( )( ) *

* ( )( )
, ,

σ θ σ θ

σ θ

= −

=

− − +∞

− −

=

+ ∞

∫

∑
0

0

(23)

where ST is given by (16) and by definition of a basis:

a S T t T t z K z n z dzk t t t t t k, exp ( )( ) ( ) ( )= − − + −




−





+

− ∞
+ ∞∫ µ σ σ φ1

2
2 (24)
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and bk,t, k=1, 2,... represent the implicit price of Hermite polynomial risk φk(z)5 which needs to be

estimated so that θt
*=(b0,t, b0,t,,...).

The derivation of expression (23) can be found in Appendix.

Replacing in (18) gives the RND of z:

~ ( , , ) ( ) ( ).*
,q z b z n zt t t k t k

k

HER σ θ φ=
=

+ ∞
∑

0
(25)

For a practical purpose, the sum is truncated up to an arbitrary order Lb. When the sum is truncated

up to an order Lb, then the density (25) may lead to some negative values for some given bk,t, k=1,

2,..Lb. Balistkaia and Zolotuhina (1988) give the positivity constraints when Lb=6 and Jondeau and

Rockinger (1999) give an ingenious way to implement positivity's constraints when Lb=4. For

simplifications reasons and since we only need moments up to the fourth order, we restrict our model

to Lb=4. Madan and Milne (1994) then show that the risk neutral density of the future underlying

asset can be written as:

q S q S Pt t t t t H
HER BS( , , ) ( , ) ( ),*σ θ σ η= (26)

where

P b
b b

b
b b b b b

H t
t t

t
t t t t t( ) ( ) ( ),

, ,
,

, , , , ,η η η η η= − + + − + − + +





0

2 4
1

3 2 4 2 3 3 4 4

2

3

24
3

6 2

6

24 6 24
(27)

η
σ

σ
=

− + − − −





−

ln( ) ln( ) ( )( )
,

S S r d T t

T t

t t t t

t

1
2

2

(28)

and q St t
BS ( , )σ  is given by (14).

One can choose to estimate bk,t, k=1,...,4 or follow Abken, Madan and Ramamurtie (1996) by

imposing b0,t=1 b1,t=0, b2,t=0 and estimate σt, b3,t and b4,t only (See Appendix for technical details on

restrictions on b0,t, b1,t b2,t and positivity constraints on b3,t and b4,t,).

We wish in the next section to estimate the subjective density, in order to compute the absolute risk

aversion function (7).

                                                       
5 The Hermite polynomials through the fourth order are:

φ φ φ

φ φ

0 1 2
2

3
3

4
4 2

1
1
2

1

1
6

3
1
24

6 3

( ) , ( ) , ( ) ( )

( ) ( ), ( ) ( )

z z z z z

z z z z z z

= = = −

= − = − +
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3.2 Subjective Model

To estimate the SD, we discretize equation (16) after applying Ito's lemma which straight

gives us:

x x ek k k k k k( ) ( ) ,+ += + −



 +1

2
1

1
2∆ ∆ ∆ ∆ ∆ ∆∆ ∆τ τ τ τ τ τµ σ τ σ τ (29)

where x Sk k∆ ∆τ τ= ln( )  and ∆τ is a time discretization step (∆τ=1/260 for daily data), k∆τ, k=1,...N,

are the dates of discretization with τ=N∆τ. For example, if data are daily, τ will equal one year. After

a change

of probability e(k+1)∆τ will have the following distribution ~ ( )p zk∆τ
HER :

~ ( ) ( )
$ $ $ $ $

, , , , ,p z n z
b b

z
b

z
b

z
b

zk
k k k k k

∆
∆ ∆ ∆ ∆ ∆

τ
τ τ τ τ τHER = + − − + +













1
3

24
3

6

6

24 6 24
4 3 4 2 3 3 4 4 (30)

The general idea of the method is that parameters σk∆τ, b3,k∆τ and b4,k∆τ are the same than those

estimated in the previous section for the date t=k∆τ because they are invariant when we switch from

risk neutral world to real world. So we can consider them as observed variables. The only parameter

to estimate is the drift µk∆τ; to allow this latter to vary across time, we can write it as:

µ α α µ βτ τ τ( ) ( ) ,k k ke+ += + +1 0 1 1 1∆ ∆ ∆ (31)

where α0, α1 and β1 are to be estimated.

Once we have estimated µk∆τ, the subjective density p Sk∆τ θHER ( , ) , where θ denotes the vector of

parameters to be estimated, that is α0, α1 and β1, of Sk∆τ is known and is given by:

p S p S
b b b b b

k k k k
k k k k k

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆ ∆

τ τ τ τ
τ τ τ τ τθ σ µ η η η ηHER BS( , ) ( , $ , )

$ $ $ $ $
,, , , , ,= + − − + +













1
3

24
3

6

6

24 6 24
4 3 4 2 3 3 4 4

where η is given by

η
µ σ τ

σ τ

τ τ τ

τ
=

− + −





ln( ) ln( ) ( $ )

$
,

S S k k k

k

∆ ∆ ∆

∆

∆

∆

1
2

2

and p Sk k k∆ ∆ ∆τ τ τσ µBS ( , $ , )  is given by (13).

The risk aversion function for Hermite polynomials model is then given by:
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A S
p S
p S

q S
q S St

t

t

t

t

tHER
HER

HER

HER

HER
( )

( )
( )

( )
( )

.=
′

−
′

= λ
(32)

Analytic form of those functions are given in Appendix.

4 Results

4.1 Data description

We consider the case of the CAC 40 index6 and short time-to-maturity CAC 40 options7.

The whole database has been provided by the SBF-Bourse de Paris (Société des Banques

Françaises) which produces monthly CD-ROMs including tick-by-tick quotations of the CAC 40

caught every 30 seconds, and all equities options prices quoted on the MONEP tick-by-tick. The

database includes time quotation, maturity, strike price, closing and settlement quotes for all calls

and puts and volume from January 1995 through June 1997. Short maturity CAC 40 options prices

need to be adjusted for dividends. Aït-Sahalia and Lo (1998a) suggest to extract an implied forward

underlying asset Ft using the call-put parity on the at-the-money option which requires that the

following equation holds:

C P e F Kr T T t
t

t
atm atm atm− = −− −( )( ) ( ) (33)

where Catm, Patm and Katm respectively denote the price of the call, the price of the put and the strike at-

the-money. Once we have obtained Ft, we may deduce the implied dividend dt(T) at time t for a

maturity T using the arbitrage relation between Ft and St

F e St
r T d T T t

t
t t= − −( ( ) ( ))( ) (34)

Since CAC 40 options data contains many misspriced prices, once needs to filter the data

very carefully. First following Aït-Sahalia and Lo (1998a), we drop options with price less than 1/8.

                                                       
6 CAC 40 index leans on the major shares of Paris Stock Market. It is constructed from 40 shares quoted on
the monthly settlement market and selected in accordance with several requirements (capitalization,
liquidity,...). CAC 40 is computed by taking the arithmetical\ average of assets quotations which compose it,
weighted by their capitalization.
7 CAC 40 options are traded on the MONEP (Marché des Options Négociables de Paris). They are american
type and there are four expiration dates for each date: 3 months running and a quarterly maturity among
March, June, September or December. Two consecutives strike prices are separated by a standard interval of
25 basis points.
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Second, for our study, we kept the most liquid maturity which usually appears to be the closest to 30

days yield-to-maturity.

Table 1 shows summary statistics of the CAC 40 index return historical distribution. Negative

skewness and positive excess kurtosis show nonnormality of historical distribution, implying a

leptokurtic and skewed distribution. Statistic W used by Jarque and Bera (1980) to construct a

normality test allows to reject normality at 95%.

The Ljung-Box (1978) statistic LB(20) to test heteroskedasticity rejects the homoskedasticity

for the square returns. The Ljung-Box (1978) statistic LB(20) corrected for heteroskedasticity

computed with 20 lags allows to detect autocorrelation returns. Diebold (1988) suggests a Ljung-

Box statistic corrected for heteroskedasticity LBc. We notice that autocorrelation of squared returns

is significantly higher than autocorrelation of returns, which implies than large changes tend to be

followed by large changes, of either sign.

Table 1: Descriptive statistics of the CAC 40 daily index return for the period from January 1995 to June

1997. Table 1 shows several statistics describing returns series: mean, standard deviation, skewness and

excess kurtosis. LB(20) is the Ljung-Box statistic to test heteroskedasticity. ρ(h) is the autocorrelation of order

h. LBc(20) is the Ljung-Box statistic corrected for heteroskedasticity for the nullity test of the 20 first

autocorrelations of returns. Under nullity hypothesis, this statistic is distributed as χ2(2) with 20 degrees of

freedom. W is the Jarque and Bera (1980) statistic that allows to test for normality8.

                                                       
8Jarque and Bera's statistic is based on empirical skewness, sk and kurtosis kt given by:

sk
N

x
s

kt
N

x
s

t

t

N
t

t

N
= − = −

= =
∑ ∑1 13

3
1

4

4
1

( ) ( )µ µ
 et 

where µ  and s  represent respectively the empirical mean and empirical standard deviation.
We note by t1 and t2 the following statistics:

t N
sk

t N
kt

1

2

2

2

6
3

24
= = −

,
( )

. 

Under the nul hypothesis of normality, the Jarque and Bera’s statistic W t t= +1
2

2
2  asymptotically follows a

χ2(2).
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xt xt
2

Number of observations 650 650

Mean 0.60 10-3 0.99 10-4

Standard Deviation 1.00 10-2 0.16 10-3

Skewness -0.163 3.913

Excess kurtosis 0.928 21.205

LB(20) 26.740 49.166

ρ(1) -0.010 0.010

ρ(5) -0.081 -0.031

ρ(10) -0.033 0.092

ρ(20) -0.022 0.070

LBc(20) 26.692 25.182

W 26.178 13836.563

4.2 Estimations' procedures

A non-linear least squares method is implemented to estimate risk neutral parameters. At

each date t, the non-linear least squared estimator (NLLSE) { }$ , , , ,*
, , , ,β σNLLSE t t t t tb b w w= 3 4 1 2  is

obtained so that it minimises the distance between observed and theoretical implied volatilities

computed with Hermite polynomials' model ( σi
BS for observed ones and σi

HER for theoretical ones):

( )β
β

σ σ βNLLSE i i
i

mc*

* *

*arg min ( ) ,=
∈

−
=
∑

Θ
BS HER 2

1
(35)

where mc denotes the number of observed call options at date t, ( )Θ * , ,[ , ],[ , ]= +R D 0 1 0 1  where D is

the domain of (b3,t, b4,t) for which (25) remains positive for all z (see figure 3).

Subjective model (29)-(31) is estimated by maximum likelihood method. The log-likelihood

function L of x=(x1,...,xN∆τ)’ is given by:

L x L xk k
k

N
( ; ) ( )β τ τ=

=
∑ ∆ ∆

1
(36)
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where Lk∆τ is the log-likelihood function of xk∆τ.
The maximum likelihood estimator (MLE) { }$ , ,β α α βMLE = 0 1 1  is obtained so that it

maximises the following optimisation problem9:

[ ]$ arg max ( ; ) ,β
β

βMLE L x=
∈Θ

(37)

where ( )Θ * , ,= R R R .

To find the implied coefficient of risk aversion λt, one can solve:

λ
λ

λ
t

t r

t r

t r

t r rr

M

R

p S
p S

q S
q S S

=
∈

′
−

′
−













+ =

∑arg min
( )
( )

( )
( )

,
HER

HER

HER

HER
1

(38)

where M is a constant and Sr, r=1,...,M is a range of points around the underlying at date t, St.

4.3 Empirical results

In this section, we analyse empirical results.

In figure (4a)-(4b), we show two estimated risk neutral densities for the dates May 1995, 5th

with maturity of 56 days and July 1996, 25th with maturity 36 days. The first one corresponds to a so

called agitated date during French Presidential Elections and the second corresponds to a quiet date.

We notice that asymmetry is higher for the first one. The daily time series for the estimates of the

parameters in a risk neutral world are shown in figure (5a)-(6b).

We notice that implied volatilities given by Hermite polynomials' model in figure (5a) appear

to be larger than those obtained from Black and Scholes model in figure (5b) which seems to imply

that Black-Scholes volatilities are undervalued. The different picks at the beginning of the period

may come from the fact that CAC 40 options are much less liquid during 1995 than 1996. We turn to

market prices of skewness b3 in figure (6a); this latter is significantly different from zero during the

whole period. Parameter b3 gives some information about the skewness of the distribution when

parameter b4 gives information about the excess kurtosis which is significantly positive. The

skewness appears to be negative along almost all the period which indicates that investors anticipate

a decrease more often than an increase in the underlying index. We notice four agitated sub-periods.

The first one corresponds to French presidential elections of May 1995. The second one and the

                                                       
9 Estimations have been done with the software GAUSS using Optmum routine.
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third one respectively in May 1996 and February 1997 are not as so clear and may be due to

perturbation in U.S. market. The latest is the French snap elections of May 1997.

During these period, market seems to be agitated which can be seen in the kurtosis. It gives

an idea about extreme events.

Figure 7 shows Mean Square Errors (MSE) of parameters10. All MSE appear to be less than

8 10-2, that is quite satisfying and confirms the choice of the method. Other properties of the method

is that it is computationally fast and it may take into account possible dirty data. Empirical results of

these properties can be found in Coutant, Jondeau and Rockinger (1998).

In order to show the consistence of the model, we show in table 2 estimated parameters of

the model under the true probability when parameters are supposed to be constant. Volatility

parameter is higher than average volatility estimated in a risk neutral world. Parameter b4 is

significantly different from zero which is not the case of b3.

In table 3, estimation of model (29)-(30) is presented. All parameters appear to be significant

and the daily time series of estimated drift µk∆τ, k=1,...,N from (31) with values of table 3 is given by

figure 8.

Table 2: Estimation of the model (29)-(30) when parameters (µt,σt,b3,t,b4,t)= (µ,σ,b3,b4) are supposed to be

constant:

µ σ b3 b4

BS 0.192

(1.898)

0.161

(29.684)

Hermite 0.186

(1.708)

0.159

(29.247)

-0.003

(-0.191)

0.177

(3.199)

                                                       
10MSE at date t is calculated as follow:

( )MSE BS HER
t

c
i i t

i

m

m m

c

=
−

−
=
∑1 2

1β
σ σ β( $ ) ,*

with the notations used in (35), mβ is the number of parameters to estimate and $ *β t  is the vector of

estimated parameters at date t.
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Table 3: Estimation of the time varying drift µt in (31):

α0 α1 β1

-0.113

(-3.163)

0.481

(2.177)

0.296

(5.067)

Figure (8) shows Absolute Risk Aversion functions for several days. First date is 28 February 1995

and CAC 40 moderately rose during this month: implied risk aversion coefficient λt=4.999 is rather

high. Second date is 28 April 1995, the index improved since mid-March and λt =1.051. The date 15

July 1996, sees a short drop of the CAC 40, λt =11.404 is very high. Finally last date takes place on

13 November 1996, during a significant growth of the underlying and λt =3.103. We may conclude

from these observations that investor's risk aversion substantially depends on the index's evolution.

When CAC 40 goes up, investors have a moderate risk aversion, even they are nearly risk neutral for

13 November 1996.

Figure (9) represents the risk aversion level obtained with (38).

5 Conclusion

In this paper, we have empirically investigated investors' risk aversion coefficient implied in

options prices. We showed that this latter could be estimated by the knowledge of a combination of

information under risk neutral and subjective probabilities.

We have focused on CAC 40 index options, and we have supposed CRRA utility functions

and an Hermite polynomial expansion for risk neutral and subjective densities. This model has the

advantage to give directly the skewness and the kurtosis in addition to numerical properties. We first

estimated Hermite polynomials' model under a risk neutral probability using options prices, and

second injected risk-neutral parameters obtained in an equivalent discretized model under a

subjective probability. We then used time series of the CAC 40 index to estimate the subjective

density. A relation between densities and their derivatives allowed us to compute all absolute risk

aversion functions on the period from 1995 to 1996. Risk aversion function appeared to be time

varying and investors' risk aversion is very sensitive to the way underlying asset evolutes. Risk
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Aversion coefficient is a good tool to test market-makers reactions to particular events or

announcements.

Some future studies could turn on comparing results from several investor's preferences

choices and another kind of risk, so that volatility risk for example. In a future research, we will

focus on modelling the risk aversion coefficient in order to forecast the true density.
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Appendix

Compute derivatives p St
HER ′

( )  and q St
HER ′

( ) :

q t
HER ′ =

−
− −

−




















( )
( )

exp
ln( ) ~ ( )

*

S
T t S

S m

T t
P

t

t

t
H

1
2

1
22

2

σ π σ
η

~ ( )
( ) ( ) ln( ) ( )*

P
P

S
P

S T t

S m

T t

Q

S T t
H

H H

t

t

t

H

t

η η η
σ σ

η
σ

= − −
−

−
−

+
−

m S r d T tt t t t t
* ln( ) ( ),= + − −



 −1

2
2σ

where PH(.) is given by (27), ηis given by (28) and

Q
b b

H
t t( ) ( ) ( )., ,η η η η= − + + −

3

6
1

4

24
33 2 3 3

To obtain p t
HER′

( )S  just replace mt
* by:

m S T tt t t t= + −



 −ln( ) ( )µ σ1

2
2

European call in the Hermite polynomials basis:

The price of a European call is given by (19)

C t S K T e S K q z dz

e S r d T t T tz K q z dz

e S r d T t T tz K

e t t t
r T T t

T t t t

r T T t
t t t t t t t t

r T T t
t t t t t

t

t

t

HER HER

HER

( , , , , , ) ( ) ~ ( , , )

exp ( )( ) ~ ( , , )

exp ( )( )

* ( )( ) *

( )( ) *

( )( )

σ θ σ θ

σ σ σ θ

σ σ

= −

= − − − + −




−





= − − − + −




−



− − +
− ∞
+ ∞

− −
+

− ∞
+ ∞

− −

∫

∫ 1
2

1
2

2

2 


+

− ∞
+ ∞∫ υ θt tz n z dz( , ) ( ) .*
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All functions can be expressed in terms of the basis so that:

S r d T t T t z K a zt t t t t k t k
k

exp ( )( ) ( ),− − − + −




−





=
=

+ ∞
∑1

2
2

0
σ σ φ

υ θ φt t j t j
j

z b z( , ) ( )*
,=

=

+ ∞
∑

0

then

C t S K T e a z b z n z dz

e a b z z n z dz

e a b

e t t t
r T T t

k t k
k

j t j
j

r T T t

k
k t j t

j
k j

r T T t
k t k t

k

t

t

t

HER ( , , , , , ) ( ) ( ) ( )

( ) ( ) ( )

* ( )( )
, ,

( )( )
, ,

( )( )
, ,

σ θ φ φ

φ φ

=

=

=

− −

=

+ ∞

=

+ ∞

− ∞
+ ∞

− −

=

+ ∞

=

+ ∞

− ∞
+ ∞

− −

=

+ ∞

∑ ∑∫

∑ ∑ ∫

∑

0 0

0 0

0

Parameters ak,t:

Coefficients ak,t for the call price are given by:

a a k S x t
u S x t

u k
k t k

u
, ( , , , , , )

( , , , , )

!
= =

=
0

0

0

1µ σ ∂ µ
∂

Φ
(39)

Φ ( , , , , , ) exp( ) ( ( )) ( ( ))u S x t S t t z N d u xN d u0 0 1 2µ σ µ σ= + − (40)

Explicitly ak,t are given as follows:
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( )
( ) ( )

d
T t

F T t d d T t

a F N d KN d

a T t F N d F n d Kn d

a T t F N d T t F n d F n d Kn d

a T t F N d T t F n d T t F n d

t

t t

t t t

t t t t

t t t t
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1
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
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σ

σ σ

σ σ σ
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2

1
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4 6

4

) ( ) ( ) ,

( ) ( ) ' ( )

( ) ( ) ( )
,

( ) ( )

+ ′′ − ′′





=
− + − + − ′

+ − ′′ + −













F n d Kn d

a
T t F N d T t F n d T t F n d

T t F n d F n d Kn d

t

t
t t t

t t

σ σ σ

σ

where n(.) and N(.) are the normal and cumulative normal densities.

Restrictions on parameters in Hermite’s model:

Let η be:

η
σ

σ
=

− + − − −





−

ln( ) ln( ) ( )( )
,

S S r d T t

T t

T t t t t

t

1
2

2

the risk neutral distribution of η is:

~ ( ) ( ) ( ),q z n z P zt H
HER =

where PH(z) is given by (27) and n(z) is the Gaussian distribution with mean 0 and variance 1.

~ ( )q zt
HER  must satisfy:

~ ( ) ,.q z dzt
HER

− ∞
+ ∞∫ = 1

which implies that
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b
b
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z
b

z
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b
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b

t
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6 2

6

24 6 24
1

2

3

24 2

6

24
3

24
1

1

− + + − + − + +





 =

− + + − +





=

=

− ∞
+ ∞∫
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for all t.

We also want to impose that the future underlying asset's expectation equals the current future price,

that is:

E S S e Et T t
r d T t

t
t t( ) ( ) ,( )( )= ⇔ =− − η 0

zq z dzt
~ ( ) ,HER

− ∞
+ ∞∫ = 0

which gives the restriction for parameter b1,t:

zn z b
b b

b
b

z
b b

z
b

z
b

z dz

b
b b

b

t
t t

t
t t t t t

t
t t

t

( ) ( ) ( ) ,
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,
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, , , , ,
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2 4

1
3 2 4 2 3 3 4 4
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3 3

1

2

3
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0

0
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




 =

− +





=

=

− ∞
+ ∞∫

for all t.

Finally, third restriction comes from variance which is imposed to be the same under the transformed

measure than under the reference measure:

z q z dzt
2 1~ ( ) ,HER

− ∞
+ ∞∫ =

z n z b
b b
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z
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b

z
b

z dz

b
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t
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2

6

24
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,

− + + − + − + +





 =

− + + − +





=

=

− ∞
+ ∞∫

for all t.

Positivity's constraints on parameters b3,t and b4,t:

Let γ1 and γ2 be the skewness and excess kurtosis respectively. A straight calculus leads to:

γ1
3

36= =− ∞
+ ∞∫ z q z dz bt

~ ( ) ,HER (41)

γ2
4

43 24= − =− ∞
+ ∞∫ z q z dz bt

~ ( ) .HER (42)
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Then (25) can be rewritten in terms of γ1 and γ2:

~ ( , , ) ( ) ( ) ( ) ,*q z n z H z H zt t t
HER σ θ γ γ= + +





1
6 24
1

3
2

4

where H z j zj j( ) ! ( )= φ  is the non standardised Hermite polynomial of order j.

Density (25) remains positive when

P z H z H zH ( ) ( ) ( ) .= + + ≥1
6 24

01
3

2
4

γ γ

Jondeau and Rockinger (1999) explain that this is the case if a couple (γ1,γ2) lies within the envelope

generated by the hyperplane PH(z)=0, with z R∈ . This envelope is given by the system

P z

P z

H

H

( ) ,

( ) ,

=
′ =







0

0

with

P z H z H zH
′ = +( ) ( ) ( ).

γ γ1
2

2
36 24

They find that solving the problem gives explicitly γ1 and γ2 as a function of z:
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After some demanding calculus, Jondeau and Rockinger (1999) find numerically and analytically that

the authorised domain for γ1 and γ2 is a steady, continuous and concave curve. The domain for b3 and

b4 is given by figure 3.
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Captions

Figure 1a: Daily CAC 40 index over the period January 1995 to July 1997.

Figure 1b: Daily CAC 40 index returns over the period January 1995 to July 1997.

Figure 2a: CAC 40 volatility smile for the date 05/05/1995 and the maturity 56 days.

Figure 2b: CAC 40 volatility smile for the date 25/07/1996 and the maturity 36 days.

Figure 3: Domain authorised by the skewness and the kurtosis for positivity constraint of an Hermite

polynomials' density

Figure 4a: Risk neutral density for the CAC 40 computed with Hermite polynomials for the date

05/05/1995 and the maturity 56 days.

Figure 4b: Risk neutral density for the CAC 40 computed with Hermite polynomials for the date

25/07/1996 and the maturity 36 days.

Figure 5a: Estimation of parameter σt in Hermite's model under the risk neutral probability.

Figure 5b: Estimation of implied Black's volatilities under the risk neutral probability.

Figure 6a: Estimation of parameter b3,t in Hermite's model under the risk neutral probability.

Figure 6b: Estimation of parameter b4,t in Hermite's model under the risk neutral probability.

Figure 7: Mean Squares Errors for the estimation of risk neutral parameters in Hermite's model.

Figure 8: Graphs of implied absolute risk aversion functions for the dates 28/02/1995, 28/04/1995,

15/07/1996 and 13/11/1996.

Figure 9: Implied risk aversion's coefficients for the period January 1995 to July 1997.
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Discussion of the paper by Sophie Coutant, Banque de France:

Implied Risk Aversion in Options Prices

Discussant: Robert Bliss

• Starting point is equation (7) .
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• Some simply assume investors are risk neutral:
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• There is considerable evidence that investors are NOT risk neutral.

• If we can estimate SD (from past data), we can learn about risk aversion function ).( TSA
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• Sums of Hermite polynomials are general approximating functions.

• Paper truncates sum at 4th order

• Is 4th order precise enough? (No discussion here or in Abken et al.)
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• Because Abken et al. do (to match RND and SD mean and variance).

• What is motivation? Abken et al. do not explain.
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• Given ),( and )( T
Hermite

T
Hermite SqSp tλ  is estimated w/ least squares.

• Given ),( and )( T
Hermite

T
Hermite SqSp  why impose a functional form on ?)( TSA

• Just compute ).( TSA

• Or let data suggest appropriate functional form.

(To test CRRA assumption)

Conclusion

• Paper addresses a difficult but important problem.

• Critical for using RDNs to assess SDs and market expectations

• Approach is imaginative.

• Methodology used makes numerous strong, structural assumptions.

• Restricts possible solution space to particular parsimonious function.

• If structural assumptions are correct, answers are useful.

• If structural assumptions are wrong, what do we have?

• Recommendations

• Provide empirical support for structural assumptions.

• Or better yet, use methodology to study ).( TSA



Des J McManus
“The information content of interest rate futures options”

Discussants:

James M Mahoney

Roberto Violi





The Information Content
of Interest Rate Futures Options*

Des J. Mc Manus

Research and Risk Management

Financial Markets Department

Bank of Canada, Ottawa, Ontario, Canada

Abstract

Option prices are being increasingly employed to extract market expectations and views
about monetary policy. In this paper, Eurodollar options are monitored to examine the evolution of
market sentiment over the possible future values of Eurodollar rates. Risk-neutral probability
functions are employed to synopsize the information contained in the prices of Eurodollar futures
options. Several common methods of estimating risk-neutral probability density functions are
examined. A method based on a mixture of lognormals density is found to rank first and a method
based on a Hermite polynomial approximation is found to rank second. Several standard summary
statistics are also examined, namely volatility, skewness and kurtosis. The volatility measure is
fairly robust across methods, while the skewness and kurtosis measure are model-sensitive. As a
concrete example, the days surrounding the September 1998 Federal Market Open Committee are
examined.

*The author would like to thank David Watt, Paul Gilbert, Toni Gravelle, Peter Thurlow, and Mark Zelmer
for their helpful comments. Special thanks goes to Michael Rockinger for data that enabled computer code testing.
The views expressed in this paper are those of the author and should not be attributed to the Bank of Canada.

Bank of Canada Banque du Canada





1

Introduction and overview

Timely information is crucial to central banks for formulating and implementing monetary policy. There are of

course many sources of information. Macroeconomic data releases, regional industry visits and surveys, and

financial market data are all examples of sources that central Banks use. This paper focusses on the latter

source—in particular, the derivative markets sector of financial markets, which has gained prominence as a

source of information.

Derivative markets have the desirable property of being forward-looking in nature and thus are a useful

source of information for gauging market sentiment about future values of financial assets. Indeed, several

studies have used option prices to extract market expectations and views about monetary policy [Bahra (1996),

Söderlind and Svensson (1997), Söderlind (1997), Butler and Davies (1998), and Levin, Mc Manus, and Watt

(1998)]. In particular, Bahra noted that option prices may prove to be useful to monetary authorities as

valuable sources to (i) assess monetary conditions, (ii) assess monetary credibility, (iii) assess the timing and

effectiveness of monetary operations, and (iv) identify market anomalies.

In this paper, eurodollar futures options are monitored to examine the evolution of market sentiment

over the possible future values of eurodollar rates. The key tool used to synopsize the information contained in

the prices of eurodollar futures options is the risk-neutral probability density function (PDF). Risk-neutral

PDFs provide the probabilities attached by a risk-neutral agent to particular outcomes for future values of

eurodollar rates. In addition, changes in the shape and location of the risk-neutral PDF can point to changes in

the tone of the market.

Many methods exist to extract risk-neutral PDFs from option prices. This paper compares several

common methods of estimating risk-neutral PDFs with the aim of determining which method most accurately

prices observed market options. Encouragingly, the mixture of lognormals method ranked first—this method

is now used at the Bank for examining the information content of foreign exchange futures options.1 However,

the mixture of lognormal method can occasionally run into problems. When it does, an alternative method

called the Hermite polynomial method is more appropriate. The Hermite method ranked second and yielded

similar results to the mixture of lognormal method.

Several standard summary statistics can be derived from the risk-neutral PDFs, namely volatility,

skewness, and kurtosis. Invariably, these statistics are always quoted in conjunction with the risk-neutral PDF

estimates.

A second objective of the paper is to ascertain the robustness and usefulness of these statistics. The

volatility measure was found to be fairly robust across the different risk-neutral PDFs. However, the estimates

of skewness and kurtosis were found to be model-dependent. The skewness measure for the exchange rate is

1. Foreign exchange futures options are examined to monitor the evolution of the markets’ sentiment over future Canadian
dollar exchange rates.
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now quoted weekly at the Bank. The results of this paper show that further research needs to be conducted on

an appropriate measure of market sentiment asymmetry.

As a concrete example, the days surrounding the September 1998 Federal Open Market Committee

(FOMC) meeting are examined using the risk-neutral PDF methodology. Risk-neutral PDFs are used to

monitor the response of market sentiment over the future levels of the eurodollar rates to the 29 September

FOMC statement. The risk-neutral PDFs indicated an increase in market uncertainty prior to the 29 September

meeting date, a lessening of uncertainty on the meeting date, and a renewed increase in uncertainty the day

after the meeting. The risk-neutral PDFs clearly suggest a bearish market sentiment for the eurodollar rate,

both prior to and after the FOMC meeting. Thus, some market participants expected the Fed easing and also

anticipated further rate cuts would follow before mid-December 1998.

This paper is organized as follows: Section 1 reviews exchange-traded interest rate futures and interest

rate futures options. Section 2 presents the general theory behind the pricing of interest rate futures options.

Section 3 gives an overview of several of the common methods that are used to extract risk-neutral PDFs.

(Those readers not interested in the technical details of the various option-pricing models may wish to skip

section 3.) Section 4 describes the data. Section 5 compares the risk-neutral PDFs from the various estimation

methods. Section 6 presents a study of the September 1998 FOMC meeting, focusing on the response of the

risk-neutral PDF to the meeting. Section 7 concludes the paper and discusses possible further work.

The work in the present paper closely follows the work and methodologies of Jondeau and Rockinger

(1998), and Coutant, Jondeau, and Rockinger (1998).

1. The instruments

The primary focus of this paper is exchange-traded interest rate futures and interest rate futures options. In the

United States and Canada, the main exchanges for interest rate products are the Chicago Merchantile

Exchange (CME) and the Montreal Exchange (ME). The CME lists a host of contracts on short-term U.S. and

foreign securities. For example, both futures and futures options are listed for 3-month eurodollars, 1-month

LIBOR, 13-week Treasury bills, euroyen and eurocanada. On the other hand, the ME lists relatively few

interest rate futures, namely, 1-month Canadian bankers’ acceptance futures (BAR), 3-month Canadian

bankers’ acceptance futures (BAX), 5-year Government of Canada bond futures (CGF), and 10-year

Government of Canada bond futures (CGB). Futures options are listed for the 3-month Canadian bankers’

acceptance futures (OBX) and the 10-year Government of Canada bond futures (OGB). Options are also listed

for a small selection of Government of Canada bonds.

According to the CME, the eurodollar futures (ED) are “the most liquid exchange-traded contracts in

the world when measured in terms of open interest” (Chicago Mercantile Exchange 1999). For example, a

snapshot of the futures market on 15 January 1999 reveals that the March 99 ED contract had a trading volume

of 76,109 and an open interest of 465,398. The eurodollar futures options (ZE) on this contract, March 99 ZE,
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had a combined trading volume of 27,939 and a combined open interest of 748,664. The numbers for the

eurocanada futures contract pale in comparison; on 14 January 1999 the March 99 futures contract had zero

trading volume and an open interest of only 190.

Statistics from the ME reveal that the BAX contract is the most actively traded contract at that

exchange. The average daily volume and open interest for all BAX contracts for 1998 was 27,104 and

171,354, respectively. In comparison, the OBX futures options had an average daily volume and open interest

of 840 and 15,505, respectively. The OBX volume and open interest are minuscule compared with the figures

for the ZE contracts, especially considering the fact that the OBX data is aggregated across all maturity dates

trading while the ZE data refers to a single maturity date. Thus, for the remainder of the paper, only CME

futures and futures option data will be used.

ED contracts are listed for the quarterly cycle of March, June, September, and December, and also for

the two nearest serial (non-quarterly) months. ED futures contracts are traded using a price index. The futures

interest rate is calculated by subtracting the futures price from 100. For example, a ED price of 95.80

corresponds to a futures interest rate of 4.20 per cent. Thus if investors expect short-term interest rates to

decline (increase), they would go long (short) the futures contract. ED contracts have a contract size of U.S.$1

million. They also feature a minimum allowable price move or tick size of 0.01, with the single exception of

when a futures contract is in its expiration month, in which case the minimum tick size is reduced to 0.005. A

tick value of 0.01 corresponds to a value of U.S.$25 ( Contract size ¥ Tick Value ¥ Maturity of the underlying

futures contract = 1,000,000 ¥ 0.01/100 ¥ 3/12). Futures contracts cease trading at 11:00 am London time on

the second London business day prior to the third Wednesday of the contract month.

The ZE contract cycle, maturity date, and minimum tick size are the same as those of the underlying

ED contract. The ZE contract size is simply one futures contract. Eurodollar futures options consist of

American-style2 call and put3 options written on the underlying ED futures contract. A 3-month ED futures

call option gives the holder the right but not the obligation to buy a 3-month ED futures contract. Now,

investors who expect U.S. short-term interest rates to decline would also be expecting the price of the futures

contract to increase. Thus, they might be inclined to purchase a 3-month ED futures call option to speculate on

their belief. Hence, an exchange-listed interest rate futures call option is equivalent to a put option on the

futures interest rate because of the inverse relationship between prices and interest rates, and the fact that

exchange-listed interest rate futures options are quoted in units of price rather than percentage interest rates.

2. An American option allows the holder to exercise the option on any date up to and including the maturity date—the maturity
date is also referred to as the expiration date or the exercise date. European options only allow exercise on the expiration
date. American options are always more expensive than European options with the same characteristics because of the added
feature of early exercise. In general, the early exercise feature of American options makes these options more difficult to
price than European options.

3. A call option gives the holder the right but not the obligation to buy the underlying asset at a predetermined strike price. A
put option gives the holder the right but not the obligation to sell the asset at the strike price.
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For notational convenience, exchange-listed call (put) options that are quoted in units of price are

converted to put (call) options that have units of interest rate, that is, to percentage interest rates.

2. General theory

The valuation of interest rate futures options is best illustrated by first considering the pricing of European-

style options. Let  denote the futures interest rate at timet—recall , where  is the

listed futures price at timet. LetX andT denote the strike price and the time to maturity of the option,

respectively. Note that the strike price of a call option on the futures interest rate is equal to 100 minus the

listed strike price of an interest rate futures put option. First, note that on their maturity dates the price of a call

and put option will be

 . (1)

Prior to maturity, European options are priced by taking the expectation of the discounted future cash

flows. In this case, the future cash flows are the possible payouts of the options at maturity; see equation (1).

The cash flows are discounted using the future values of the instantaneous risk-free rate. Thus, the value of

European call and put options prior to maturity are given by the following formulae, respectively:

 , (2)

where represents the risk-neutral expectation, as opposed to the true or actual expectation, and refers

to the continuously compounded instantaneous interest rate. To simplify matters, the instantaneous rate is

taken to be a fixed risk-free interest rate . Strictly speaking, this assumption is incorrect, however it is

common practice among market participants and academics alike.

Thus, the value of the European call and put options can then be expressed as:

 . (3)

r̃ t( ) r̃ t( ) 100 p̃ t( )–= p̃ t( )

C̃ T X,( ) = max 0 r̃ t( ) X–{ , } r̃ t( ) X–( )+≡

P̃ T X,( ) = max 0 X r̃ t( )–,{ } X r̃ t( )–( )+≡

C 0 X,( ) = E0 exp r̃ i τ( ) τd
0

T

∫–
 
 
 

C̃ T X,( )

P 0 X,( ) = E0 exp r̃ i τ( ) τd
0

T

∫–
 
 
 

P̃ T X,( )

E0
r̃ i τ( )

r f

C 0 X,( ) = exp r f T–{ } E0 r̃ T( ) X–( )+[

P 0 X,( ) = exp r f T–{ } E0 X r̃ T( )–( )+[ ]
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2.1 American-style interest rate futures options

Exchange- traded interest rate futures options are typically American-style options. Thus, the above pricing

formulae for European-style options needs to be adjusted to account for the possibility of early exercise.

Explicit formulae for American-style options are generally not available. However, Melick and Thomas

(1997), Leahy and Thomas (1996), and Söderlind (1997) have shown that the following bounds can be placed

on the prices of American-style currency futures options:

. (4)

American-style options can then be priced as a weighted average of the upper and lower bounds, namely:

 wherei =1,2 and . (5)

Following Melick and Thomas (1997), the weights applied will depend on whether the particular option is in-

the-money4 or out-of-the-money. That is, by convention,i = 1 for in-the-money call or put options, andi = 2

for out-of-the-money call or put options.

2.2 General methodology

The formulae for the prices of European options, (3), can be written explicitly in terms of the risk-neutral PDF,

, as follows:

 . (6)

The risk-neutral PDF for the interest rate, , provides the probabilities attached by a risk-neutral agent

today (that is, timet = 0) to particular outcomes for future interest rates5 that could prevail on the maturity date

of the option contract.

Various methodologies have been proposed to obtain the risk-neutral PDF from observed futures

option prices.6 The techniques used in this paper—a full discussion follows later—all allow the risk-neutral

4. A European interest rate call (put) option is in-the-money if the futures interest rate is above (below) the strike interest rate,
out-of-the-money if the futures interest rate is below (above) the strike interest rate, and at-the-money if the futures interest
rate equals the strike interest rate.

5. In the context of this paper, the future interest rate refers to the 3-month eurodollar rate.

CA 0 X,( ) E0 max 0 r̃ T( ) X–,{ }[ ]=

CA 0 X,( ) max E0 r̃ T( )[ ] X r f T–( )E0 max 0 r̃ T( ) X–,{ }[ ]exp,–{ }=

PA 0 X,( ) E0 max 0 X r̃ T( )–,{ }[ ]=

PA 0 X,( ) max X E0 r̃ T( )[ ] r f T–( )E0 max 0 X r̃ T( )–,{ }[ ]exp,–{ }=

Cθ 0 X,( ) ωi C
A

0 X,( ) 1 ωi–( ) CA 0 X,( )+=

Pθ 0 X,( ) ωi P
A

0 X,( ) 1 ωi–( ) PA 0 X,( )+=
0 ωi 1≤ ≤

q r̃ T( )[ ]

C 0 X,( ) r f T–{ } r̃ T( ) X–{ }
X

∞
∫ q r̃ T( )[ ] r̃ T( )dexp=

P 0 X,( ) r f T–{ } X r̃ T( )–{ }
0

X

∫ q r̃ T( )[ ] r̃ T( )dexp=

q r̃ T( )[ ]
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PDF to be expressed in a parametric form. Thus, it is helpful to introduce the following notation: letθ denote

the parametric vector for the risk-neutral PDF—of course the makeup of this vector will vary depending on

the technique being used. Now, let , and  be the theoretical call and put futures option

prices with exercise priceX [the theoretical prices are calculated from equation (5) with the aid of equations

(4) and (6)]. Also, let  and  be the observed call and put futures option prices with exercise price

X. Finally, let the theoretical interest rate futures price derived from the option-pricing model under risk-

neutral density, , be given by (= ), and let the observed interest rate futures price

be given by .

The parameters of the risk-neutral PDFs,θ, are estimated by minimizing the squared pricing errors

associated with the call futures option prices, the put futures options prices, and the interest rate futures price.

The minimization problem is:

(7)

where the number of call and put options are allowed to differ.

3. Overview of some specific techniques

As mentioned earlier, many techniques exist to extract risk-neutral PDFs from option prices. In this section,

the theory behind some of the more common techniques is reviewed. In general, the techniques considered in

this paper fall, with one exception, into two broad categories: a stochastic process for the evolution of the

short-term interest rate is specified, or a parametric form for the risk-neutral PDF over the interest rate on the

maturity date of the option is specified. The former category contains Black’s model and a jump-diffusion

model. The latter category contains methods based on a mixture of lognormal density functions and a Hermite

polynomial expansion. The single exception is the method of maximum entropy.

3.1 Black’s model

Black’s model (1976) is the baseline model for pricing futures options. The model is very similar to the

Black–Scholes model (1973). The futures interest rate, , is assumed to follow a lognormal process

(8)

6. There are four main methods of extracting risk-neutral PDFs from option prices: (i) specify a generalized stochastic process
for the price of the underlying asset, (ii) specify a parametric form for the risk-neutral PDF, (iii) smooth the implied volatility
function, and (iv) use non-parametric techniques. For a broad review of these techniques see Levin, Mc Manus, and Watt
(1998).

Cθ 0 X,( ) Pθ 0 X,( )

C X( ) P X( )

q r̃ T( )[ ] Fθ 0 T,( ) E0 r̃ T( )[ ]
F 0 T,( )

min
θ

C Xi( ) Cθ 0 Xi,( )–[ ]2

i 1=

n

∑ P Xj( ) Pθ 0 X j,( )–[ ]2

j 1=

m

∑ F 0 T,( ) Fθ 0 T,( )–[ ]2
+ +

r̃ t( )
dr̃ t( ) σ r̃ t( ) dW t( )=
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where  is the volatility of the futures interest rate, and  is a Wiener process, that isW(t) is a geometric

Brownian motion process in a risk-neutral world. For such a process, the risk-neutral PDF is a lognormal

density:

, (9)

whereF(0,T) is the interest rate futures rate. Furthermore, in Black’s model the theoretical prices of European

call and put futures options are given by

(10)

, (11)

where

 and (12)

andN(x) represents the standardized cumulative normal probability distribution function evaluated atx.

At this point, it is worthwhile giving an example of how interest rate futures options are priced using

Black’s model. Consider the March 1999 ED futures and futures options listed on the CME on January 29,

1999. The March 1999 three-month ED futures contract had a listed settlement price of 95.04. The ZE call

contract with strike price 95.00 had a settlement price of 0.060 and the ZE put contract with the same strike

price had a settlement price of 0.020. The other inputs required for Black’s model are the time-to-maturity of

the contracts, the risk-free rate, and the instantaneous volatility. There are 45 days until the expiration of the

contracts on March 15. Thus, the time to maturity isT = 0.125 (= 45/360). The risk-free rate is 4.97 per cent,

which was calculated as weighted average of 30-day and 60-day eurodollar spot rates. The volatility is 6.02

per cent. First, convert the futures price and the strike price to interest rates. ThusF(0,T) = 4.96 per cent (

=100 – 95.04) andX = 5.00 per cent (= 100 – 95.00). Recall that a price call is equivalent to an interest rate

put. Hence, the listed call can be priced by using equation (11) to yield a theoretical price of 0.065. The listed

put can be priced using equation (10) to yield a theoretical price of 0.025. The theoretical prices are fairly

close to the listed prices. Note that the discrepancies in the theoretical and listed price increase as the strike

price moves away from the futures price. Table 1 compares the listed and theoretical option prices for a few

different strike prices.

σ dW

q r̃ T( )[ ] 1

2π σ T r̃ T( )
--------------------------------------- 1

2
---–

F 0 T,( ) r̃ T( )⁄( ) 1
2
---σ2

T–log

σ T
-------------------------------------------------------------------

 
 
 
 

2

 
 
 
 
 

exp=

Cθ 0 X,( ) r f T–{ }exp F 0 T,( )N d1( ) XN d2( )–[ ]=

Pθ 0 X,( ) r f T–{ }exp XN d2–( ) F 0 T,( )N d– 1( )–[ ]=

d1
F 0 T,( ) X⁄{ }log

σ T
-----------------------------------------

1
2
---σ T+= d2 d1 σ T–=
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3.2 Mixture of lognormals

A popular choice for the risk-neutral PDF is that of a weighted sum of independent lognormal density

functions, which is referred to as a mixture of lognormals. Levin, Mc Manus, and Watt (1998) used this

technique to extract the Canada–U.S. exchange rate from Canadian dollar futures options listed on the CME.

The mixture of lognormal distributions is a flexible way to deal with departures from the assumptions

underlying Black’s model without having to specify a stochastic process for the evolution of the futures rate.

As well, the mixture of lognormals has the advantage of retaining Black’s model as a special subcase. The

number of lognormals is usually dictated by the data constraints. Two lognormals are chosen for the present

study.

The risk-neutral PDF with a weighted mixture of two lognormal distributions is given by

, (13)

where  and

, for i = 1,2.

Black’s model is given by the special case ,  and .

The theoretical European call and put prices for the mixture of lognormals are

Table 1: Listed and theoretical prices of eurodollar futures options

Strike
CME call

price
CME put

price
Theoretical
call price

Theoreticalput
price

94.875 0.170 0.005 0.167 0.003

95.000 0.060 0.020 0.065 0.025

95.125 0.020 0.105 0.012 0.097

The option contracts refer to March 1999 3-month eurodollar futures
options. The CME prices are settle prices for these options for
29 January 1999. The settlement price for 3-month eurodollar futures
contract on that date is 95.04. The theoretical prices are calculated using
Black’s model with a risk-free interest rate of 4.97 per cent and a volatil-
ity of 6.2 per cent.

q r̃ T( )[ ] φ1q1 r T( )[ ] 1 φ1–( )q2 r̃ T( )[ ]+=

0 φ1 1≤<

qi r̃ T( )[ ] 1

2πσi r̃ T( )
------------------------------- 1

2
---–

r̃ T( )( ) µi–log

σi
-----------------------------------

 
 
 2

 
 
 

exp=

φ1 1= µ1 F 0 T,( ) 1
2
---σ2

T–log= σ1 σ T=
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(14)

where

. (15)

The theoretical futures price is given by

 . (16)

3.3 Jump diffusion

Black’s model can be extended to account for asymmetries by adding a jump-diffusion process to Black’s

basic model. Thus,  is assumed to follow a lognormal jump-diffusion process. The evolution is

characterized by two components, a lognormal process and a Poisson jump process,

, (17)

where  is a Poisson counter on the time interval (0,t),  is the average rate of occurrence of the jumps,

andk is the jump size. In other words, the probability that one jump occurs within the time intervaldt is

 and the probability that no jumps occur is . For

simplicity, k is assumed to be constant. In general k is stochastic.

Bates (1991) showed that a European call could be priced as

, (18)

where

.

Cθ 0 X,( ) = φ1 exp µ1
1
2
---σ1

2
+ 

  N d1( ) XN d2( )–
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2
---σ2

2
+ 
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2
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2
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  N d1–( )– XN d– 2( )+
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1
2
---σ2

2
+ 

  N d3–( )– XN d– 4( )+

d1
1

σ1
------ µ1 σ1

2
X( )log–+[ ]= , d2 d1 σ1–=

d3
1

σ2
------ µ2 σ2

2
X( )log–+[ ]= , d4 d3 σ2–=

Fθ 0 T,( ) φ1exp µ1
1
2
---σ1

2
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  1 φ1–( )exp µ2
1
2
---σ2

2
+ 

 +=

r̃ T( )

dr̃ t( ) µ λE k[ ]–( ) r̃ t( ) dt σ ω r̃ t( ) dW t( ) kr̃ t( )dq0 t,+ +=

dq0 t, λ
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C 0 X,( ) exp r f T–{ } Prob n jumps
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E0 r̃ T( ) X–( )+ n jumps
occur

n 0=

∞

∑=

Prob n jumps
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λT( )n

n!
-------------- e

λT–
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A similar formula exists for European puts. For simplicity, assume that at most one jump can occur

over the lifetime of the option [see Malz (1996, 1997)]. Ball and Torous (1983, 1985) call this the Bernoulli

version of the model. The price of a European call then becomes

(19)

where

. (20)

The price of a European call then becomes

(21)

Furthermore, the theoretical futures price is . Note that the future interest rates

conditional on no jump occurring and one jump occurring are

. (22)

Thus, the option-pricing formulae consist of a weighted sum of Black’s option-pricing formulae where the

weights are given by the probability of no jumps occurring and one jump occurring over the lifetime of the

option. The option-pricing formulae are very similar to the formula for the mixture of lognormals. Indeed, the

jump diffusion is a subcase of the mixture of lognormals PDF. The jump-diffusion PDF is given by equation

(13) with , , , and

.

Cθ 0 X,( ) = exp r f T–{ } Prob no jumps
occur

E0 r̃ T( ) X–( )+ no jumps
occur

exp r f T–{ } Prob 1 jump
occurs

E0 r̃ T( ) X–( )+ 1 jump
occurs

+

= 1 λ T–( ) exp r f T–{ } F 0 T,( )
1 λkT+
------------------- N d1( ) XN d2( )–
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1 λkT+
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d1
1

σω T
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------------------- 
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2
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------------------- 1 k+( ) 
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2
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2
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1 λkT+
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=

F 0 T,( )
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=
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2
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σ1 σω T σ2= =



11

3.4 Hermite polynomial approximation

Asymmetries in the option data can also be modelled by adding perturbations to Black’s baseline model. The

Hermite polynomial approximation is a scheme to add perturbations such that successive perturbations are

orthogonal. A Hermite polynomial expansion around the baseline lognormal solution is analogous to

performing a Fourier expansion. Each additional term in the Hermite polynomial expansion is related to

higher moments of the distribution. The general idea is that the Hermite polynomials act as a basis for the set

of risk-neutral PDFs. In other words, the risk-neutral PDF can be approximated by a linear summation of

Hermite polynomials—the more polynomials the better the approximation; in theory, an infinite series of

polynomials gives an almost perfect fit. The technique was developed by Madan and Milne (1994) and later

employed to price eurodollar futures options by Abken, Madan, and Ramamurtie (1996).

As a starting point, consider the following lognormal diffusion process:

, (23)

which can be solved to yield

, (24)

wherez is distributed as standard normal, that is . The Hermite polynomial adjustments are

constructed with respect to the normalized variable

. (25)

The risk-neutral PDF forz is denoted byQ(z) and can be written as

, (26)

where n(z) is the reference PDF and  captures departures from the reference PDF. The reference PDF is

taken as the standardized unit normal PDF, . The departures from normality are

captured by an infinite summation of Hermite polynomials, that is:

, (27)

where are constants and

(28)

dr̃ t( ) µ r̃ t( ) dt σ r̃ t( ) dW t( )+=

r̃ t( ) F 0 T,( )exp µ 1
2
---σ2

– 
  T σ Tz+=

z N(0,1)∼

z
r̃ T( ) F 0 T,( )⁄[ ]log µ 1

2
---σ2

– 
  T–

σ T
---------------------------------------------------------------------------------=

Q z( ) λ z( )n z( )=

λ z( )
n z( ) exp z

2
– 2⁄[ ] 2π⁄=

λ z( ) bkφk z( )
k 0=

∞

∑=

bk

φk z( ) 1–( )k

k!
------------- 1

n z( )
---------- d

k
n z( )

dz
k

----------------
1–

k
------

dφk 1– z( )
dz

----------------------- 1

k
------ zφk 1– z( )+==
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are an orthogonal system of standardized Hermite polynomials.7

The price of any contingent claim payoffg(z) is given by

, (29)

where . Now, European call and put options have the contingent claim payoffs,

respectively

. (30)

Thus, European call and put prices can be written as

, (31)

where  and . Madan and Milne (1994) show that

, (32)

where the generating function  is given by

, (33)

7. The first four standardized Hermite polynomials are , , ,

 and . Higher-order Hermite polynomials can be easily

calculated using the recurrence relationship . The polynomials are orthogonal because

 equals one if  and zero otherwise.
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2
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and that

. (34)

For empirical work, the Hermite polynomial expansion must be truncated at a finite order inz. Two

approximations are considered in this paper, a fourth-order and a sixth-order approximation. First consider the

sixth-order approximation. The risk-neutral PDF for the sixth-order Hermite approximation is given by:

. (35)

Under the reference measure,z is normally distributed with a mean of 0 and a variance of 1. Under the

measureQ(z), z has mean  and variance . Furthermore,

. Thus, the restriction  must be imposed to insure that the PDFQ integrates to unity.

The following restrictions on  and ,  and  are imposed to insure thatz to have mean

zero and unit variance with respect to the probability densityQ(z). Hence, under the above restrictions the

risk-neutral PDF forz is

(36)

and the risk-neutral PDF for is

. (37)

Finally, the futures price is given by

 . (38)

The fourth-order approximation is simply given by setting  and  in the above

equations.
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3.5 Method of maximum entropy

The concept of entropy originated in the world of classical thermodynamics as a measure of the state of

disorder of a system. Shannon (1948) later introduced the idea to information theory, where entropy was taken

as a measure of missing information. Jaynes (1957, 1982) extended the idea to the field of statistical

interference using the principle of maximum entropy (PME). Buchen and Kelly (1996) applied the PME to

estimating risk-neutral PDFs from option prices. This estimate “will be the least prejudiced estimate,

compatible with the given price information in the sense that it will be maximally noncommittal with respect

to missing or unknown information.”

The PME is a Bayesian method of statistical inference that only uses the price information given and

makes no parametric assumptions about the form of the risk-neutral PDF. The method starts with a definition

of the entropy of a distributionq:

, (39)

which is maximized subject to the constraints

, (40)

where  is the market price of the contingent claim whose payoff at timeT is given by . The risk-

neutral PDF is then given by:

. (41)

Now suppose that the contingent claims consist of European call and put options. Estimating the

parameters is simplified if only one type of contingent claim is used. Thus, convert the put options

to call options using put–call parity. Hence, a futures put option with strike priceX and observed priceP is

converted to a futures call option with the same strike price and observed price

S q( ) q x( ) q x( )[ ]log xd
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∞
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∞

∫
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. For notational convenience, order the resulting set of call options in

terms of increasing strike prices, that is, .

The futures contract is also considered to be a call option with strike price  and an observed

price of . Thus, the constraints for the futures contract and the futures call options

can be written as

. (42)

Coutent, Jondeau, and Rockinger (1998) show that the risk-neutral PDF can be written as:

(43)

where  for  with  and  for  with . The

normalization constant is given by

. (44)

Furthermore, the theoretical European call price for strike price  is given by  where

(45)

[see Coutent, Jondeau, and Rockinger (1998) for details].

The risk-neutral PDF is characterized by the parameters , which are estimated by minimizing

the squared call pricing errors; see equation (7). The convergence of the estimation process is enhanced by

picking initial values for the parameters that are reasonable. Coutent, Jondeau, and Rockinger (1998) suggest

choosing parameters so that the risk-neutral PDF, (43), is approximately equal to Black’s risk-neutral PDF,

(9).8
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4. Data

The data consist of end-of-the-day settlement prices for American-style eurodollar futures options and

eurodollar futures that are traded on the CME, and covers 23 September 1998 to 30 September 1998,

inclusively. The dates were chosen to include the Federal Open Market Committee (FOMC) meeting on

29 September 1998. The data also consists of 60- and 90-day spot eurodollar rates. The risk-free rate was

constructed by linearly interpolating between these rates and then converting the result to a continuously

compounded rate.

The average daily trading volume of the ED futures and the Dec98 ED futures options over the period

23–30 September 1998 was 110,217 and 74,030 contracts, respectively. The average number of Dec98 ED

futures options traded was 16. These contracts had a wide range of strike prices, typically from 4.0 per cent to

6.5 per cent (see Table 2 for details).

5. Comparing the models

The various methods outlined in section 3 are compared in this section. First, the models are compared

according to their pricing errors—the pricing error is the difference between the theoretical option price and

the observed option price. Second, the models are compared using several summary statistics, notably the

mean, annualized volatility, skewness, and kurtosis (see the Appendix for further discussion on these

quantities). Third, the models are compared by examining the risk-neutral PDFs. This comparison is both

graphical and analytic—the analytic analysis consists of comparing the cumulative distribution functions for

the various PDFs.

5.1 Metrics for comparison

As mentioned above, the models are compared by examining the pricing errors associated with each model.

The pricing error, which is the basic building block, is the difference between the theoretical option price and

the observed option price. Thus, the pricing errors for call and put futures options are  and

, respectively. These raw pricing errors are illustrated in Figures 1 through 6 [hollow bullets

(o) indicate pricing errors for call options and asterisks (*) indicate pricing errors for put options]. Strike

prices are marked along the horizontal axis. Black’s model clearly gives the highest pricing errors. The

method of maximum entropy appears to give the lowest pricing errors. The mixture of lognormals and the

Hermite polynomial approximations yield similar pricing errors. Not surprisingly, the mixture of lognormals

8. The initial values of the parameterss  can be estimated as follows. First, generate a data set of interest rates, {x},

and the corresponding Black’s risk-neutral PDF, {qB(x)}. Next, estimate the parameters  for the regression

. The initial values are then according to the algorithm used for equation (43).

ai{ }m
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m

∑ ε+ + +=
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method has smaller pricing errors than the jump-diffusion method, and the sixth-order Hermite polynomial

approximation has smaller pricing errors than the fourth-order Hermite approximation. The mixture of

lognormals and both the Hermite methods tend to have similar pricing errors.

An alternative to looking at the raw pricing errors is to combine the pricing errors into a single quantity

that measures the accuracy of fit. Several measures of accuracy of fit exist in the literature. However, only two

measures will be considered in this paper: the mean squared error (MSE) and the mean squared percentage

pricing error (MSPE). The choice of measures is motivated by the fact that the loss function (7) is quadratic in

the pricing errors. The MSE and the MSPE are calculated as follows:

(46)

wheren andmare the number of observed call and put prices, andk is the number of independent parameters

for the risk-neutral PDF being used, . The MSE places more weight on larger errors than smaller

errors. The MSPE is dimensionless, and thus facilitates comparison across both different methods and

different data sets.

Neither the MSE nor the MSPE measures point to a single method that always ranks first. However,

averaging the measures over the sample period yields a clear ranking. Both the MSE and the MSPE measures

rank the mixture of lognormal method first, the sixth-order Hermite polynomial approximation a close second,

and the fourth-order Hermite approximation third (see Table 3). The results may of course be dependent on the

ranking scheme employed. However, the other ranking schemes that were considered ranked the mixture of

lognormals method first and either one of the Hermite approximations or the method of maximum entropy

second. Finally, the results may be dependent on the sample. Only further testing with more diverse data sets

will resolve this issue.

5.2 Summary statistics

The models can also be compared according to summary statistics that are calculated with respect to the

logarithm of the futures rate. The standard statistics examined are the mean, annualized volatility, skewness,

and kurtosis (see the Appendix for a more in-depth explanation). For any given day, the means calculated from

each model are practically identical. This result is not too surprising, given that the PDFs are risk-neutral.

The evolution of volatility over the event period follows a fairly consistent pattern. All methods have

volatility increasing from 23 September to 24 September, decreasing from 28 September to 29 September, and

increasing again from 29 September to 30 September (see Figure 7 and Tables 4a to 9a). The level of volatility

from 24 September to 28 September varies across models. On average, the mixture of lognormals yields the
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1
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∑+

k # θ{ }=



18

highest estimates of volatility and Black’s model yields the lowest estimates. Also, the jump model tends to

yield higher volatilities than the sixth-order Hermite approximation, the sixth-order Hermite approximation

tends to yield higher volatilities than the fourth-order Hermite approximation, and the fourth-order Hermite

approximation tends to yield higher volatilities than the method of maximum entropy.

The skewness estimates vary widely across the models (see Figure 7), although all models have

negative skewness for each day of the study period. However, no consistent pattern exists for the day-to-day

evolution of skewness across methods. For example, from 25 September to 28 September, the mixture of

lognormals method measure of skewness becomes more negative while both the Hermite approximations

becomes less negative. Likewise, the kurtosis estimates vary dramatically across models. All the models do,

however, yield kurtosis numbers greater than 3, indicating fat-tailed (leptokurtotic) distributions.

In summary, the lower moments of the distribution, namely the mean and the volatility, tend to be

consistent across models. But the discrepancies between the distributions tend to be exaggerated when higher

moments are considered. The skewness and kurtosis measures appear to be very model-dependent, and thus

are probably not reliable as indicators of market sentiment.

5.3 The shape of things to come

The risk-neutral PDFs implied by the various models for 23 September to 30 September are illustrated in

Figures 1 through 6. The PDFs for the mixture of lognormals method, the jump-diffusion method, and the

Hermite polynomial-approximation methods are invariably bimodal. The higher peak is situated almost

directly above the futures rate, and in most cases a much lower second peak is situated above a eurodollar rate

that is roughly 100 basis points lower than the futures rate (see Figures 1through 6). However, most of the

mixture of lognormal risk-neutral PDFs have no lower peak. Instead, they have heavy left tails, indicating

negative skewness. The Black risk-neutral PDF is always unimodal. The method of maximum entropy risk-

neutral PDF is extremely spiky for all the dates considered. The method of maximum entropy estimates one

parameter for every strike price, and thus tends to overfit when there is a large number of strike prices, which

is the case in this study. Furthermore, the method of maximum entropy PDFs appear choppy because the first

derivative of the PDF is discontinuous at the strike prices.

The cumulative distribution functions (CDFs) are helpful in comparing models. The CDFs are more

easily interpreted than the PDFs, since they give the probabilities that the futures rate will be less than a given

rate on the maturity date of the futures contract. (Analytic expressions for the CDFs for the various models are

in the Appendix.) A selection of the probabilities can be found in Tables 4b through 9b. The CDFs are plotted

in Figures 8a through 8d. Black’s model consistently underestimates the probabilities in the left tail of the

distribution compared with the other models. Not surprisingly, the method of maximum entropy CDF is very

different from the other CDFs. The CDFs for the mixture of lognormals method, and the fourth- and sixth-

order Hermite polynomial approximation are very close to each other, as can seen both from Tables 4b, 5b, 6b,

7b, 8b, and 9b and from Figure 8d. (For clarity, the aforementioned CDFs are only plotted in Figure 8d).
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5.4 General comments on estimation procedures

The method of maximum entropy tends to overfit. This is directly related to the small number of degrees of

freedom. Furthermore, the estimation procedure was the slowest to converge. The mixture of lognormals

method can also be slow to converge, especially if the true risk-neutral PDF is close to being lognormal. The

problem is that there is not a unique set of parameter values that gives a lognormal distribution. Likewise, the

jump-diffusion method is plagued by the same problem. The jump-diffusion method works well when there is

a reasonable likelihood of a jump occurring. However, as with the mixture of lognormals method, the jump-

diffusion method has degenerate parameterizations for lognormal distributions. The Hermite polynomial-

approximation methods are quick to converge and do not admit degenerate parameterizations. The Hermite

method always converges; the fourth-order approximation converges faster than the sixth-order

approximation. The only drawback with the Hermite polynomial-approximation methods is that the

estimation of the risk-neutral PDF can occasionally yield negative probability values. These negative

probability values can occur because the Hermite method employed is an approximation method that involves

truncating an infinite series.

Overall, the mixture of lognormals method and the sixth-order Hermite polynomial-approximation

method are probably the best methods to use for extracting risk-neutral PDFs from interest rate option prices.

Coutant, Jondeau, and Rockinger (1998) favoured the fourth-order Hermite polynomial-approximation

method in their comparison of various methods using French data.

Finally, given the variability of the skewness estimates across methods and the relative consistency of

the CDFs, a more accurate measure of skewness could probably be constructed by comparing the tails of the

PDFs as opposed to using the third central moment of the distribution. Such a measure exists in the literature:

relative intensity [see Campa, Chang, and Reider (1997)] compares the likelihood of large upward movements

in the eurodollar rate to large downward movements.

6. The event

As mentioned earlier, the dates of the study were chosen to coincide with the FOMC meeting on 29 September

1998. The FOMC is a 12-member committee, consisting of the seven members of the Board of Governors of

the Federal Reserve System, the president of the Federal Reserve Bank of New York, and four of the

presidents of the other 11 Reserve Banks; the latter positions rotate yearly.

The FOMC meets eight times a year and has primary responsibility for conducting monetary policy.

The committee decides on the desired level of the federal funds rate. Press releases are often posted

immediately after meetings, especially if the Fed’s stance on monetary policy has changed. For example, the

press release following the 29 September 1998 meeting started: “The Federal Open Market Committee

decided today to ease the stance of monetary policy slightly, expecting the federal funds rate to decline 1/4

percentage point to around 5 1/4 per cent.” This reduction was the first of a series of reductions in the Fed fund
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target rate in 1998. Two later reductions of 25 basis points each occurred on 15 October 1998 and

17 November 1998.

The annualized volatility numbers generally increased over the first half of the period—based on the

results of the previous section, the analysis of the present section uses the risk-neutral PDF from the mixture

of lognormals method—starting off at 17.82 per cent on 23 September, rising to a high of 19.20 per cent on

28 September, falling to a low of 15.24 per cent on 29 September, and finally starting upwards again on

30 September to 16.92 per cent. Thus, uncertainty, as measured by annualized volatility, initially increased,

and peaked the day prior to the FOMC meeting. Uncertainty reduced on the day of the meeting but started to

increase again the following day.

The probability of the ED futures rate being below 5.00 per cent on 14 December 1998 rose from 33

per cent to 38 per cent over the period. In addition, the probability of the ED futures rate being below 5.25 per

cent rose from 63 per cent to 75 per cent. Furthermore, the skewness numbers remained negative over the

entire period, indicating a bearish market tone. Interestingly, skewness became even more negative the day

after the Fed easing, indicating that a further Fed easing was expected by some market participants. These

findings are consistent with the general market views of the time. Anecdotal evidence suggests that, while

market participants anticipated an easing at the 29 September FOMC meeting, some were disappointed by the

size of the move (25 basis points) and immediately priced in a further rate reduction by the November

meeting.

7. Conclusion

The information content of exchange-traded eurodollar futures options were examined in this paper. Several

techniques for extracting risk-neutral PDFs from ED futures option prices were compared. The mixture of

lognormals method ranked first, with both the lowest MSE and MSPE. However, this method is occasionally

slow to converge due to degeneracies in the parameter space. Typically, the lack of convergence occurs when

the risk-neutral PDF appears to be close to a single lognormal distribution. In this case, the alternative sixth-

order Hermite polynomial-approximation method yields better results. The Hermite method is quick to

converge and gives comparable results to the mixture of lognormals method. However, the method

occasionally yields PDFs that have negative probabilities—these negative probabilities are an artifact of the

approximation method and are not too worrisome, since they tend to occur near the tails of the distribution.

The higher central moments of the risk-neutral PDFs, namely skewness and kurtosis, are unstable

across estimation techniques and thus are probably not overly informative as measures of asymmetry in

market sentiment. In contrast, the CDF was found to be stable across the three methods that yielded the lowest

MSPEs, namely the mixture of lognormals and the two Hermite polynomial-approximation methods. Thus,

measures of skewness based on the CDF are probably more appropriate. One candidate is relative intensity,
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which compares the likelihood of large upward movements in the ED rate to the likelihood of large downward

movements.

Risk-neutral PDFs are useful tools for monitoring market sentiment, as was indicated by the analysis

of the 29 September 1998 FOMC meeting. Various methods were used to extract risk-neutral PDFs from ED

futures options over the period around the FOMC meeting in order to examine the evolution of market

sentiment over the future values of ED rates. Uncertainty grew in the market prior to the meeting and abated

on the day of the meeting, only to increase again the following day. Market participants remained bearish on

future ED rates both prior to and after the Fed easing, indicating that some of them expected further rate cuts.

Information extracted from option prices can be used to monitor market sentiment. However, the best

way to present this information is still up for debate. In particular, work needs to be done on appropriate

measures of asymmetry and the predictive power of these measures.
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Table 2: Federal Open Market Committee meeting, September 1998

September
1998

60-day
euro-
dollar
rate

90-day
euro-
dollar
rate

Risk-free
rate

Euro-
dollar
futures

rate

Trading
volume
of euro-
dollar
futures

Number
of

different
option

contracts

Trading
volume of

euro-
dollar
futures
options

Wednesday 23 5.5313 5.5000 5.3620 5.115 101,026 16 79,626

Thursday 24 5.5000 5.4688 5.3333 5.035 121,205 18 74,215

Friday 25 5.3907 5.3594 5.2306 5.040 124,453 15 96,714

Monday 28 5.3594 5.3282 5.2039 5.060 78,949 15 84,918

Tuesday 29 5.3438 5.3750 5.2217 5.110 142,304 14 50,615

Wednesday 30 5.3594 5.4063 5.2430 5.050 93,363 18 58,089

Note: The day of Federal Open Market Committee meeting is highlighted.
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Table 3: Eurodollar futures options:
Pricing errors for call and put futures options, September 1998

Measure Model 23 Sept.
24

Sept.
25

Sept.
28

Sept.
29

Sept.
30

Sept. Average Ranking

Mean
squared

error

( )

Black 10.610 8.066 9.771 8.626 7.000 9.230 8.884 6

MLN a

a. Mixture of lognormals

0.777 0.558 0.987 0.863 0.796 1.108 0.848 1

Jump 1.482 0.604 0.930 0.928 1.983 1.735 1.277 4

Hermite (4) 0.857 0.591 1.193 1.046 0.945 1.099 0.955 3

Hermite (6) 0.779 0.608 1.093 0.892 0.667 1.181 0.870 2

Maximum
entropy

2.763 2.974 0.945 0.720 0.609 2.588 1.767 5

Mean
squared

per-
centage
pricing
error

( )

Black 7.458 12.754 16.310 18.210 9.302 18.798 13.805 5

MLN 0.292 0.151 0.201 3.401 0.179 2.735 1.160 1

Jump 7.071 0.121 0.209 6.914 1.357 5.054 3.454 4

Hermite (4) 0.249 0.378 2.221 4.808 0.098 2.731 1.748 3

Hermite (6) 0.896 0.563 0.538 1.887 0.114 3.506 1.251 2

Maximum
entropy

60.805 40.399 4.005 3.146 0.560 38.907 24.637 6

See Section 5.1 for further details.

10
5–×

10
2–×
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Table 4a: Eurodollar futures options, 23 September 1998

23 September Mean Volatility Skewness Kurtosis

Black 1.629 15.85 0 3

MLN a

a. Mixture of lognormals

1.629 17.82 –0.956 5.877

Jump 1.629 17.52 –1.133 5.254

Hermite (4) 1.629 17.66 –0.866 5.438

Hermite (6) 1.629 17.26 –0.719 3.774

Maximum entropy 1.627 16.55 –1.170 5.341

Table 4b: Eurodollar futures options, 23 September 1998
Probabilities for the eurodollar rate on 14 December 1998

23 September
4.50 4.75 5.00 5.25 5.50 5.75

Black 0.05 0.17 0.40 0.65 0.84 0.94

MLN a

a.  Mixture of lognormals

0.08 0.14 0.32 0.63 0.87 0.96

Jump 0.07 0.14 0.33 0.62 0.85 0.96

Hermite (4) 0.08 0.13 0.33 0.63 0.86 0.96

Hermite (6) 0.10 0.14 0.32 0.63 0.87 0.96

Maximum entropy 0.10 0.14 0.30 0.70 0.83 0.99

The probabilities are the risk-neutral probabilities that the market assigns on the given date for the
eurodollar rate on 14 December 1998 to be less than the statedR value. See the Appendix for
details.

Prob r̃ T( ) R≤[ ]
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Table 5a: Eurodollar futures options, 24 September 1998

24 September 1998 Mean Volatility Skewness Kurtosis

Black 1.613 16.97 0 3

MLN a

a. Mixture of lognormals

1.613 18.35 –0.808 3.987

Jump 1.613 18.47 –0.978 4.801

Hermite (4) 1.613 18.37 –0.806 4.524

Hermite (6) 1.613 18.48 –0.998 4.592

Maximum entropy 1.611 17.56 –1.023 4.622

Table 5b: Eurodollar futures options, 24 September 1998
Probabilities for the eurodollar rate on 14 December 1998

24
September 1998

4.50 4.75 5.00 5.25 5.50 5.75

Black 0.09 0.25 0.48 0.71 0.87 0.95

MLN a

a.  Mixture of lognormals

0.09 0.20 0.43 0.70 0.88 0.97

Jump 0.09 0.20 0.43 0.70 0.89 0.97

Hermite (4) 0.10 0.20 0.43 0.70 0.89 0.97

Hermite (6) 0.09 0.20 0.43 0.70 0.88 0.97

Maximum entropy 0.12 0.18 0.47 0.68 0.89 0.99

The probabilities are the risk-neutral probabilities that the market assigns on the given date for the
eurodollar rate on 14 December 1998 to be less than the statedR value. See the Appendix for
details.

Prob r̃ T( ) R≤[ ]
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Table 6a: Eurodollar futures options, 25 September 1998

25 September 1998 Mean Volatility Skewness Kurtosis

Black 1.614 16.75 0 3

MLN a

a.  Mixture of lognormals

1.614 19.03 –1.208 5.646

Jump 1.613 19.19 –1.280 6.305

Hermite (4) 1.614 18.26 –0.813 4.735

Hermite (6) 1.614 18.96 –1.227 5.971

Maximum entropy 1.614 18.26 –0.697 3.680

Table 6b: Eurodollar futures options, 25 September 1998
Probabilities for the eurodollar rate on 14 December 1998

25 September 1998
4.50 4.75 5.00 5.25 5.50 5.75

Black 0.08 0.24 0.48 0.71 0.87 0.96

MLN a

a.  Mixture of lognormals

0.08 0.19 0.42 0.69 0.88 0.97

Jump 0.08 0.19 0.43 0.69 0.88 0.97

Hermite (4) 0.09 0.19 0.42 0.70 0.89 0.97

Hermite (6) 0.07 0.19 0.43 0.70 0.88 0.97

Maximum entropy 0.13 0.15 0.49 0.67 0.90 0.96

The probabilities are the risk-neutral probabilities that the market assigns on the given date for the
eurodollar rate on 14 December 1998 to be less than the statedR value. See the Appendix for
details.

Prob r̃ T( ) R≤[ ]
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Table 7a: Eurodollar futures options, 28 September 1998

28 September 1998 Mean Volatility Skewness Kurtosis

Black 1.619 16.21 0 3

MLN a

a. Mixture of lognormals

1.618 19.20 –1.712 10.699

Jump 1.618 18.66 –1.563 7.842

Hermite (4) 1.619 17.55 –0.749 5.017

Hermite (6) 1.618 18.51 –1.168 6.897

Maximum entropy 1.617 17.43 –0.596 4.681

Table 7b: Eurodollar futures options, 28 September 1998
Probabilities for the eurodollar rate on 14 December 1998

28 September 1998
4.50 4.75 5.00 5.25 5.50 5.75

Black 0.06 0.21 0.45 0.70 0.87 0.96

MLN a

a.  Mixture of lognormals

0.06 0.16 0.40 0.69 0.89 0.97

Jump 0.06 0.16 0.40 0.69 0.89 0.97

Hermite (4) 0.08 0.16 0.39 0.69 0.90 0.97

Hermite (6) 0.05 0.16 0.41 0.69 0.89 0.98

Maximum entropy 0.11 0.14 0.45 0.67 0.89 0.98

The probabilities are the risk-neutral probabilities that the market assigns on the given date for the
eurodollar rate on 14 December 1998 to be less than the statedR value. See the Appendix for
details.

Prob r̃ T( ) R≤[ ]
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Table 8a: Eurodollar futures options, 29 September 1998

29 September 1998 Mean Volatility Skewness Kurtosis

Black 1.629 13.74 0 3

MLN a

a.  Mixture of lognormals

1.629 15.24 –0.711 6.681

Jump 1.629 15.46 –1.754 9.955

Hermite (4) 1.629 15.07 –0.608 6.026

Hermite (6) 1.629 14.45 –0.952 3.206

Maximum entropy 1.629 14.86 –0.718 5.984

Table 8b: Eurodollar futures options, 29 September 1998
Probabilities for the eurodollar rate on 14 December 1998

29 September 1998
4.50 4.75 5.00 5.25 5.50 5.75

Black 0.02 0.12 0.37 0.68 0.89 0.97

MLN a

a.  Mixture of lognormals

0.05 0.11 0.30 0.70 0.92 0.97

Jump 0.03 0.10 0.33 0.67 0.90 0.98

Hermite (4) 0.06 0.09 0.31 0.69 0.92 0.98

Hermite (6) 0.08 0.09 0.30 0.71 0.90 0.95

Maximum entropy 0.06 0.10 0.30 0.71 0.92 0.96

The probabilities are the risk-neutral probabilities that the market assigns on the given date for
the eurodollar rate on 14 December to be less than the statedR value. See the Appendix for
details.

Prob r̃ T( ) R≤[ ]
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Table 9a: Eurodollar futures options, 30 September 1998

30 September 1998 Mean Volatility Skewness Kurtosis

Black 1.617 14.19 0 3

MLN a

a.  Mixture of lognormals

1.617 16.92 –1.434 8.794

Jump 1.617 16.88 –1.755 8.810

Hermite (4) 1.618 15.58 –0.848 5.623

Hermite (6) 1.618 15.39 –0.700 5.294

Maximum entropy 1.615 15.09 –1.216 5.216

Table 9b: Eurodollar futures options, 30 September 1998
Probabilities for the eurodollar rate on 14 December 1998

30 September 1998
4.50 4.75 5.00 5.25 5.50 5.75

Black 0.04 0.18 0.45 0.74 0.91 0.98

MLN a

a.  Mixture of lognormals

0.07 0.13 0.37 0.75 0.93 0.98

Jump 0.05 0.14 0.40 0.73 0.92 0.99

Hermite (4) 0.07 0.13 0.38 0.74 0.94 0.99

Hermite (6) 0.08 0.14 0.38 0.74 0.94 0.99

Maximum entropy 0.07 0.14 0.40 0.76 0.95 1.00

The probabilities are the risk-neutral probabilities that the market assigns on the given date for the
eurodollar rate on 14 December 1998 to be less than the statedR value. See the Appendix for
details.

Prob r̃ T( ) R≤[ ]
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Figure 1: Eurodollar futures options, 23 September 1998
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Figure 2: Eurodollar futures options, 24 September 1998
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Figure 3: Eurodollar futures options, 25 September 1998
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Figure 4: Eurodollar futures options, 28 September 1998
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Figure 5: Eurodollar futures options, 29 September 1998
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Figure 6: Eurodollar futures options, 30 September 1998
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Figure 7: Eurodollar futures options, moments
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Figure 8a: Cumulative distributions
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Figure 8b: Cumulative distributions
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Figure 8c: Cumulative distributions
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Figure 8d: Cumulative distribution
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Appendix: PDF summary statistics

The risk-neutral PDF, , synopsizes the information contained in the price of interest rate futures

options. Thus, a graphical depiction of the risk-neutral PDF yields market perceptions over the future value of

interest rates. In addition, several numerical statistics also yield helpful insights. In particular, the probability

that the futures rate will be less than a given rate,R, on the maturity date of the futures contract is insightful,

namely

. (47)

In addition, several summary statistics calculated with respect to the logarithm of the futures rate are useful,

such as the mean, annualized volatility, skewness, and kurtosis. The annualized volatility provides an

indication of the dispersion of opinion in the market surrounding the future interest rate. The skewness

compares the probability of a large upward movement in the futures rate to the probability of a large

downward movement. Risk-neutral PDFs are either symmetric, skewed left or skewed right. A skewed left

distribution places greater weight on the likelihood the future interest rate will be far below, as opposed to far

above, the current futures price on the maturity date of the option. Finally, kurtosis indicates the possibility of

large changes in interest rates prior to the maturity of the futures option.

Note that is the futures rate  has a PDF  then the logarithm of the futures rate,

, has a PDF . Thus, the mean, variance, skewness, and kurtosis with

respect to the logarithm of the futures rate are given, respectively, by

(48)

where  represents expectations with respect to the PDFQ. The annualized volatility is given by

.

The PDF summary statistics for the models outlined in section 3 are as follows.

q r̃ T( )[ ]

Prob r̃ T( ) R≤[ ] q r̃ T( )[ ]
0

R

∫ r̃ T( )d=

r̃ T( ) q r̃ T( )[ ]
log r̃ T( )[ ] Q log r̃ T( )[ ]( ) r̃ T( ) q r̃ T( )[ ]=

µ = EQ r̃ T( )log[ ]

Var = EQ r̃ T( ) µ–log( )
2

[ ]

Skew = EQ r̃ T( ) µ–log( )
3

[ ] 
  Var

3 2⁄
⁄

Kurt = EQ r̃ T( ) µ–log( )
4

[ ] 
  Var

2
⁄

EQ

σ Var T⁄=
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A.1 Black’s model

The cumulative distribution function is

(49)

The variance, skewness, and kurtosis are

, , and . (50)

A.2 Mixture of lognormals

The cumulative distribution function is

(51)

The variance, skewness, and kurtosis are

(52)

A.3 Jump diffusion

The cumulative distribution and PDF summary statistics are given by equations (51) and (52) above with

, , , and

.

A.4 Hermite polynomial approximation

The cumulative distribution is

(53)

Prob r̃ T( ) R≤[ ] N
R F 0 T,( )⁄{ }log

σ T
-----------------------------------------

1
2
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where  and the restrictions ,

and  have been imposed. (The fourth-order approximation is given by setting  and

.) Under the same restrictions, the variance, skewness, and kurtosis are

. (54)

A.5 Method of maximum entropy

The cumulative distribution is given by equation (55) if

(55)

and by equation (56) if :

. (56)

(57)

(58)

No closed-form solutions exist for the mean, variance, skewness, and kurtosis. These statistics are

calculated by numerical integration. (59)

Z
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Discussion of

“The Information Content of Interest Rate Futures Options”

by Des McManus, Bank of Canada

Discussant: James M. Mahoney

This paper attempts to determine which method of estimating the Eurodollar futures’ probability density

function (PDF), of six methods under consideration, most accurately fits a cross-section of observed

Eurodollar futures options prices. The paper uses various metrics to determine which method is flexible

enough to price the array of available options prices found in the market, e.g., with the implicit smiles

found in the implied volatility – strike price graphs. The paper is well done and advances our

understanding of the relative effectiveness in each of the methodologies.  Most of my comments are

directed at extending the already-impressive amount of work evident in the paper.

Data issues: Observation weights

In coming up with the parameters of the risk-neutral PDF, the estimation procedure is set up to minimize

the equally weighted sum of squared deviations between the modeled prices and the market observed

prices. There may be some good reasons to weight these observations differently in the minimization

problem. First, weighting the observations by trading volume may make sense if there are differences in

bid-ask spreads or non-synchronous trading, which translates in differences in measurement errors, across

the observations. Second, there may be reasons to underweight deep out-of-the-money options, as little or

no information may be available in options whose market prices are near the exchange-mandated

minimum tick size (0.01 for Eurodollar futures and options) and where small measurement errors may

significantly alter the results of the minimization problem. And third, although not an issue in the

empirical section of this paper due to the small sample window, one needs to decide how close to

expiration are the prices of option useful in deriving risk-neutral PDFs.

Metrics for comparison

Two criteria are used as metrics of comparison among the six models. First, the mean squared error (MSE)

and the mean squared percent error (MSPE) are used. Again, the issue of how these observations should

be weighted arises. Equally weighting the observations may not provide reliable results, as, e.g., a small

absolute error may yield large percent errors, which would dominate the MSPE metric.

The second metric of comparison in the paper is based on a set of summary statistics: volatility, skewness,

and kurtosis. Volatility measures were consistent across methodologies, while the measures of skewness

and kurtosis were erratic. A concern here is the lack of robustness in these summary statistics. For
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example, the volatility, skewness and kurtosis are very different across six methodologies in Table 7a, but

the PDFs across the six methodologies are remarkably similar in Table 7b.  In addition to robustness, an

additional concern is the difficulty in interpreting the summary statistics. For example, again in Table 7,

the volatility and kurtosis of the mixture of log-normal (MLN) methodology are greater than the volatility

and kurtosis of the Hermite polynomial of degree 4 (H(4)), which might suggest that large movements in

interest rates are more likely for the MLN methodology. Yet, the probability of a large move in rates (with

rates rising above 5.75% or falling below 4.5%) is actually greater for the H(4) methodology. This

counter-intuitive result (driven by difference in skewness in the PDFs) suggests that the summary statistics

may not be the most useful gauges of PDFs, as these summary statistics have non-natural units of

measurement that are hard to interpret. Perhaps more useful would be a more extensive evaluation of the

PDFs from the perspective of various quintiles (i.e., drop Table 7a and extend Table 7b).

Additional metrics for comparison could be used. For example, the cross-sectional PDF could be

estimated using a sub-sample of available options prices, and the out-of-sample cross-sectional fit could

be tested. This methodology could also be used to test the robustness of the methodology, in the sense that

eliminating one observation should not drastically alter the results of the PDF estimation.  For an

additional metric of comparison, one could use the time series of subsequent observed Eurodollar interest

rates to see how well the models predict out of sample.

All in all, the paper provides useful information to the practitioner and researcher alike on the various

strengths and weaknesses in six possible ways to fit the cross-section of observed options prices. This

paper also helps lay the groundwork for future research on whether any of these methodologies are useful

in forecasting future changes in asset prices.
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Discussion of

“The Information Content of Interest Rate Futures Options”

by Des McManus, Bank of Canada

Discussant: Roberto Violi, Banca d'Italia, Research Department

The paper applies and compares several common methods to arrive at estimates of the (risk-neutral)

probability distribution of future values of Eurodollar rates; its main aim is to determine which

method most accurately prices observed market options. As a concrete example of application, the

days surrounding some recent FOMC meetings are examined and estimated PDFs are used as

indicator of market sentiment to gauge the uncertainty over the future levels of the Eurodollar rates.

While the results of the paper indicate that further research needs to be conducted, several broad

conclusions are drawn from the estimates:

• The mixture of lognormals estimation method ranked first in pricing accurately observed

market options;

• The Hermite polynomial estimation method ranked second, yielding similar results to the

mixture of lognormals; when the latter method fails, the Hermite method constitutes an

appropriate alternative.

• Estimates of skewness and kurtosis, unlike the volatility measure, are found to be unstable

across estimation techniques, hence model dependent.

The author provides a very articulated review of the estimation techniques and illustrates several

summary statistics, suggesting both graphical and analytical methods, in comparing various models.

Two main issues are left open for future research:

• the appropriate measure of  asymmetry for estimated PDFs (over and above those which

can be constructed out of the more stable cumulative distribution function: like inter-

quartile differences);

• evaluation of the predictive power of the measures of asymmetry.

My comments will be mainly concentrated on the issues left open for future research. The basic

motivation behind the PDFs’ identification and estimation techniques can be found in the weaknesses

of Black-Scholes’ (BS) theory of option pricing, namely in the divergence between observed options

market price and BS-based theoretical options price. The most common bias is the familiar “smile

effect” and other “moneyness” biases are fairly well-known. These biases are understood to be related

to measures of asymmetry, for example excess kurtosis. Perhaps less understood biases, I believe,

relate to the maturity of the option (see Backus, Foresi, Li and Wu, 1997): the upward slope (on
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average) of the term structure of implied volatility; the excess kurtosis tendency to decline (on

average) with maturity. Both biases have been found in foreign exchange currency options, but clear

evidence of a term structure of volatility and kurtosis has also been detected for interest rates. It can

be shown, in a suitably defined theoretical environment, that both biases eventually decline with

maturity. Hence, for long options, the BS formula can be a good approximation of observed option

market price in the foreign exchange.

The tendency for kurtosis to decline with maturity in many models is a consequence of a stronger

result: the central limit theorem; this statement clearly doesn’t apply to all theoretical environment

(the unit-root volatility model is an obvious counterexample). Similarly, a mean-reverting process of

the underlying rate can be a source of changing volatility at different time horizons (as, for example,

in Vasicek, 1977). Stochastic volatility models can also be a way to capture leptokurtosis, as in

Heston (1993), or simpler time-varying volatility models, such as ARCH process; according to Das

and Sundaram (1997) the degree of conditional leptokurtosis for interest rates varies with the time

interval between data observation.

To summarise, jump-diffusion models with mean-reverting short rate seem to allow for parameter

choices which match conditional skewness and kurtosis at varying maturities of the term structure of

interest rates. When jumps are introduced into a pure diffusion model of interest rate, (Gaussian)

volatility drops sharply with respect to its prior level and coefficient of mean reversion for the short

rate decline substantially (see Das, 1998). This may imply that jumps account for a substantial

component of volatility and provide a source of mean reversion.

Testing these propositions for the option markets requires enough depth across the moneyness

spectrum and across maturity, perhaps not readily found for exchange-traded options1. The Bates

(1991) option pricing model2, which add a jump-diffusion process to the standard Black's basic model,

tested by McManus did not fare particularly well in the cross-sectional comparison3. Generally, it

appears that the more structural model, including the semi-parametric Hermite as well as the semi-non

parametric Gram-Charlier (Edgeworth) polynomial expansion technique, have difficulties in coping

with the degree of asymmetry found in the data; non-structural approaches, like a mixture of

lognormals4, seem to warrant a higher degree of flexibility in matching data; yet it is less clear how

we should interpret such advantage when confronting the observed option market price. One possible

interpretation for the mixture of lognormals is that the return on an asset at any given time can be

drawn from one, out of several (oftentimes two), normal distribution; each possible draw has a given

probability to occur. The benefit of such specification is that it allows for the possibility that

                                                                                             

1 An  attempt along these lines, e.g. incorporating the information embedded in the term structure of implied volatility, can
be found in Fornari and Violi (1998).
2 See also Malz (1996) for an application to the estimation of exchange rate realignments probability in the EMS.
3 It is perhaps interesting that Jondeau and Rockinger (1998) estimated a jump-diffusion model of foreign exchange
currency option which outperformed all other models at longer maturities; they were able to provide an interpretation for it
which should also apply to models of the term structure of interest rates (see also Backus, Foresi and Wu, 1997).
4 This definition is borrowed from Jondeau and Rockinger (1998).
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occasionally the return is generated from a distribution with a higher variance, while maintaining the

structure of normal densities, conditional on the realisation of a particular draw; this is a simple and

effective way to capture fat tails in the return-generating process. Basically, the model allows a jump

from one distribution to another, which is similar to the traditional jump-diffusion model allowing the

possibility of a jump between an infinite number of normal distributions5. In the empirical application

of these latter models a simple Bernoulli version is actually used: over the horizon of the option there

will be at most one jump of constant size.

Models are estimated at various dates and maturities, yielding a different set of estimates for each date

and maturity. This is prima facie in sharp contrast with the assumption of constant parameters in the

underlying process; the time series of parameters so obtained may also correspond to a process of the

underlying asset which might have little to do with historically observed processes. Perhaps more

worryingly, estimating parameters tend to display more often than not great instability across dates

and maturities. In the literature, and McManus’ paper is no exception, the estimates are interpreted as

being those perceived to be valid at each point in time by market participants till the expiration of the

option. This is clearly inconsistent with the no-arbitrage pricing principle, upon which models are

assumed to be based, since parameter changes over time are not treated accordingly within the option

pricing model. It also casts serious doubts on the validity of time series information inferred from the

volatility and asymmetry measures obtained from the estimated models.

I believe that progress could be made by improving the option price modelling in allowing changing

moments over time. As an example of this claim, I have estimated volatility, skewness and excess

kurtosis, based on the methodology presented in Fornari and Violi (1998), combining the Soederlind

and Svensson (1997) mixture of lognormals model with the Jamshidian (1989) closed form solution

for options on discount bonds. As an alternative to Black’s model, this model assumes that a single

factor model for the term structure of interest rates holds: the overnight rate evolves according to a

mean-reverting Gaussian diffusion process, as in Vasicek (1977), with distinct parameters in each of

the two regimes; unlike the Black’s model, interest rates display a term structure of volatility, though

a deterministic one. Only the mixing probabilities of regime switch are allowed to change over time,

whereas the parameters of the term structure within each regime are kept constant6. No rationale is

provided for the changes in the mixing probability; this is clearly a limitation which calls for

improvement in future research. Data used are the same as in McManus’ paper, comprising CME

Eurodollar futures and options contracts with maturity December 1998 for the trading days from

September 1, 1998 through November 30, 19987.

                                                                                             

5 See Kon (1984) for details.
6 The TSP 4.4 command LSQ (see the TSP Reference Manual for details) is used  to estimate the parameters of the option
pricing model; the squared deviation between actual and theoretical option prices is the minimised objective function. No
specific handling for the American early exercise premium is adopted.
7 Kindly provided by Gabriele Galati for the BIS workshop exercise on PDF estimation.



4

Chart 1.

(1) Left-hand scale.
(2) Right-hand scale

Chart 1 corroborates some of the findings reported in the literature; volatility tend to decline and

excess kurtosis to rise as maturity approaches; skewness changing of sign relates to the growing

perception of FED monetary policy easing bias developing at the US FED in those days.

Pricing errors implied by the estimated model, though larger than the ones reckoned in McManus

paper, are still within a reasonable range, as displayed in

Chart 2.
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How Useful are Implied Distributions?

Evidence from Stock-Index Options

by

Gordon Gemmill and Apostolos Saflekos*

Abstract

Option prices can be used to construct implied (risk-neutral) distributions, but it remains to

be proven whether these are useful either in relation to forecasting subsequent market

movements or in revealing investor sentiment. We estimate the implied distribution as a

mixture of two lognormals and then test its one-day-ahead forecasting performance, using

1987-97 data on LIFFE’s FTSE-100 index options. We find that the two-lognormal method

is much better than the one-lognormal (Black/Scholes) approach at fitting observed option

prices, but it is only marginally better at predicting out-of-sample prices. A closer analysis of

four “crash” periods confirms that the shape of the implied distribution does not anticipate

such events but merely reflects their passing. Similarly, during three British elections the

implied distributions take on interesting shapes but these are not closely related to prior

information about the likely outcomes. In short, while we cannot reject the hypothesis that

implied distributions reflect market sentiment, we find that sentiment (thus measured) has

little forecasting ability.

Keywords: option pricing, implied distribution, volatility smile, market sentiment, crashes,

elections.

                                                          
* The authors are grateful for comments from Robert Bliss and Paul Dawson.
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Introduction

Investors, risk-managers and policy-makers all need to forecast the probability distribution of prices

if they are to take rational decisions. Conventionally, an estimate of the variance is obtained from

recent data on returns. A month of data may give a reasonable estimate of the variance, but

observations over several months are required if the skewness and kurtosis are to be measured

accurately. Another approach is to use options data to construct implied distributions. These are the

so-called risk-neutral distributions (RNDs) which traders are using when they set the prices of the

options and which relate to the period until an option expires. One day’s options can reveal not only

the forecast variance, but also the whole shape of the risk-neutral distribution (including skewness

and kurtosis). Using options is therefore an efficient way in which to forecast the whole distribution.1

Several alternative methods have been suggested for extracting the risk-neutral distribution from

option prices, the main difference between them being the extent to which they constrain its shape. At

one extreme, Longstaff (1995) imposes no constraints but the result can be a rather “badly-behaved”

or spiky distribution. At the other extreme, Rubinstein (1994) and Jackwerth and Rubinstein (1996)

constrain their distributions to be those with the smallest possible deviations from the lognormal.

Somewhere in between these two extremes is the assumption of this paper, which is based on the

work of Ritchey (1990), Melick and Thomas (1997) and Bahra (1997). We assume that the

distribution can take any shape which may be approximated by a mixture of two lognormals.

The first objective of this study is to examine whether an option pricing model, based upon two

lognormal distributions, performs well for equity-index options (having previously been applied only

to oil futures and interest-rates). The performance of the method is determined not only by measuring

the (ex-post) fit of the implied distribution, but also ex-ante by testing how well it forecasts option

prices out-of-sample. We find for LIFFE’s FTSE-100 index options over the 1987-97 period that

although the model fits the data significantly better than the Black/Scholes model, the out-of-sample

performance is only marginally better. This is consistent with work on US index options by Dumas,

Fleming and Whaley (1998), who found that taking account of volatility smiles did not help in

forecasting one-day-ahead option prices.2

If implied distributions are of rather limited use in normal periods, it might still be possible that they

help to forecast market movements during exceptionally turbulent periods. Our second objective is

therefore to examine the performance of the method around crashes (of October 1987, October 1989

and October 1997), British general elections (of May 1987, April 1992 and May 1997), and

                                                          
1 Of course, it is important to remember that these implied distributions are different from directly sampled distributions, as

they reflect risk-neutral processes (see Harrison and Kreps, 1979). In the absence of transactions costs the shapes should
be the same, but the location of the implied distribution reflects only a risk-free rate of  return.

2 There is a one-to-one relationship between the volatility smile and the implied distribution, as demonstrated explicitly by
Shimko (1994), so forecasting with the volatility smile is equivalent to forecasting with the implied distribution.



3

extraordinary events (the sterling currency crisis of September 1992). Our chosen periods are more

general than those examined (in a related way) by other researchers. For example, Bates (1991) and

Gemmill (1996) have examined volatility smiles for the US and UK around the 1987 crash and Malz

(1997), Campa and Chang (1995) have examined options on sterling in the ERM crisis of 1992.

Coutant, Jondeau and Rockinger (1998) have examined implied distributions for interest rates at the

time of the snap general election in France in 1997. We find that the method does not help to reveal

the probability of crashes, because increased left-skewness follows rather then preceeds these events.

Nevertheless, the method can help to reveal the divergent expectations which arise immediately after

crashes and during election campaigns. In other words, the method helps to reveal “market

sentiment”, which could be useful for the policy-stance of a central bank (e.g. Federal Reserve, Bank

of England) and for investors who may wish to take positions based upon the difference between

their forecast of the distribution and the consensus of the market.

The paper is written as follows. The next section provides a theoretical presentation of the main

techniques used to derive the implied distribution of future asset prices from option prices. The two-

lognormal mixture distribution method is described, as well as the practical issues of the

implementation (namely the data used and the selection of the studied periods). Section 3 presents the

empirical results from applying the method to FTSE-100 index options, at the same time assessing its

usefulness. Conclusions and suggestions for further research are given in the fourth and final section

of the paper.

2. Theoretical framework

2.1 Review of literature and development of the model

Option prices reflect forward-looking distributions of asset prices. In the absence of market frictions,

it is possible to take a set of option prices, for a single maturity and at various exercise prices, and

imply the underlying risk-neutral distribution (RND). Breeden and Litzenberger (1978) first showed

how the second partial derivative of the call-pricing function with respect to the exercise price is

directly proportional to the RND function. However, since observed option prices are only available

at discretely spaced intervals rather than being continuous, some approximation for the second

derivative is necessary and more than one implied distribution can be implied depending on the

approximation chosen. As Jackwerth and Rubinstein (1996) observe, selecting among the competing

distributions then amounts to a choice of how to interpolate or extrapolate option prices across

exercise prices.

The most direct way of estimating the implied distribution is by simple application of the Breeden

and Litzenberger result to a function relating the call price to exercise prices. This has been done by

Longstaff (1995) and Ait-Sahalia and Lo (1995). The former implements a procedure that attributes a
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probability to an option mid-way between two adjacent exercise prices, then uses this to solve for the

next probability, and so on. Ait-Sahalia and Lo first smooth the pricing function with a set of

polynomials and then proceed in a similar way.

Shimko (1993, 1994) proposes an alternative approach by interpolating in the implied-volatility

domain instead of the call-price domain. He begins by fitting a quadratic relationship between

implied volatility and exercise price. The Black/Scholes formula is then used to invert the smoothed

volatilities into option prices. At this point he has a continuous spectrum of call prices as a function

of the exercise prices and the application of the Breeden and Litzenberger result is straightforward,

generating the implied probability distribution.

The main limitation of the above techniques is the need for a relatively wide range of exercise prices.

This can be overcome by imposing some form of prior structure on the problem. One such prior (used

by Bates (1991, 1996) and Malz (1997)) is to assume a particular stochastic process for the price

dynamics of the underlying asset. In their papers the asset price is assumed to follow a jump-diffusion

process. In other words, the basic probability distribution is lognormal, but it can jump up or down3.

Alternatively, the imposed structure may apply to the distribution of the future asset price itself,

instead of the asset-price dynamics. This approach proves to be more general than making

assumptions about the stochastic process of the underlying asset price, because any given RND

function is consistent with many different stochastic processes, whereas a given stochastic price

process implies a unique RND function (Melick and Thomas, 1997). The approach of Rubinstein

(1994) and Jackwerth and Rubinstein (1996) falls into this category. They employ an optimisation

algorithm to find that RND function which is closest to lognormal, taking account of bid/ask bounds

on the observed option prices.4

The framework used in the current paper follows Ritchey (1990), who notes that a wide variety of

shapes may be approximated with a mixture of lognormal distributions. He assumes that the implied

density function, f(ST), of the underlying asset terminal price, ST, comprises a weighted sum of k

individual  lognormal density functions:

[ ]f S L a b ST i i i T
i

k

( ) ( , , )=
=

∑ θ
1

Equation 1

where L(αi, bi, ST) is the ith lognormal density function with parameters αi, bi:

{ }L a b S
S b

ei i T
T i

S a bT i i( , , ) ( l n ) /= − −1

2

2 22

π
Equation 2

                                                          
3 Malz assumes that there is either no jump or just one jump over the life of the option, in which case the terminal RND

function is a mixture of two lognormal distributions (Bahra, 1997)
4 The distance criteria used in the two papers are, respectively, a quadratic difference and a smoothness function.
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a Si i i= + −l n ( / )µ σ τ2 2 and b i i= σ τ Equation 3

In the above equations, S is the spot price of the underlying asset, τ (=T-t) is the time remaining to

maturity and µ and σ are the parameters of the normal RND function of the underlying returns. The

weights  θi are positive and sum to unity.

Melick and Thomas (1997) apply this framework to options on crude oil futures, using a mixture of

three lognormal distributions. Bahra (1997), Butler and Davies (1998) and Soderlund and Svensson

(1997) use a mixture of two lognormals on interest-rate futures. Since our data on FTSE-100 options

cover a limited range of exercise prices for each maturity, it seems more appropriate to use two

lognormals, which require only five parameters: the mean of each lognormal,  α1, α2, the standard

deviation of each lognormal, b1, b2 and the weighting coefficient, θ.

2.2 The two-lognormal mixture distribution method for equity index options

Let the terminal pay-off on a European call maturing at time T be max(ST - X, 0), given terminal asset

price ST and exercise price X. Assuming that the risk-free interest rate r is constant, the life of the

option is τ and the asset price is S, then the price of the call is the discounted expected payoff

(conditional upon finishing in the money) times the probability of finishing in the money:

( )c X e f S S X d Sr

X
T T T, ( ) ( )τ τ= −−

∞

∫ Equation 4

where f(ST) is the risk-neutral probability density function of the terminal asset price at time T.

Similarly, the terminal payoff on a European put is max(X - ST, 0) and its current price is:

p X e f S X S d Sr
X

T T T( , ) ( ) ( )τ τ= −− ∫
0

Equation 5

Under the assumption that the probability density function is a mixture of two lognormals (with

weights θ and (1-θ)), the above equations for call and put prices can be rewritten as:

[ ]c X e L a b S L a b S S X dSr
T T

X
T T( , ) ( , , ) ( ) ( , , ) ( )τ θ θτ= + − −−

∞

∫ 1 1 2 21 Equation 6

[ ]p X e L a b S L a b S X S dSr
T T

X

T T( , ) ( , , ) ( ) ( , , ) ( )τ θ θτ= + − −− ∫ 1 1 2 2
0

1 Equation 7

These equations can be used iteratively to minimise the deviation of estimated prices from observed

prices, a search being made over the five parameters. We use both puts and calls across five exercise

prices and minimise the total sum of squared errors for the ten options:
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[ ] [ ]c X c p X pi i
i

n

i i
i

n

( , ) $ ( , ) $τ τ− + −
= =

∑ ∑2

1

2

1

Equation 8

where b1, b2 > 0, 0 ≤ θ ≤ 1, subscript i denotes an observation and ^ denotes an estimate.

Bahra (1997) shows that equations 6 and 7 have the following closed-form solutions:

[ ]c X e e N d X N dr a b( , ) { ( ) ( )/τ θτ= − +− +1 1
2 2

1 2

[ ]( ) ( ) ( ) }/1 2 2
2 2

3 4− −+θ e N d X N da b    Equation 9

and

[ ]p X e e N d X N dr a b( , ) { ( ) ( )/τ θτ= − − − − +− +1 1
2 2

1 2

[ ]( ) ( ) ( ) }/1 2 2
2 2

3 4− − − − −+θ e N d X N da b   Equation 10

where

d
X a b

b1

1 1

2

1

=
− + +ln

,       d d b2 1 1= −

d
X a b

b3

2 2

2

2

=
− + +ln

,      d d b4 3 2= −

Equations 9 and 10 have a very simple interpretation: the model prices are just weighted sums of two

Black/Scholes solutions, each having its own mean and variance.

2.3 Data sources

The empirical research in this study is based on the daily settlement prices of FTSE-100 calls and

puts covering up to five exercise prices and four maturities for each day from January 1st 1987 to

December 31st 19975. Our sample contains American-style options for the period to March 1992 and

European-style options thereafter, the switch being made because the latter were only thinly traded

                                                          
5 We gratefully acknowledge LIFFE for financial assistance in collecting some of the data and for providing the other data.
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before then.6 Exercise prices have been chosen such that one is at-the-money, two are in-the-money

and two are out-of-the-money. The interest rates used are UK Sterling 3-month interbank deposit

rates, retrieved from Datastream.

2.4 Hypotheses to be tested

Hypothesis 1: The two-lognormal model performs better than a one-lognormal (Black/Scholes)

model

This paper is primarily a critical examination of the two-lognormal model. On one day per month for

the period 1/87 to 11/97 the distribution is implied and then used to price options on the next day.

This allows us to test the method’s forecasting performance relative to the Black/Scholes model over

quite a long period.7

Hypothesis 2: The option market anticipates crashes

One particularly interesting question is whether option markets have any usefulness in predicting

extreme events, such as stock market crashes. The crash of October 1987, the mini crash of October

1989 and the market turmoil of October 1997 were chosen as examples of such occasional events.

Although other studies have looked at some of these periods (e.g. Bates, 1991, for the US and

Gemmill, 1996, for the UK), the use of the two-lognormal mixture is original. We also examine the

European monetary crisis of September 1992 (when sterling left the Exchange Rate Mechanism

(ERM) and was devalued by more than 10%) as another period of great uncertainty for the British

stockmarket.

Hypothesis 3: A bimodal distribution is appropriate during elections

The two-lognormal mixture may prove particularly useful in periods when a market jump is expected

but the direction of the jump is unknown. Such is the case during political elections. Assuming that

there are only two possible outcomes (for example, Labour victory or Conservative victory) and that

investors prefer one to the other, a stock-index option which matures after an election should reflect a

bimodal underlying distribution. The mixture of two separate lognormal distributions should

therefore fit the observed option prices particularly well at such times. We have included the British

elections of 1987, 1992 and 1997 in our analysis in order to test this hypothesis.

                                                          
6 Strictly speaking the method is only applicable to European options, because we are attributing all of an option’s value to
the terminal distribution and not to early exercise. However, the value of early exercise on these index options is likely to be
small: see Dawson (1994) for an analysis on FTSE-100 options.
7 Dumas, Fleming and Whaley (1998) use a similar approach on S&P 500 options, but based upon the volatility smile

rather than the implied distribution.
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3. Results

3.1 Forecasting Performance over the Whole Period, January 1987-December 1997

The options used in this part of the analysis are chosen on one day per month (from the middle of the

week) such that they have approximately 45 days to maturity. Table 1 gives a summary of the

conventional dispersion and shape statistics of the implied distribution over the whole period. The

results leave no doubt about two features. First, the implied distributions have fatter tails than those

of lognormal distributions, with kurtosis positive in each subperiod and averaging 1.54. This result is

expected, as it is the corollary of the well-known volatility smile which is found for many different

options (e.g. Bahra, 1997, on interest rates, Melick and Thomas, 1997, on crude oil futures, Malz,

1996, on foreign exchange).

Second, and more importantly, the generated distributions exhibit consistently negative skewness

(that is, they have a more pronounced tail to the left) averaging -0.26 over the whole period and

becoming more pronounced over time. Figure 1 plots the monthly results, which indicate that after

March 1991 there is no month in which skewness is positive, although variation is quite large. This

result differentiates equity-index options from options on other underlying assets and is also well

documented from volatility smiles (see e.g. Gemmill, 1996).

The performance of the two-lognormal model can be compared with Black/Scholes in two ways; first,

in how well (ex-post) the two models fit observed option prices within sample, and second, in

forecasting (ex-ante) the price of an option on day t+1. To do the latter we obtain the model

parameters (a1, b1, a2, b2 and θ) that best fit the option prices observed on day t. Then for forecasting

we update the means of the distributions to take account of changes in the stock price.8

a a
S

Si
t

i
t

t

t
+

+

= +1
1

l n Equation 11

Similarly, we update the variances to take account of one day’s less time to maturity:

b bi
t

i
t

t

t
+

+

=1
1τ

τ Equation 12

Table 2 shows the errors obtained by the two-lognormal and Black/Scholes methods, both within

sample (ex-post) and out-of-sample (ex-ante). Results are given separately for 1/87 to 2/92, for which

                                                          
8 Strictly speaking, the adjustment should take account of the change in the forward price, for which the change in spot
price is a good approximation unless an ex-dividend date is straddled (which does not occur in our sample).
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American options were used, and for 3/92 to 11/97, for which European options were used.  The two-

lognormal method has an in-sample performance which is considerably better than that of the

Black/Scholes model,  being 29% better in terms of root-mean-squared error for the American

options in the earlier period and 89% better for the European options in the more recent period.  This

is to be expected since it uses five parameters (a1, b1, a2, b2, θ) as compared with the two parameters

(a, b) of Black/Scholes.9  The out-of-sample (forecasting) test shows a root-mean-squared-error

improvement of only 11% for the American options (54 out of 61 observations show an

improvement), but a more impressive gain of 43% for the European options (all 68 observations show

an improvement).  However, these relatively large RMSE improvements for European options

translate into absolute gains of about 1-2 index points per option, which are small when compared

with a bid/ask spread of at least 2 points.  Hence the method gives a consistent but small

improvement in forecasting performance on average across the eleven year period.

3.2 Market crashes

The crash of 1987

Even if the method gives only small benefits in most periods, it may fit the data and forecast better

than Black/Scholes in periods when there are significant events. On Monday, October 19th 1987 the

FTSE-100 fell by 10.9% to 2052. The following day, after the news from Wall Street convinced

everybody that this was a global crash, there was a further drop of 12.2%. The decline continued and

the index dropped to 1684 on October 26th, 1608 on November 4th and to the 1987 low of 1565 on

November 9th. This represented a fall of 32% in three weeks. The London stock market did not

recover these losses for more than 18 months.

We have divided our analysis of implied distributions around this time into two distinct periods: the

first is the two trading weeks immediately before the crash and the second is the month immediately

after the crash. Results on shape and goodness of fit are summarised in Table 3 (first segment) and

representative implied distributions are plotted in Figure 2.10 It should be noted that in this and

subsequent figures, the first distribution is plotted as estimated but the other distributions have been

adjusted to give the same time to maturity as the first.  Without such an adjustment there would be a

narrowing of the distributions as maturity approached.11 Prior to the crash (13th October in Figure 2)

                                                          
9 In fact, Black/Scholes normally has only one unknown parameter, the volatility of the distribution. However, since we do
not use the forward price of the underlying asset as a parameter in the minimisation procedure but imply it as the mean of the
distribution, the number of B/S parameters is two and the number of additional parameters of the two-lognormal model is
therefore three.
10 Because averaging across distributions tends to remove deviations from lognormality, we have plotted the distribution
on that particular day which has skewness nearest to the period average.
11 The adjustment to the mean takes account of the change in spot price and the size of the contango (forward price less
spot price), treating each distribution separately. We have αI 

*
 = lnS + (αI  - lnS) (t1 / t2 ) , where αI 

*
  is the adjusted value for

the ith mean, t1  is the maturity observed and t2 is the maturity required for purposes of comparison. Each variance is
adjusted as in Equation 12.
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the distribution is unimodal, with fat tails and slightly positive skewness. The means of the two

component distributions are close together (a1≈a2), but there is a large difference in their standard

deviations (b1, b2) which generates the fat tails. Option prices on the three trading days from October

19th to October 21st have been excluded, because both methods lead to huge errors when fitted.12 The

two lognormal distributions thereafter move apart and, on some days, give a bimodal composite, as

illustrated for November 6th in the middle segment of Figure 2. The representative distribution for

the whole month after the crash, as shown by November 26th in Figure 2, is not bimodal but does

show quite widely separate means for the two component distributions (a1 ≠ a2). In this period the

mode of the composite function exhibits great instability, jumping regularly between 1300 and 1600

which reflects the difficulty which investors had in reaching a new consensus.

From before to after the crash, average volatility jumps from 20.8% to 50.7%13 and skewness falls

from positive (0.36) to negative (-0.26). However, kurtosis falls compared to the pre-crash period

(from 1.74 to 0.02). Finally, it is interesting to note that the mean of the implied distribution is below

the spot price for much of this period, consistent with the observed backwardation in the futures

market.

The mini crash of 1989

On October 16th 1989, two years after the 1987 crash, the FTSE-100 dropped by 74 points (3.3%) to

2163. This was the most dramatic plunge of the index for more than a year, but this time the market

reacted in a more muted way than in 1987, avoiding panic and quickly recovering its prior level. Our

analysis is divided into a before-crash period of September 11th to October 15th and an after-crash

period of October 16th to November 10th.14 There are only slight changes in the implied distributions

from the first to the second period (see Table 3, second segment, and Figure 3), which is in stark

contrast to what happened in 1987. Volatility increases from 19.3% to 27.8%, but that is a small

change relative to events in October 1987. Left-skewness increases from -0.26 to -0.35, but there is a

reduction in kurtosis just as in 1987 (from 1.74 to 0.02). In both the pre-crash and post-crash periods

the two component distributions move closely together, preserving the unimodal nature of the

composite RND function.

The ERM crisis of 1992

The period of our study is mid-August to mid-October 1992. During the second and third quarter of

1992 a number of European currencies – including sterling – were subject to strong pressures which

                                                                                                                                                                                    
An alternative to such an approach would have been to do the analysis with options of two maturities and then synthesise

an implied distribution for a constant maturity. This is discussed by Butler and Davies (1998).
12 Both methods give large fitting errors from October 22nd to October 28th (daily MSE in the range 3 to 8), but these
results are included as the period is particularly  important.
13 Volatility is measured empirically by integrating across the composite distribution.
14 November index options were used for the analysis.
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eventually pushed them to the ERM floor. The British government tried to hold sterling’s value

against the D-Mark through a series of interest rates increases. As rates rose, so the stockmarket fell

by about 15% from early May to late August. The last effort to defend sterling was an unprecedented

5 percentage point rise in interest rates, announced in two steps, on September 16th 1992. Before the

end of that day sterling had left the ERM and the second of the two interest rate rises did not come

into effect. The devaluation of sterling and lower expected interest rates then pushed the FTSE-100

up by 7.7% over two days.

Despite the rise in share prices, the shape of the implied distribution is only mildly changed from

before to after the devaluation, becoming almost bimodal (see Table 3, third segment, and Figure 4).

Average volatility and kurtosis both increase slightly (volatility from 22.9% to 23.5%, kurtosis from

1.61 to 2.50). Skewness, which is extremely negative in both cases, moves from -0.60 to -0.74. It

seems that exit from the ERM, an upward “shock” for the stockmarket, had a very muted impact on

the implied distribution, which contrasts with the impact of the downward shocks in 1987 and 1989

which increased left-skewness and volatility. This result is consistent with time-series models of

volatility (such as EGARCH) which find significant asymmetry: volatility rises by much more when

the market falls than it does when the market rises (see, for example, Crouhy and Rockinger, 1993).

The Asian crash of 1997

Our analysis covers 59 trading days, from 9/9/97 to 28/11/97, and is based on options maturing in

December. In the five weeks before the 20th October volatility is relatively high (19.6% – see Table

3, fourth segment). The implied distribution is highly skewed to the left (–0.81) but its kurtosis is of

lognormal size (0.03). After October 20th, volatility almost doubles (34.9%) and kurtosis increases

significantly (1.05). The implied distribution is still skewed to the left, but on average less so than

before (-0.56). The representative plots in Figure 5 show how the distribution changes from being

almost bimodal on 16th September, to being stretched and clearly bimodal on 29th October. This

suggests that investors hold widely difference views about the potential level of the index at this time.

Our analysis of crashes can be summarised as follows. The largest effect is simply an asymmetric

impact on volatility, which responds more to a market fall than to a market rise. Left-skewness rises

hugely after the 1987 crash, but does not change much when smaller shocks occur. There is no

consistent pattern in kurtosis during these events, but there is a tendency for a bimodal distribution to

appear after the event. Finally, there is no pattern in the results to suggest that any of these four

events was anticipated by participants in the options market.
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3.3 British Elections

The 1987 election

The 1987 election was called on May 11th and held one month later on June 11th. During the whole

campaign the Conservatives maintained a clear lead in the opinion polls over Labour and the

stockmarket rose by 5.5%. Investors were said to be awaiting a “Japanese wall of money” which

would arrive after a Conservative victory (Financial Times, May 30th 1987).

Our study covers 30 trading days from 12/5/87 to 23/6/87 and is based on the prices of the July

(American-style) options. During the campaign the distribution is volatile, averaging 26.5% as given

in Table 4, and quite left-skewed, averaging -0.62. The representative distribution plotted for 20th

May in Figure 6 indicates a nearly bimodal distribution. Taking account of the information available

at the time (see Gemmill, 1992) it is reasonable to assert that the mode at 2010 represents a Labour

win while the mode at 2300 represents a Conservative win. Relative to the average futures price for

this period, these represent an anticipated 3.4% rise if the Conservatives win and a 9.6% fall if

Labour wins. After the election the distribution resumes its familiar shape, becoming unimodal and

with a more modest dispersion (volatility=21.9%) and skewness (–0.09).

The two-lognormal model proves to be useful during the election campaign in revealing the market’s

sentiment, confirming that two distinct outcomes are perceived to be possible. However, that

perception is itself difficult to explain, given the extremely high probability of a Conservative win

which the opinion polls forecast throughout this period (see Gemmill, 1992) and the absence of any

upward movement in the market after the Conservative win. The method appears to have captured

market sentiment in advance of a known event, but that sentiment also appears to have been a rather

misleading forecast of the election outcome.

The 1992 election

The 1992 general election was called on March 11th and held four weeks later, on April 9th. Unlike

the previous election, when the Conservatives had been the strong favourites, the outcome of this

election was very uncertain. The opinion polls gave Labour a narrow lead over the Conservatives,

which, if confirmed on election day, might have led to a hung parliament. Therefore, the possible

scenarios were three: a Labour government, a Labour-Liberal Democrat coalition and a Conservative

government.

Just as in the previous election, the market’s disposition in favour of Conservatives was often heard

and the prospect of a change in government caused the stock market to slide. The index eventually

fell to its 1992 low a few days before the election. On the day of the election, the index gained

considerable ground, since a published opinion poll created “last-minute hopes” for a Conservative
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victory. The following day the Conservatives returned to power once again and the stock market

gained 136 points (5.4%) in one session.

Our analysis covers the period from March 12th to April 30th 1992 and is based on the May

(American-style) options. During the campaign volatility is 23%, skewness –0.20 and kurtosis 1.96

(see Table 4). This time we do not observe a bimodal pattern (see Figure 7), even though the polls

indicate that the final winner is less clear than in 1987. After the election volatility falls (to 17%),

skewness becomes less negative (–0.12) and kurtosis rises to 5.53. In sum, the Conservative win

brings forth a smile rather than a sneer, but the options do not forecast that the market will rise on a

Conservative victory.

The 1997 election

The election was announced on March 17th and held six weeks later, on May 1st. During the

unusually long campaign, the Labour party maintained an estimated lead over the Conservatives

which ranged from 28% at the start to 5% a week before voting. Unlike 1992, this time the actual

outcome confirmed the predictions of the opinion polls and Tony Blair became the first Labour prime

minister in 18 years.

Our analysis covers 50 trading days, from 18/3/97 to 30/5/97, and is based on the June (European-

style) options. During the campaign the implied distribution is skewed to the left (–0.53, see Table 4)

and kurtotic (+0.53). After the election, volatility decreases (from 15.4% to 13.0%) and both kurtosis

and skewness decline (skewness=–0.45, kurtosis=0.29). The representative distributions for 24th

April and 15th May in Figure 8 are very similar in shape. In sum, the 1997 election is almost a “non-

event” for the index-options market.

What has been learnt from the study of election periods? In principle, they provide an ideal test of the

informational content of implied distributions, since a known event is certain to occur on a specific

date but its impact has to be forecast. The two-lognormal method gives much smaller root-mean-

squared errors (in sample) than does the Black/Scholes model, particularly in 1997. It reveals a rather

bimodal distribution in 1987, but not in 1992 or 1997 when such a distribution would have seemed

more plausible given the more balanced contests. In sum, the analysis helps to “tell a story” about

investors’ expectations, but it is not a story which is supported by subsequent outcomes: if investors’

expectations are revealed by the implied distributions during election campaigns then those

expectations do not seem to have much forecasting power.

4. Conclusions

In this study we have examined whether implied distributions are informative with respect to

subsequent stockmarket moves and to what extent they may be used to reveal investor sentiment. To

do this we have applied the mixture-of-two-lognormals technique to London’s FTSE-100 index
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options and critically examined the in-sample and out-of-sample performance of this model in a

variety of periods.

The analysis was intended to test three general hypotheses: 1) the two-lognormal model performs

better than Black/Scholes; 2) implied distributions indicate that the option market anticipates crashes;

and 3) the method is particularly useful in periods when a bimodal distribution is to be expected.

We accept the first hypothesis (better than Black/Scholes), but with reservations. The method gives a

better in-sample fit to observed option prices and its forecasting performance out-of-sample over

1987 to 1997 is also better but not by enough to be economically useful.

We reject hypothesis 2 (that the options market anticipates crashes). Neither before the large crash of

1987 nor before the much smaller crashes of 1989 and 1997 did the options market become more left-

skewed. The upward adjustment of the stockmarket after sterling left the ERM in September 1992

was also not anticipated. Generally, we can say that the index-option market reacts to crucial events

such as stock market crashes, it does not predict them.

We weakly accept hypothesis 3: the method does help to reveal market sentiment during elections. In

particular, during the 1987 election the method allows us to reveal the development of a bimodal

distribution, reflecting widely different potential outcomes. Nevertheless, while this may help in

telling a “market story”, it is not one which is consistent with rational expectations: in 1992 and 1997

the election outcome was much more uncertain than in 1987, but a bimodal shape failed to appear. In

particular, the market rose on the unexpected Conservative win in 1992, but the options had not

shown that a jump was at all likely.

In sum, implied distributions (recovered by using the two-lognormal mixture technique) provide some

potential insight into stockmarket sentiment, but their forecasting performance is not markedly better

than that of Black/Scholes. Similar conclusions were reached for the US market (using different

methods) by Dumas, Fleming and Whaley (1998). These empirical results cast doubt on the view that

the shape of the implied distribution is a rational expectation. Fundamentally, what has to be

explained is why the implied distribution is so left-skewed and why its shape changes so frequently?

The most plausible explanation is portfolio-insuring behaviour (see Grossman and Zhou, 1996) and

that does not require implied distributions to be good forecasts: they just need to reflect recent moves

in the stockmarket and particular investor preferences.
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Table 1: Dispersion and shape statistics of implied distributions for the period 1987-1997

Period Volatility
(%)

skewness kurtosis

1987-89 22.6 -0.075 1.970
1990-91 21.9 -0.064 2.710
1992-93 17.0 -0.252 1.261
1994-95 15.6 -0.353 0.417
1996-97 14.5 -0.652 1.134
All years 18.7 -0.257 1.544

Notes:

The data are for one day per month, averaged over the periods shown. Data up to (and including) 1993 are for
American options, thereafter for European options.  The skewness and kurtosis have been measured by
deducting the appropriate values for a lognormal distribution, hence the null hypothesis for each is zero. Data
run until November of 1997 only.

Table 2: Root-mean-squared errors of the two-lognormal and the Black/Scholes models

Fitting (ex-post) Forecasting (ex-ante)
Period Two-lognormal Black/Scholes Two-lognormal Black/Scholes

1/87-2/92
(American-style

options)

2.15 3.02 4.39 4.94

3/92-11/97
(European-style

options)

0.28 2.46 1.83 3.22

Notes:
The root-mean-squared errors are measured in index points for the option prices.  The data are for
one day per month, averaged over the periods shown.
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Table 3: Period average statistics on implied distributions for four crash periods

Event Trading
Dates

No.  of trading days change in spot volatility RMSE of B/S RMSE of 2-
lognormal

skewness relative to
lognormal

kurtosis relative to
lognormal

crash of 1987 1/10/87-16/10/87 12 - 0.208 2.20 2.00 0.363 1.736
22/10/87-10/11/87 28 -28.2% 0.507 3.72 3.14 -0.263 0.020

mini-crash of
1989

11/9/89-13/10/89 25 - 0.193 3.65 2.58 -0.264 3.695

16/10/89-10/11/89 20 -7.0% 0.278 4.33 2.19 -0.350 1.762

Event Trading
Dates

No of trading days change in spot volatility RMSE of B/S RMSE of 2-
lognormal

skewness relative to
lognormal

kurtosis relative to
lognormal

ERM crisis of
1992

24/8/92-15/9/92 16 - 0.229 2.91 0.70 -0.601 1.615

16/9/92-15/10/92 22 +9.0% 0.234 2.81 0.75 -0.735 2.504

Asian crash of
1997

9/9/97-17/10/97 29 - 0.196 4.13 0.26 -0.814 0.025

20/10/97-28/11/97 30 -5.9% 0.349 5.55 0.86 -0.556 1.050

Notes:
Data up to (and including) 2/92 are for American options, thereafter for European options. The skewness and kurtosis have been measured by deducting the appropriate values
for a lognormal distribution, hence the null hypothesis for each is zero.
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Table 4: Period average statistics on implied distributions for three election periods

Election Trading
Dates

No of
trading

days

change in spot volatility RMSE of B/S RMSE of 2-
lognormal

skewness relative
to lognormal

kurtosis relative to
lognormal

1987 12/5/87-11/6/87 22 +4.4% 0.265 3.63 2.14 -0.606 0.620

12/6/87-23/6/87 8 +4.1% 0.219 2.83 1.38 -0.090 0.893

1992 12/3/92-9/4/92 21 -4.1% 0.234 2.80 1.77 -0.200 1.960

10/4/92-30/4/92 13 +7.6% 0.168 3.84 3.27 -0.118 5.527

1997 18/3/97-1/5/97 31 -1.9% 0.154 4.59 0.16 -0.532 0.527

2/5/97-30/5/97 19 +7.5% 0.130 2.86 0.29 -0.445 0.295

Notes:
Data up to (and including) 2/92 are for American options, thereafter for European options. The skewness and kurtosis have been measured by deducting the appropriate values
for a lognormal distribution, hence the null hypothesis for each is zero.
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Figure 1 Skewness of the Implied Distributions
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Figure 2 Implied Distributions Around the Crash of 1987
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Figure 3 Implied Distributions Around the Crash of 1989
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Figure 4 Implied Distributions Around the Sterling Crisis of 1992
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Figure 5 Implied Distributions Around the Asian Crash of 1997
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Figure 6 Implied Distributions Around the Election of 1987
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Figure 7 Implied Distributions Around the Election of 1992
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Figure 8 Implied Distributions Around the Election of 1997
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Discussion of Gemmill and Saflekos paper
“How Useful are Implied Distributions?

Evidence from Stock-Index Options”

Discussant: Shigenori Shiratsuka

The purpose of this paper is to estimate implied probability distributions (IPDs) as a mixture of two

lognormal distributions by using British stock price index option data. It also empirically tests (1) the

performance of pricing formula, (2) the forecastability of crashes, and (3) the revelation of market

sentiments. The conclusions are as follows: (1) the two-lognormal method is better than the Black-

Scholes model in fitting observed option prices (in-sample estimation), but there is no significant

difference in predicting out-of-sample prices; (2) the shape of the IPDs does not indicate the

forecastability of market crashes; and (3) the IPDs help to reveal changes in market sentiment.

Since I think that these conclusions are reasonable, I will make comments with a view to improving

their robustness. My comments are divided into two parts: one is concerned with the technical issue of

empirical procedures and the other is concerned with the more general issue of the case study

methodology used to infer market sentiment from the IPDs.

Empirical Procedures

Regarding empirical procedures, I would like to point out two problems in this paper.  First, I

recommend that the authors use data of whole trading days in the forecasting exercise to compare the

performance of different pricing formulas. The current estimations are done with data of one day in

each month, probably because of the possible problem of autocorrelation caused by overlapping

sample periods. However, considering that a standard method of adjusting for the effects of

autocorrelation is available, I think it would be better to test forecasting power by using a larger

sample of whole trading days.1

Second, I am wondering if the methodology used for estimating the IPDs to examine the

forecastability of crashes is appropriate. According to this paper, we can see large estimation errors in

market turbulence, suggesting that the approximation of the IPDs by a mixture of two lognormal

distributions might be too rigid a restriction for the period of market stress, which is thought to be an

important time for case studies. Therefore, I am not sure that the estimation methodology of the IPDs

                                                
1 See Newey and West (1987) for details of how to estimate autocorrelation-heteroskedasticity robust standard
errors.
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is appropriately selected for examining whether the IPDs might be useful for anticipating crashes and

gauging market sentiment? In this case, it might be that a simpler but less restricted methodology

would be better for examining market sentiment during the stress period.

Case Study Method

Let me turn next to the method of case studies used in examining market sentiment. Here, I would like

to propose another way of deriving market sentiment or expectations from the estimated IPDs, based

on my own recent research (Nakamura and Shiratsuka, 1999).

It is important to recognize that there is a risk of misreading the estimation errors as indicators of

changes in market expectations, if we look at the shape of the IPD on a specific date. Alternatively, we

can avoid this risk by observing the general trend of changes in each summary statistic that is shown

by the distribution shape, and focus on examining the relationship between asset price movements and

changes in distribution shape.2 In this case, I would like to emphasize the effectiveness of a time-series

plot of summary statistics for the estimated IPDs in the case studies for examining the changes in

market sentiment over time.

We estimated the IPDs for the Nikkei 225 Stock Price Index Option from mid-1989 to 1996 on a daily

basis (see Figure 1). By observing the time-series movements of underlying asset prices and summary

statistics of IPDs, we found the typical patterns in linking large fluctuations of asset prices and

response in the shape of IPDs as follows (see also Figure 2):

(1) The standard deviation rises during a period of sharp decline in stock prices (high positive

correlation with lagged absolute changes in stock prices), and a shift in level occurred at the end of

1989.

(2) The skewness moves in the opposite direction to changes in market level, reflecting lags in the

adjustment of market participants’ confidence to the market levels (high negative correlation with

simultaneous and lagged changes in stock prices).

(3) The excess kurtosis jumps in the case of extreme price changes (positive correlation with

simultaneous absolute changes in stock prices).

By comparing the actual movement of summary statistics with the aforementioned their typical

patterns in response to the market fluctuations, the estimated IPDs provide us with a lot of information

on the market sentiments and expectations. For example, the magnitude of changes in summary

                                                
2 This paper computed summary statistics on original strike prices, and standardized summary statistics of IPDs for
comparison. However, in our paper (Nakamura and Shiratsuka, 1999), we computed summary statistics on log-transformed
strike prices, and did not need to standardize computed summary statistics for evaluating the divergence from normal
position.
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statistics tells us of the impact of external shocks.  The length of adjustment periods provides us with

information on the smoothness of adjustment of market expectations. Through the case studies of

various episodes in Japanese financial markets during the period from 1989 to 1996, we have shown

such usefulness of the IPDs as an information variable for monetary policy.

Conclusions

In summary, market participants’ expectations are too diverse and informative to be captured merely

by using a single summary statistic, i.e., the mean, because the same mean value implies different

market expectations and policy implications, depending on the shape of the probability distribution of

the expected outcome. In particular, since market participants’ confidence in stock prices differs

substantially depending on timing, we can expect to capture more market information, both in quality

and in quantity, by carefully examining the changes in market participants’ expectations that lie behind

stock price fluctuations.

In this sense, as the papers and discussions contributed to this workshop suggest, the implied

probability distributions extracted from option prices will provide useful information for the conduct

of monetary policy.  However, studies on how to make use of the information extracted from option

prices in policy judgments have only just begun, and further research is necessary in this area.
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Figure 1.  Stock Prices and Market expectations (Overview)
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Figure 2. Dynamic Cross-Correlation

(1) Market Changes (t) vs. Summary Statistics (t-k)
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Discussion of
“How useful are implied distributions ? Evidence from stock-index options”

by G. Gemmill and A. Saflekos
Discussant: Raf Wouters

It is a pleasure for me to discuss this paper.  The paper covers several different topics :

- the estimation method of the implied distribution ;

- the test of the information content of the implied distribution ;

- the effect of specific events on the implied distribution.

This diversity of topics makes it somewhat easier to discuss the paper as I can choose the topics that

look most interesting to me. Since the estimation technique was discussed during the morning session,

I will concentrate my remarks on the test of the information content of the implied distribution (i.d.).

The authors use an out-of-sample pricing prediction to test the information quality of the estimated i.d.

This is a strong test for the i.d. as it depends on the whole structure of the distribution.

Traditional tests of the information content of option prices have concentrated on the test of the

volatility measure only: they analysed whether the implied volatility was an unbiased predictor of the

ex-post realisation of the average volatility over the option maturity. The general conclusion was that

the implied volatility is a biased estimator because systematically overpredicting the realised volatility.

On the other hand, the relation between implied volatility and the realised volatility was proved to be

very significant and the implied volatility outperformed the forecasts of time-series based volatility

measures such as Garch estimation techniques.

The out of sample pricing test used in this paper is a more general test : by pricing the whole range of

options, the error will depend on both the volatility forecast but also on the higher moments describing

the whole shape of the i.d.

The authors summarise these results by the RMSE of the forecast and compare this figure with the in

sample errors. The mixture of two-lognormals delivers a strong improvement both in sample (but

without correction for the number of parameters in the model) and out of sample compared to the B.S.

model. These statistical gains are impressive at least for the period where European options are used

(indicating perhaps that the method as applied here is not well suited for American style options).

This is a strong result and confirms similar conclusions in the literature (e.g. Dumas a.o. JF 1998).

However, the authors minimise this finding: the improvement in value terms is not economic

meaningful as it falls within the typical bid/ask spread in the market. They conclude from this that the

forecasting performance is not markedly better than B.S. and that these results cast doubt on the

hypothesis that the shape of the i.d. is a rational expectation.
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In my opinion this conclusion is drawn somewhat to quickly : I would like to see more detailed results

and add more tests:

- the average RMSE is too general: I would suggest for instance some statistic on the number

of cases and the size of improvements in the fit in excess of the bid/ask spread (the outcome of some

investment strategy would even be more conclusive). I would like to add here that by minimising the

sample size to 10 observations, one probably makes it more difficult to find important improvements :

so why not take the whole set of available prices into account?

- I wonder whether the errors are systematically related to strike prices and whether such

systematic errors are higher / lower compared to the B.S. model

- I would also prefer to see predictions over a longer horizon: this can increase the possibility

to find economic significant improvements;

- I would also compare the pricing error to a third model, for instance a simple approach based

on a martingale assumption in which the pricing in the forecast is based on the observed volatility

smile of the previous day.

Whatever the answers to these remarks, the important question remains as to why the prediction error

is so much bigger out-of-sample as compared to the in-sample estimation error:

- a first explanation is the misspecification of the model based on the mixture of two-lognormals.

However the small in-sample errors, typical for methods based on option prices of one maturity and at

one point in time,  provide not much hope that further improvements can be achieved within this

approach;

- a second answer is the arrival of new information that changes not only the price of the underlying

asset but also the volatility and the whole shape of the distribution.  Under this hypothesis one can still

test whether the forecast is unbiased and rational, but it will be statistically more difficult to find the

answer.  But more important, under this hypothesis the implied volatility and the i.d. can no longer be

considered as constant and one should go in the direction of modelling the behaviour of these variables

over time (Examples like Ait-Sahalia JF 1998 give promising results in this respect). But if one

accepts that volatility is non-constant over time and that this variability is very important, one arrives

quickly at the limit of methods based on a specification of the terminal distribution or other “non-

structural” methods to estimate the option pricing function. These methods can never explain the

economic logic behind the changes in the volatility or in the higher moments of the distribution,

neither can they explain, in economic terms, the observed negative skewness and high kurtosis.

Therefore one should move to structural approaches that model explicitly the dynamic process of the

asset price and the volatility process.  Within such a framework one can look for alternative

explanations for these observations in the direction of  :
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- the role of the leverage effect;

- the role of non-normally distributed shocks;

- the variable risk-aversion, etc;

The test of such a model typically covers a broad range of option prices both cross-section and over

time. The existence of higher in-sample errors in such application leaves more room to find economic

significant differences in and out of sample;

- a third alternative explanation for the high prediction errors can be found in specific factors or

characteristics of the option market.  For instance  through the existence of :

- bid-ask spreads that generate pricing errors;

- important liquidity problems due to the lower number of transactions in far out or in the

money options;

- specific exposure or insurance arguments in the option market that distort the option prices.

This last type of explanations for the pricing errors make the use of the i.d. to investigate their

information content problematic.  Such distortions make the i.d. less useful or at least more difficult to

interpret. Only option investors would still be interested to study these effects.

Now perhaps it is too strong to separate these different explanations underlying high prediction errors :

if option market behaviour has a feedback to the underlying asset market, as one should expect in a

general equilibrium framework, the different explanations can no longer be separated, and the

interpretation becomes difficult in any case.

As long as our knowledge on the mechanisms that drive the movements in the distribution remains

limited, we should be careful in using this information, and indeed consider it, as the authors suggest,

only as some indication of market sentiment:

- simple volatility measures can be used to give an indication of the uncertainty of investors

outlook. The use of implied volatility for analysing credibility of monetary policy typically falls in this

category ;

- but the interpretation of the higher moments should be made very cautiously.

This conclusion also follows from the review in the paper of the i.d. behaviour around specific events.

The i.d. does not show any systematic behaviour during these periods. But the exercises, and in

particular the in-sample statistics, illustrate that the mixture of two lognormals does a reasonable job in

describing the information of option prices during periods of high negative skewness, high kurtosis or

bimodal distribution.
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An Options-Based Analysis of Emerging Market Exchange Rate Expectations:
Brazil's Real Plan, 1994-1997

This paper uses a new data set of options on the Brazilian Real / US dollar exchange rate to extract

market expectations, as embodied in the risk-neutral probability density function (PDF), of real-dollar

exchange rates over horizons of one to three months.  Unlike ordinary exchange rate forecasts that provide

only a point estimate of the future exchange rate, options-based forecasts, by permitting the derivation of a

PDF, describe a range of realizations and the probability attributed to each range.

This PDF-based approach is especially effective for an analysis of the Real/$ exchange rate, which

since the June 1994 Real Plan has been characterized by a combination of a crawling peg and a target zone

regime.   Over short horizons, the exchange rate has followed a crawling peg surrounded by a “miniband,”

but for long horizons, superimposed on the crawling peg, there has also been an official “maxiband” with a

fixed (non-crawling) central rate, floor, and ceiling.

The PDF’s derived in this paper enable us to compare market expectations embedded in options

with these two concurrent regimes.  From the derived PDF’s, we can identify any divergences between

market expectations and the existing crawling peg—e.g., whether markets in fact anticipated a faster

depreciation, and if so, where (relative to the crawling peg) probability was concentrated.  Relative to

single-point expectation of the future exchange rate, a great advantage of a full PDF is the ability to

disentangle magnitude and probability of expected depreciation—e.g., a high probability of a small

depreciation vs. a low probability of a large depreciation, with presumably very different policy responses.

For the longer-horizon fixed target zones, we can perform a similar decomposition of probability and

magnitude of depreciation, and moreover, conduct “arbitrage-based tests” of credibility, developed in

Campa and Chang (1996), that are virtually assumption-free.   Given these target zones, we are also able to

determine both “intensities” and probabilities of realignment, and to investigate possible economic

determinants of realignment intensity.  Thus, a single approach using dollar-Real options permits us to

analyze both facets of the post-Real Plan Brazilian exchange rate regime.

This work contributes to the growing literature on the use of options to characterize expected asset

returns, and in particular to predict currency crises. Recent empirical work using options to identify the

distribution of expected exchange rates includes Malz (1996) and Campa et al. (1997, 1998).  Papers

specifically focusing on currency crises, especially the 1992 ERM crisis, include Campa and Chang (1996),

Malz (1996), and Mizrach (1996).   These can be contrasted against measures of devaluation risk not based
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on options, as in Bertola and Svensson (1993), Kaminsky, Lizondo, and Reinhart (1997) and, Svensson

(1991).

The motivation for this research is two-fold: first, to use options-based estimates of the PDF to

compare and contrast market expectations with the two concurrent exchange rate regimes in the post-Real

Plan Brazil; and second, to observe the time path of market perceptions to gauge policy effectiveness over

time.  Furthermore, this is one of the first options-based tests of exchange rate regime credibility on an

emerging market.  Within emerging markets, this is also the first paper to deal with the data challenges of

exchange-traded options, rather than over-the-counter (OTC) volatility quotes.  OTC data are normally

subject to less observation error, and are by construction free of arbitrage violations. Hence, OTC data are

easier to interpret empirically.   Thus, results obtained here may have implications for applying this

technique to other emerging markets, including those with only exchange-traded currency options.

The remainder of the paper is structured as follows.  Section I describes the theoretical background

behind the use of option prices to determine risk-neutral probability density functions (PDF’s)—and for

target zone regimes, the derivation of re-alignment intensities and probabilities, as well as arbitrage-based

tests of credibility.  Section II discusses the Real Plan and pertinent historical background, including the

“miniband” and “maxiband” regimes.  Section III introduces our option data, provides summary statistics,

and conducts a preliminary analysis.  Section IV investigates the behavior of the PDF over time, and in the

context of a crawling peg, describes the probability and magnitude characterizing expected deviations from

this regime.  Section V addresses the “maxiband” target zones, estimated realignment intensities and

probabilities, and arbitrage-based measures of credibility.  Section VI explores the empirical relation

between estimated intensities and standard macroeconomic factors.  Section VII concludes.

I.   Options-Based Indicators of Devaluation and Tests of Exchange Rate Band Credibility

Options—whose payoff depends on a limited range of future exchange rates rather than an entire

distribution—are able to provide more precise information than other financial indicators about the future

exchange rates expected by the market, and the amount of probability attributed to any given realization.  In

contrast, the forward rate, for example, can indicate only the mean of this distribution.  The advantages of

an options-based approach will be discussed further below.

A.  Options and the Risk-Neutral Distribution

We begin with a few brief definitions. A call option gives its holder the right but not the obligation

to purchase a fixed amount of foreign currency (in the case of Brazilian Real-US dollar options, $1000 US)
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at a pre-determined price (referred to as the strike price or exercise price) in local currency.  A put option

gives the right but not the obligation to conduct the reverse transaction, i.e., to sell a fixed amount of the

foreign currency ($1000 US) for a given strike price in local currency.

An American option may be exercised at any time before its expiration date; a European option,

only on its expiration date.   Because the European option can be exercised only on a single date, an

analytical relationship known as put-call parity can be established between the price of a European call and

European put of the same strike.  This relation, which is derived from arbitrage restrictions, permits the

price of a call to be computed from the price of a put with the same strike, and vice-versa.  The analysis in

this paper focuses exclusively on relationships derived from European call options (though some of the call

option data were constructed from European put data via put-call parity).

It was first shown in Breeden and Litzenberger (1978) that the decline in the value of a European

call option due to an infinitesimal increase in the strike price equals the discounted risk-neutral probability

that the option will finish “in-the-money” (spot exceeding the strike on expiration).  Accordingly, the value

of a call option (under risk-neutrality) at time T with a strike price K is then given by
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where ST is the spot exchange rate at time T,  f(ST) is the risk-neutral density function for the spot at time T,
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where F(K) is the risk-neutral cumulative density function of the exchange rate at time T, evaluated at strike

price K.  Taking the second partial derivative of equation (1) with respect to strike yields:
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This then provides a direct relationship between observed European call prices and the value of the

corresponding risk-neutral probability density function, i.e. the PDF.  Note that the call price is based on the

payoff (ST - K) multiplied by its risk-neutral probability f(ST), which incorporates both the actual

probability of that realization of spot and the value the market places on that state of nature. In other words,
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f(ST) is not necessarily the actual density function, since—because of risk—a dollar in one state may be

valued differently from a dollar in a different state.

Equation (3) is important because it provides the method by which the PDF can be extracted from

call prices.  If a continuous call price function twice-differentiable in strike exists, then the PDF is uniquely

determined.  In reality, such a continuous call price function is not available, but will be estimated from

discrete point observations using a method described in Section IV of this paper.

B.  “Intensity” of Devaluation or Realignment

When there are specific reference exchange rates in place, as in the case of target zones, a risk-

neutral PDF can be used to indicate the perceived probability of devaluations or “re-alignments” of various

sizes beyond that specific reference level.  By looking at only that part of the PDF representing a deviation

from the reference exchange rates, we can isolate the risk of a change in regime.  A summary measure

incorporating both probability and magnitude of change from given reference rates, over all possible

realizations deviating from these reference rates, can be termed an “intensity” measure.  Campa and Chang

(1996) define such an intensity as:
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Intuitively, intensity G(T) is a risk-neutral probability-weighted average of all exchange-rate realizations

requiring a re-alignment, or under deviation scenarios beyond  S-overbar.   In other words, the magnitude of

realignment is multiplied by the risk-neutral probability of each realization.  Comparing equations (4) and

(1), the intensity of realignment is simply the future value of a European call with a strike price at the upper-

bound.  Mathematically,
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Though this call with a strike price at the upper-bound does not exist in most cases, its price (and hence the

intensity of realignment) is easily calculated once a risk-neutral PDF has been derived.

C.  Minimum Intensity of Devaluation or Realignment

In the absence of a complete risk-neutral PDF, Campa and Chang (1996) show how one can

compute a lower bound on re-alignment intensity using far fewer data points but relying on convexity

properties of the call price with respect to strike, and the existence of one credible second reference rate.
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This method uses both an observed at-the-money option, as well as the hypothetical price of an option

whose strike price is the credible side of the target zone.  The latter option will always end in-the-money,

and hence can be evaluated as a bond or forward contract, since there is no uncertainty and no time value.

The method then relies on the arbitrage-based condition that call prices are always a convex and non-

increasing function of strike price.  Therefore, when the call is graphed as a function of strike, the point

corresponding to a call with a strike at the upper band (i.e. the realignment intensity) must lie above the

rightward extension of a line connecting CallS,T (a call with a strike at the lower band expiring at time T)

and any CallK,T  (with strike K below the upper band).   The following inequality summarizes this:
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D.  Arbitrage-Based Tests of Target Zone Credibility

Campa and Chang (1996) also develop two tests of band credibility relying solely on arbitrage or

convexity arguments, without assumptions about risk preferences. These tests will be used for analysis and

comparison in Section V.

The first test (hereafter referred to as “Test 1”) is based only on a simple no-arbitrage restriction:

the maximum future spot rate cannot exceed any credible upper band.  At expiration, the payoff of a

European call equals, at most, spot minus strike.   Therefore, under credibility, the maximum value of the

call cannot exceed the present value of the upper band minus the strike.  Thus, credibility can be rejected

whenever
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Note that this test can be used even when there is only one reference rate.

The second test (“Test 2” from here on) is derived from convexity arguments and also provides an

upper bound for the value of a call with a strike between two reference rates, or within the bands of  a target

zone.  The argument is that under credibility, a call with a strike at or below the lower band will always

finish in-the-money, and therefore is worth exactly its intrinsic value.  This intrinsic value is S0/(1 + iT
*)-

K/(1 + iT), where iT
* is the foreign risk-free rate and S0 is the current spot.  Furthermore, a call with a strike

greater than the upper band will always finish out-of-the-money, and therefore be worthless. Call value,

when mapped against strike, is a convex function passing through these two points.   Therefore, a straight

line—since we do not know the degree of convexity of the call function, but do know that it cannot be less
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convex than a line—connecting these two points must provide an upper bound on all points in between.

Thus, credibility can be rejected whenever the call value exceeds this upper bound, or
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Notice that by rearranging the terms of Test 2, we can show that the RHS of Test 2 is equal to the RHS of

Test 1 times a coefficient less than one, provided the forward rate does not exceed the upper band.

Therefore, as long as the forward rate is within the band, Test 2 is always at least as restrictive as Test 1.

The one advantage of Test 1 is that it does not require the existence of a credible second reference rate, and

provides a valid test even in the absence of, for example, a credible lower band.  Test 2, in fact, is a test of

the joint hypothesis that two reference rates, or the lower and the upper band of a target zone, are credible.

This section has summarized four different (but related) measures of exchange rate band credibility

based on options data alone: (1) the PDF-based realignment intensity, when a full PDF can be described; (2)

the minimum realignment intensity, given a credible second reference rate, (3) arbitrage test 1 (on one

exchange rate band), and (4) arbitrage test 2  (based on lower and upper bands).   In terms of how these four

measures are related, recall that Test 2 is always more powerful than Test 1, but requires more assumptions.

There is also a one-to-one mapping between violation by Test 2 and a positive minimum intensity of

realignment, as both are based on convexity properties alone.

II.   The Real Plan and Relevant History

Brazil has been subject to high levels of inflation since the early 1980's, and had unsuccessfully

attempted to rein in inflation several times prior to 1994’s Real Plan.  Economic problems, in part, date

back to 1964 when the military overthrew the civilian government, resulting in military control of the

economy until 1985. (It was not until 1990 that the first popularly elected president was inaugurated.)

During this military-ruled period, Brazil pursued industrialization policies based on import substitution,

creating a number of large state-owned enterprises.  The government engaged in protectionist trade policies

to spur such industrialization and to create economic independence in key industries.  As a result, by the

1980's, foreign investment in support of the inefficient industries collapsed, and hyperinflation followed

because the high levels of government spending could not be reduced in line with reduced capital inflows.

By 1990, hyperinflation had been structured into the economy, through both indexation and expectations,

with the concomitant debilitating effects.
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Prior to the Real Plan, several attempts were made to contain inflation, usually involving

combinations of wage and price controls, tightening of the money supply, tax hikes, and freezing of bank

deposits.  These all failed as the fundamental problem lay in expectations of high inflation and excessive

government spending.  Wage and price controls were often ignored by the private sector, as immediate

shortages often resulted, creating price pressure.  In many industries, cartels also prevailed, reflecting the

low degree of market competition.  Government spending proved difficult to curtail given large entitlement

programs in place, and vested interests resisting spending cutbacks and privatization of government

industries, particularly during a recession.  Fiscal troubles were compounded by a badly written constitution

providing tenure for government employees after only five years (making them virtually impossible to lay

off), and guaranteeing individual states a right to share in the federal revenues without restricting state

spending.  An attempt to introduce a new currency in 1993, the Cruzeiro Real ran into the same problem of

inflationary expectations.

The Real Plan, introduced in December 1993 by Finance Minister Fernando Henrique Cardoso,

differed from the previous plans in that it directly addressed the problem of inflationary expectations.

Cardoso recognized that past inflation was being transmitted into future expectations by indexing and

various contract negotiations, as inflation figured into all wage and business contracts.  The idea was to

break this connection by creating a unit of transactional account in which price and wage contracts would be

negotiated and written, and whose value would be kept roughly equal to $1.  The official currency, the

cruzeiro real, would then be devalued against this unit.  The Unit was called the Unit of Real Value (URV),

and was introduced in March 1994.  At the same time, the constitutional links between revenue and

expenditure were circumvented by creating a special fund (Fundo Social de Emergencia - FSE) to eliminate

the public sector deficit, thereby addressing a fundamental source of inflationary pressure.  (The creation of

the FSE was necessary to avoid the structural claims guaranteed by the constitution to the states and to

entitlement programs.)  Four months after the introduction of the URV, the Real was introduced.  The

central bank (Banco Central do Brazil) committed not to permit a depreciation beyond 1.00 Real/$, though

appreciation would be allowed.  Furthermore, a reserve ratio was implemented requiring one American

dollar to each Real emitted.

The result of the Real Plan was a reduction in inflation from 50% per month, as of June 1994, to

less than 2% per month by the end of the year.  Inflation has since then continued to drop, and in May 1998,

12-month inflation was 3.12%, its lowest value since November 1949.  The Real Plan has also had positive
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effects on the rate of economic activity.  Brazil’s real GDP grew at an average annual rate of 4.0% during

the four-year period 1994-1997, compared with an average annual growth rate of -0.2% during the four

years prior to the implementation of the plan1.

Exchange rate stabilization was an integral part of the Real Plan.  Upper and lower bands

(“maxibands”)—as indicators of the maximum possible movement up or down—were established in March

1995, at a rate of .93 and .88 Real/$.  Since then, they have been adjusted several times to allow the Real to

depreciate at a controlled rate.

While announcing these broader “maxibands,” the central bank in practice followed a “crawling

peg” system, in which the Real gradually depreciated, but remained within a “miniband” surrounding a

depreciating central rate .  Under this informal system, the Real’s central rate was devalued approximately

0.5%-0.6%/month, and central bank intervention assured that at all times, the spot rate would not deviate by

more than 0.25% (half the “miniband width”) in either direction.  In practice, the central rate was devalued

discretely by about 0.10% (although sometimes 0.05% or 0.15%) about 5-7 times per month. Starting April

1997, the government started devaluing the central rate by about 0.7% monthly.  To discourage speculation

against the system, the actual magnitude and timing of these mini-devaluations was kept slightly irregular.

Furthermore, the size of the minidevaluation would be smaller than the width of the miniband itself, so the

instantaneous direction of the spot rate could not be known with certainty, discouraging “one way” bets.

While this system of a predictable crawling peg surrounded by a miniband provided short-term

stability in the spot rate, the government wished to maintain some flexibility in its commitment to the

exchange rate over longer periods such as several months.  To commit to a very narrow range, even one

surrounding a crawling peg, risked tying the government’s hands unnecessarily and inviting outside

speculation against the currency.  Thus, the government remained free to alter either the rate of devaluation

or the width of the miniband.  At the same time, the government also wished to provide some indicative

levels for medium-term forecasting.  This dual objective was reached by instituting wider “maxibands.”

Though the exchange rate never technically violated these bands, the central bank adjusted the maxibands

as markets gradually approached the maximum Real/$ exchange rate, an event that has typically occurred

every six to twelve months (Figure 1) .

                                                          
1 It is worth noting that measures to address the structural problems also appear to be proceeding.
Privatization of state industries is continuing, and the Brazilian Congress has agreed to several
constitutional reforms.  These include: the relaxation of protectionist provisions not mentioned here, reform
of the social security system, and provisions relaxing the excessive protections provided to pubic workers.



10
Since the original maxibands were implemented in March 1995, through the end of our data in July

1997, the bands were changed on three separate occasions: June 22, 1995; January 30, 1996; and February

18, 1997.  Since the end of our data, the maxibands were changed on January 19, 1998, to the current upper

and lower bands of 1.22 and 1.12 Real/$ respectively.   In April of 1998, the government also announced

that the lower end of the miniband would depreciate at a rate of 0.65% a month, while the upper band would

depreciate at a rate of 0.75%, de facto widening the minibands over time.  Despite its short history, the Real

Plan appears to have been quite successful in taming Brazilian inflation and establishing a relatively stable

currency with a reasonably predictable rate of devaluation.  Given this track record, the following sections

will seek to investigate issues of exchange rate regime credibility—both the crawling peg and the maxiband

system—and how market perceptions of the distribution of Real/$ spot rate have changed over time.

III.   Data Description

The data obtained consist of high, low, average, and last transaction prices for every trading day of

dollar futures (daily observations of contracts of multiple maturities), calls and puts (daily observations of

multiple strikes and expiries), and closing spot rates, from the Commodities & Futures Exchange (Bolsa de

Mercadorias & Futuros, known as the BM&F) in Sao Paulo, Brazil.  The data cover the period from July

1994, shortly after implementation of the Real Plan, through July 1997.  Calls are initially both European

and American, until a 1995 shift in convention, making all calls expiring after October 1995 European.  All

put contracts are European.

The BM&F was formed in July 1985 and began trading in January 1986. Currently, the exchange

offers a range of futures and options contracts on the US dollar, the Ibovespa (the Brazilian stock index),

sovereign debt instruments, inter-bank deposit rates, US-Brazilian interest rate spreads, gold, cattle, and

agricultural commodities.  With a total trading volume of 102.3 million contracts and a financial volume of

6.1 trillion US dollars during 1997, BM&F is currently ranked fourth among the world's derivative

exchanges2.  In 1997, 39.7 million contracts traded were US dollar futures, 8.1 million contracts were US

dollar call options, and 71,820 contracts were US dollar put options3.  Total trading volume in foreign

exchange contracts has actually declined since 1985, but this is due primarily to increases in contract size;

financial volume has more than doubled from 1996 to 1997.   US dollar contracts for both futures and

                                                          
2 Bolsa de Mercadorias & Futuros 1997 Annual Report.
3 These figures are for contracts based on commercial US dollar rate.  Contracts are also available based on
the floating rate, however, these represent less than one percent of total transactions volume.
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options apply to the “commercial” (as opposed to financial) exchange rate on a notional amount of

$100,000.

In this paper, we focus on European call data, which significantly outnumber put data. Put data

were translated using put-call parity and used only to augment the call data if a corresponding call did not

exist.  The call data consist of 5855 observations from the time period with mixed American and European

calls, and 4837 usable (about 200 questionable observations were deleted) observations of the later time

period with purely European calls.  These call prices were supplemented with put data consisting of 530

observations for the first time period, and 218 from the second time period.  This revised data set forms the

basis for our subsequent analysis.

In deriving the PDF and conducting credibility tests, we use futures prices as an approximation of

the forward rate, as in Bodurtha and Courtadon (1987).  US interest rate data are daily Eurodollar rates for

1 day, 1 week, 1 month, 3 month, 6 month, and 1 year, obtained through Datastream .   Linear interpolation

between the two closest maturities along the yield curve is used to obtain the Eurodollar rate corresponding

to the options’ maturity.  For example, if an 18-day rate is required then we use a weighted average of the 1-

week and 1-month rates.  Brazilian interest rate data is computed using covered interest rate parity, using

the appropriate futures contract (whose maturity normally coincides with that of the options), spot exchange

rate (again the mid-point of bid and ask), and computed Eurodollar rate.  Since we have closing spot and

U.S. interest rate data, we use the last traded futures contract in each day’s calculations.  Finally, exchange

rate band information was obtained from the World Bank.

Macroeconomic indicators used in Section V to determine economic explanatory variables are

drawn primarily from International Financial Statistics (IFS) by the International Monetary Fund.  The

choice of variables, follows Rose and Svensson (1994).  The “real exchange rate" is constructed from the

nominal exchange rate (IFS code ...rf), the US PPI (IFS code 63BB.ZF ), and the Brazilian WPI (IFS code

63.Z.CF ).  “Output" is represented by industrial production (IFS code 66...b for the United States, Data

Stream code BRINPRODH for Brazil).   “Inflation" is the percentage change in the consumer prices (IFS

line 64...x).  The “trade balance" is the ratio of exports to imports (IFS line 70 divided by line 71);

"Reserves" are foreign exchange excluding gold (IFS code 1l.d) and “Money" is Reserve Money (IFS line

14).
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In Table 1a, we report the mean and standard deviation of strike price over three maturity ranges

(i.e. 1-30 days, 31-60 days, and 61-90 days) and four time periods corresponding to different exchange rate

regimes.  Maturities vary because unlike over-the-counter option contracts, which have a fixed time-to-

expiration, BM&F standardized options and futures contracts settle on the first business day of the maturity

month.4   Note that especially in the first time period (March 10, 1995 – June 22, 1995) even the mean

strike price was often outside the band.

In Table 1b, we report the distribution of these strike prices over time relative to the spot, forward,

and upper-band.  The concentration of strike prices is important for two reasons.  First, it indicates in what

exchange rate range market liquidity and interest were greatest.  Second, it will affect the reliability of the

PDF we extract from these data.  Generally, the PDF is most reliable in ranges spanned by the observed

strikes.  Notice in Table 1b that the distribution of strike prices has become more concentrated over time:

the percentage of strikes above the spot is increasing over the four periods, but the percentage above the

upper-band is decreasing over the four periods.  To the degree that market activity reflects a concentration

of expectations (to be verified more formally later in the paper), this pattern suggests that market

expectations are exhibiting less dispersion over time, and that the upper-band is becoming increasingly

credible (as indicated by decline in the percentage of strikes exceeding the upper-band).

The behavior of the underlying Real-dollar exchange rate also appears to have shifted over these

periods. Table 2 reports the standard deviation of daily changes in the spot and forward rates.  These

standard deviations have decreased over the first three periods, a pattern coincident with less dispersed

expectations as suggested by the increased concentration in observed strike prices.

IV.  The Implied PDF and Expected Deviations from the Crawling Peg

A.  Estimation of the Risk-Neutral PDF (over 15-day periods)

We first use our option data to derive risk-neutral PDF’s corresponding to horizons of one, two,

and three months.  Because of data limitations, this procedure will require certain numerical

approximations, but the resulting PDF’s  provide potentially richer information about expectations than

simple point-estimate characterizations of expectations as provided by the forward rate or an econometric

model.

                                                          
4 The exchange does offer a ‘flexible’ option contract that can be tailored to the issuers needs including
style, maturity, dollar value, etc.   However, data on these contracts were not available, and in any event,
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A common approach to deriving the PDF from option prices characterizes Black-Scholes

volatilities (“vols”) implied in option prices as a function of the strike price.  For any given date and time

horizon, one can interpolate and extrapolate from existing implied vols to express implied vol as a

continuous function of only the strike price.  This function is commonly known as the “volatility smile”5.

The function is then transformed into a continuous call price function that is twice-differentiable in strike.

This approach does not require that the Black-Scholes model hold; indeed, the fact that implied vol varies

with strike rather than being constant across all strikes is itself evidence against Black-Scholes assumptions.

Note that the numerical technique in this volatility smile-based approach can vary, as discussed in Shimko

(1993) and Campa, Chang, and Reider (1997, 1998).   In Shimko (1993), the method applied in this paper,

the implied volatility smile is fitted as a quadratic function of the strike. In contrast, Campa, Chang, and

Reider (1997, 1998) use the method of cubic splines.6

Table 3 reports, by option maturity and exchange rate regime, the mean and standard deviation of

the Black-Scholes implied volatilities extracted from observed option prices.  A number of stylized facts are

worthwhile noting.  First, in all cases but one, shorter maturities are associated with high mean volatility.

When normally calm markets experience occasional periods of high uncertainty expected to be temporary,

implied volatility will increase, and most markedly for short-maturity options.  Longer-dated options will

also show a rise in volatility, but since the high-uncertainty state is not expected to continue throughout the

option’s remaining life, the implied volatility will reflect both the high-uncertainty period and the normal

lower-uncertainty period, thereby diluting the effect of the temporary high-volatility period.  Second, by

similar reasoning, the standard deviation of short-dated volatility will be the highest, since longer-dated

volatility will again reflect an average of high-volatility and low-volatility periods.  Third, the mean implied

volatility is one to two orders of magnitude greater than realized volatility obtained from the time series of

exchange rate changes.  This is because implied volatility reflects the presence of  “peso problem”—the risk

of a rare but substantial exchange rate shock, in this case a devaluation of the Real.  Throughout the periods

in question, the Real has remained stable, or depreciated only gradually against the dollar.   For the most

part, in our very brief sample, the Real has avoided the large price movements reflected in options’ implied

                                                                                                                                                                            
given the potentially unique structure of each contract, each observation would have to be individually
evaluated.   Furthermore, low liquidity would reduce the reliability of such data.
5 Volatility plotted as a function of the strike price often resembles a “smile” because Black-Scholes implied
volatilities tend to increase as the strike price moves away from the forward rate.
6  For a number of dates, we also fit a cubic spline (as in Campa, Chang, and Reider (1997, 1998)) to the
data, and obtain similar results to the quadratic, suggesting that the results are robust to the method used.
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volatility.   Of course, in small samples, realized volatility can very easily be substantially below implied

volatility in the presence of a “peso problem.”

In our attempt to derive a PDF from the Brazilian options data, a significant empirical problem is

that, for any given observation date and maturity date, we observe an insufficient range of strike prices to

trace out a reasonably complete volatility smile. This prevents us from constructing daily estimates of the

PDF on all but a few dates. Also, as mentioned previously, options expire on the first business day of every

month, reducing the frequency to only monthly if we wish to compare PDFs with the same time horizon.  To

overcome these data limitations, we make the assumption that the shape of the volatility smile remains

constant for a period of 15 days.  For convenience, we assign the period’s midpoint as the “observation

date” for each 15-day period.  For instance, for 60-day call options, implied volatilities are collected for

options ranging from 53 to 67 days to expiration.  Each volatility corresponds to a strike/forward ratio for

the collection period.  We convert each strike/forward ratio to an absolute price by multiplying by the

forward rate central to the period.   The implicit assumption is that during this period, the relationship

between volatility and the strike/forward ratio remains constant.

Aggregating option observations over such 15-day periods, we obtain a semi-monthly series of

PDF’s for 35, 60, and 91-day call options (the 35-day periodicity captured a greater spectrum of strikes than

did a 30-day).  Many of these PDF’s are estimated using over 20 data points on the volatility smile, and

most use over 10 data points.  Only in one case do we use as few as three options data points.   PDF’s are

discarded if the associated continuous call price function is non-convex, as occurred in two instances.

PDF's were also smoothed using an exponential smoothing technique, which removes non-monotonicities or

negative values on the posterior and anterior slopes.  When this technique is applied, if a non-monotonicity

or negative value is detected, the computed PDF at this point is modified to decline from the previous value

towards zero at an exponentially decreasing rate.

Figures 2a-c provide three-dimensional time series of risk-neutral PDF’s estimated using numerical

derivatives, for 35, 60, and 91-day options respectively.  The PDF’s are presented as a function of the

strike/forward ratio.  The first observation in any of the graphs is October 3, 1994 though the continuum of

observations does not in general start until June 2, 1995.  (The dates on the horizontal axes are shown in

reverse to facilitate a better view of the fluctuations in the estimated distributions over time.)  All time series

appear to exhibit increasing skewness and decreasing kurtosis over time.  Positive skewness in this context

indicates that a large depreciation of the Real is more likely than a large appreciation. The increase in
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skewness largely stems from the disappearance of a downside tail, in the region of Real appreciation.

Kurtosis, on the other hand, reflects “fatter tails,” relative to the lognormal distribution.  Kurtosis (above

that found in the lognormal distribution) denotes a relatively high probability of extreme outcomes—

holding volatility constant. These graphical results reinforce our earlier inferences from the distribution of

strike prices. Positive skewness confirms that the market perceives a greater probability of a large Real

depreciation than a large Real appreciation. Increasing kurtosis indicates the relative increase in very large

expected exchange rate changes, and hence conditional on the level of volatility, less total probability of

devaluation.  Towards the end of the sample, it is striking how the part of the distribution below the forward

rate is extremely concentrated in values very close to (but below) the forward rate (i.e. small Real

appreciation).  In contrast, for values above the forward rate, the distribution quickly drops to zero for

points beyond a 2% depreciation from the forward rate.  This is consistent with the government’s stated

policy of constant depreciation over time.

B.  Deviations from the Crawling Peg (Miniband) Regime

We now use these PDF’s to identify potential divergences between market expectations and the

existing crawling peg regime of 0.5%-0.6% per month.  We focus on possible Real devaluations of a larger

magnitude than the crawling peg, namely 2% and 5% over horizons of 35, 60, and 91 days (approximately

1, 2, and 3 months).  All these combinations of devaluations  and time horizons represent a rate of Real

depreciation at least as fast as under the crawling peg, and usually more so.  For example, the existing

crawling peg would imply about a 1.5% depreciation over three months.

For each devaluation size (x%) and horizon, we calculate the “probability” of devaluations at least

x%.  “Probability” denotes the total amount of probability, not weighted by distance, representing

devaluations of at least x% from the current spot.  Graphically, this corresponds to the area under the curve

in the right-hand tail of the risk-neutral PDF beyond an x% devaluation. In contrast, “intensity” denotes the

total probability, weighted by the amount of depreciation beyond x%, of all devaluations of at least x%.

Table 4 depicts the probability, at the start of each month, of a depreciation of at least 2% or 5%

over horizons of 35, 60, and 91-days.  A number of points are striking in this table.  First, the credibility of

the crawling peg regime has improved consistently over time.  Late in the sample, probabilities of a given

depreciation (from spot) are much lower than early in the sample.
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Second, within any of the three exchange rate regimes, the probability of a 2% or 5% depreciation

does not change markedly in the months just prior to the maxiband realignment.   In the first regime, from

August 1995 (when our data begin) through January 1996, depreciation probabilities remain high

throughout these six months.  Beginning in February 1996, the probability of depreciation drops

significantly, and remains low even up to the February 1997 realignment.  This does not imply that markets

expected no maxiband realignment, as we will see in the following section.  Yet, the options data indicate

that any anticipated maxiband realignment was not expected to be accompanied by a large spot

depreciation.

Third, around times of realignments (the months preceding January 1996 and January 1997) the

probability of a 5% depreciation is usually far smaller than that of a 2% depreciation. This indicates that the

probability mass of a depreciation of 2% or more arises primarily from expected small depreciations—i.e.

between 2% and 5%--rather than expected large depreciations of 5% or more.  Thus, even when the

crawling peg regime is not perceived as fully credible by the market—i.e. some depreciation beyond the

usual 0.5%-0.6% per month is expected, much of the market’s “doubt” surrounding the crawling peg regime

is in the form of minor rather than major expected depreciations beyond the crawl.

Fourth, our estimates of depreciation risk prove extremely sensitive to news affecting the Brazilian

economic and political situation.  Probabilities of large depreciations increased considerably in April and

May of 1996.  This coincided with a humiliating defeat suffered in Congress by the Brazilian government

on Social Security Reform, a key part of the structural reforms under the Real Plan.  Likewise, in May 1997,

bribery accusations against some Congress members resulted in a sharp temporary rise in depreciation

probabilities.  Table 5 lists certain key economic and political events that may have played a role in the

market’s perception of depreciation risk over this period.

V.   Empirical Findings:  Tests of Exchange Rate “Maxi-Band” Credibility

A.   Arbitrage-Based Tests (Daily Observations)

We now focus on Brazil’s “maxibands” and perform a number of tests, including the arbitrage-

based tests of band credibility using Tests 1 and 2 (equations (7) and (8) respectively) discussed in Section I

of this paper.   We start by focusing simply on the behavior of the spot and three ranges of forward rates (1-

30 days, 31-60 days, and 61-90 days) against the band. We see in Figure 1a that there is no violation of the

upper-band by the spot.  In Figure 1b, for 1-30 day data, an ongoing violation of the upper-band by the
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forward occurs only in the first target zone regime, although the longer-dated forward prices (Figures 1c-d)

do approach and at times cross the upper-band in other regimes just prior to subsequent adjustments.

The options-based test results are graphed in Figures 3a-l.  Figures 3a-f report the results from Test

1 for options in three different maturity ranges (1-30 days, 31-60 days, and 61-90 days), while Figures 3g-l

report the results of Test 2 for the same maturity ranges.  We report two figures for each maturity.  The first

figure plots the observed price of the call option on a given date minus the corresponding “maximum”

consistent with credibility from all the options with the relevant maturity range observed that day.  Positive

values for Tests 1 and 2 constitute a violation of upper-band credibility.  If there are multiple call options

observed on a given date, then only the maximum such statistic for each date is reported.  On some days,

these maxima include some calls whose strikes exceed the upper-band, i.e. automatic violations of the target

zone.  Recall that since these are arbitrage-based tests, a single option can be sufficient to reject credibility.

The second figure reports for each day the percentage of the observed options resulting in a rejection of

credibility, indicating the concentration of market liquidity in the non-credible area. This approach does not

mix calls with different expiration dates, as these arbitrage-based tests specifically refer to a given band

width and time horizon.

Credibility of the exchange rate band is consistently rejected for the initial months of the exchange

rate band.  During all of 1995 and until the exchange rate realignment of January 30, 1996, options with

maturities beyond 30 days were consistently priced higher than their maximum value consistent with

credibility.  During this period, there also existed a large number of options traded with strike prices larger

than the existing upper band, i.e. automatic violations of credibility.  Using options with maturities less than

60 days, we find credibility harder to reject from February 1996 until about November 1996, with the

exception of a few days around August 1996 coinciding with the turmoil caused by the resignation of the

Argentinean Finance Minister.  Options with longer maturities (more than 60 days) rejected the credibility

of this exchange rate band slightly earlier, starting around mid-summer 1996.

After the realignment of January 30, 1997, credibility of the exchange rate band could still be

rejected.  Yet, the percentage of traded options whose price was inconsistent with credibility of the new

band declined significantly, and remained stable through the end of the sample on July 30, 1997, at around

20% of the traded options.

B.  Probability and Realignment Intensities of the Maxibands
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As we did with the minibands above, we compute the estimated monthly probabilities and

intensities of devaluation (reported in Table 6) implied by the estimated PDF’s at the three different

horizons.   Devaluation probabilities were consistently large at all horizons during the first part of the

sample (“Regime II”), until the realignment of January 30, 1996.  After that devaluation, probabilities were

very close to zero until about November 1996, four months prior to the February 18, 1997 realignment,

when the probabilities of devaluation began to steadily increase again.

Realignment intensities in Table 6 are expressed on an annualized basis as a percentage of the

existing upper band.  These numbers refer the product of the probability of a devaluation and the expected

size of the devaluation (measured from the upper band). At the beginning of January 1996, the estimated

35-day devaluation intensity was slightly higher than 10% annually. This suggests, for instance, a 50%

probability of a 2% depreciation of the spot rate beyond the upper band over a 35-day horizon.  This

number seems plausible given the government’s policy of aiming for a steady monthly nominal devaluation

of the Real of about 0.5-0.6%.   The low realignment intensities observed prior to the following realignment

on February 19, 1997 corroborates this point.  Estimated three-month realignment intensities at the

beginning of February 1997 are 2.75% while the estimated probability of the devaluation was almost 98

percent.  This again indicates that, although a realignment was widely expected, the expected devaluation of

the spot rate from such a realignment was very small and of the same order as the observed depreciations in

the previous months.

Like our estimates of expected depreciations beyond the crawling peg, probabilities and intensities

of  realignments (devaluations beyond the maxibands) also prove sensitive to news affecting the Brazilian

economic and political situation.   For example, the failure to pass Social Security Reform legislation

(April-May 1996) and the Congressional bribery scandal (May 1997) increased both realignment intensity

and realignment probability, especially at the 91-day horizons.

VI.  Economic Determinants of Realignment Intensity

To ascertain whether variation in realignment intensity can be explained by common

macroeconomic variables, we perform regressions whose dependent variable is the monthly estimates of

devaluation intensity and its lower bound, as estimated in Section V.  The macroeconomic variables used

are similar to those in Rose and Svensson (1994).  No lagged right-hand-side variables were included,

however, because of the limited number of left-hand-side observations available.



19
The specific equation used is:

Intensityt = a + b1(RER)t + b2 (Infl) t + b3(Output)t + b4(Trade)t + b5(FRES)t + b6(Money)t + et (9)

The explanatory variables on the RHS are:

· the real exchange rate (RER), determined using the nominal monthly average exchange rate,

the US PPI, and the Brazilian WPI;

· cumulative inflation (Infl), which is the difference between the Brazilian and US CPI's;

· Brazilian output divided by US output (Output);

· Brazilian trade balance divided by the US trade balance (Trade);

· Brazilian foreign reserves divided by US foreign reserves (FRES);

· and the ratio of Brazilian high-powered money to its US counterpart (Money).

All variables except inflation are expressed in logs.  On the left-hand-side, we use devaluation intensity

derived from the full estimated PDF.

Results from OLS regressions using equation (9) for the 35-day, 60-day, and 91-day intensity data

are reported in Table 7.7  We should first note the low power of these regressions owing to the small

number of observations in our sample.  The regression results clearly indicate the low explanatory power of

these macroeconomic variables.  For the specification using the 90-day realignment intensity, we can not

reject the hypothesis that all the coefficients equal zero.  None of the indicators is significant in all three

regressions.  Money is the only variable that has a significant coefficient in more than one regression—with

higher money growth associated with higher realignment intensity.  The coefficients on Trade and on

Reserves do have the expected sign and are significant in the regression of the 60-day intensity.  Increases

in the Brazilian trade deficit and decreases in its level of reserves appear to increase the intensity of

realignment.  These economic linkages are not confirmed in regressions of the two other horizons’ intensity,

where the coefficients are insignificant and the sign changes.8  Given the small number of observations, it is

not appropriate to draw general conclusions from these estimates.  Nevertheless, the results are consistent

with the general conclusions of Svensson and Rose (1994) and Campa and Chang (1998): that

macroeconomic variables are largely unable to explain intertemporal movements in realignment risk.

                                                          
7 The results reported here do not change qualitatively if one replaces the dependent variable (realignment
intensities) with either the probabilities of depreciations reported in Table 4 or the probabilities of
devaluations reported in Table 6.

8 We performed similar regressions using the average monthly minimum intensity of realignment computed
according to equation (6) and the results were equally unsuccessful.
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VI.   Conclusion

This paper has used a new data set of exchange-traded options from August 1995 through July

1997 to derive risk-neutral probability density functions for the Real/Dollar exchange rate over horizons

ranging from one to three months.  The PDF is a superior indicator to a single point estimate of exchange

rate expectations, such as a forward rate or survey-based forecast, in that it assigns varying amounts of

probability to different possible outcomes.  Although we introduce some approximations to compensate for

sparse data, we make no assumptions about exchange rate dynamics. The PDF then can be used to analyze

both the crawling peg and the maxiband exchange rate regimes.  These two overlapping systems have been

in operation in Brazil since early 1995, several months after the June 1994 introduction of the Real Plan,

designed to combat inflation and currency depreciation.

In assessing market expectations under the crawling peg, we use the risk-neutral PDF to calculate

both the intensity and probability of depreciation beyond the crawling peg.  A high probability accompanied

by a relatively low intensity, for example, indicates that the market anticipates depreciation beyond the peg,

but most of this depreciation is concentrated just outside the peg.  Empirically, we find that the credibility of

the peg has increased over time, and that the occasional spikes in depreciation intensity and probability can

usually be explained by identifiable political or economic news in Brazil.

Our evaluation of the maxiband regime consists of two arbitrage-based tests of target zone

credibility, as well as a measure of devaluation intensity outside the band.   Tests based on arbitrage reject

credibility whenever observed option prices are inconsistent with zero probability lying outside the band.

When this occurs, devaluation intensity outside the band is positive. The numerical value of this intensity

then provides a quantitative indicator of  markets’ questioning the maxiband regime.  Empirically, we are

usually able to reject credibility, but find that through our sample ending in July 1997, the intensity of

devaluation has fallen over time as the regime became increasingly  credible.

This paper also provides a more general methodology for extracting the risk-neutral PDF even

when data are limited.  In particular, we aggregate observations over several days, normalizing the option

price by the contemporaneous forward rate.  Our method involves fitting a single volatility smile to these

multi-day observation periods.  Assuming stationarity of the distribution over each period, this approach

results in more precision when relatively few options are observed, a common difficulty with many

emerging markets.
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 Analysis of the shape of the PDFs over time also provides insight into market perceptions.  In

general, the PDFs appear to exhibit a greater degree of kurtosis and skewness (towards Real devaluation)

with time.  Increased kurtosis, i.e. fatter tails for a given level of volatility, suggests that increasingly

markets believed that if a depreciation were to occur, it would be a large depreciation.  Holding volatility

constant, an increase in kurtosis implies less probability of a devaluation outside the target zone, but a larger

expected devaluation if devaluation occurs.

We also run regressions seeking to identify macroeconomic determinants of realignment risk.  We

find little evidence that standard macroeconomic indicators can explain observed realignment risk,

consistent with Rose and Svensson (1994) and Campa and Chang (1998).  Our observation of increasing

kurtosis over time suggests that devaluation outside the band is increasingly perceived as a rare large event,

rather than a more likely but not necessarily large event.

Overall, the paper’s findings reinforce earlier work on options’ superior ability, relative to

macroeconomic or interest-rate based indicators, to anticipate the periodic realignments of the exchange

rate bands.    By providing a more sensitive indicator of exchange rate risk—either in the form of

depreciation beyond the crawling peg or a realignment of the maxibands—we have also documented the

steady increase in exchange rate credibility during the first years of Brazil’s Real Plan.
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Table 1a: Mean and Standard Deviation of Strikes

This table reports the mean and standard deviation (in parenthesis) of strikes for European call data in three
maturity ranges (1-30 days, 31-60 days, and 61-90 days) for the period 3/95 to 7/97.  The four periods over
which these statistics are computed correspond to different exchange rate band regimes: March 10, 1995
through June 22, 1995 (.88-.93 R/$), June 23, 1995 through Jan 30, 1996 (.91-.99 R/$), Jan 31, 1996
through February 18, 1997 (.97-1.06 R/$), and February 19, 1997 through July 30, 1997, the end of data set
(1.05-1.14 R/$).  The number of observations is listed below each statistic.

3/10/95 – 6/ 22/95 6/23/95 – 1/30/96 1/31/96 – 2/18/97 2/19/97 – 7/30/97
R/$ Band .88-.93 .91-.99 .97-1.06 1.05-1.14

1-30 Days, Mean 1.027 1.010 1.040 1.097
Std.Dev. (.227) (.138) (.051) (.050)

       # obs. 11 158 563 386

31-60 Days, Mean .853 .985 1.047 1.101
Std. Dev. (.066) (.040) (.050) (.031)

# obs. 14 204 740 437

61-90 Days .956 .991 1.046 1.107
Std. Dev. (.172) (.019) (.050) (.027)

# obs. 20 203 608 315

Table 1b: Percentage of Strikes Above to the Spot, Forward, and Upper-Band

This table reports the percentage of strike prices above the spot rate, forward rate and upper-bands, for
European call data in three maturity  ranges (1-30 days, 31-60 days, and 61-90 days), for the period 3/95 to
7/97.  The four periods over which these statistics are computed correspond to different exchange rate band
regimes: March 10, 1995 through June 22, 1995 (.88-.93 R/$), June 23, 1995 through Jan 30, 1996 (.91-.99
R/$), Jan 31, 1996 through February 18, 1997 (.97-1.06 R/$), and February 19, 1997 through July 30, 1997,
the end of data set (1.05-1.14 R/$).

3/10/95 – 6/ 22/95 6/23/95 – 1/30/96 1/31/96 – 2/18/97 2/19/97 – 7/30/97
R/$ Band .88-.93 .91-.99 .97-1.06 1.05-1.14

1-30 Days
   Spot .64 .85 .94 .99
   Forward .55 .80 .82 .96
   Upper-Band .55 .40 .28 .14

31-60 Days
   Spot .43 .95 .97 1.00
   Forward .21 .77 .76 .89
   Upper-Band .21 .47 .33 .18

61-90 Days
   Spot .40 .995 .997 1.00
   Forward .15 .78 .77 .87
   Upper-Band .30 .65 .36 .21

4
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Table 2: Standard Deviation of Changes in the Forward and Spot Rates

This table reports the standard deviation of daily percent changes in the spot rate and three forward rates
relative over the four Real/Dollar maxiband regimes during the sample period, 3/95 to 7/97. Observations
on the forward rates are separated in three maturity ranges (1-30 days, 31-60 days, and 61-90 days).  The
four regimes are: March 10, 1995 through June 22, 1995 (.88-.93 R/$), June 23, 1995 through Jan 30, 1996
(.91-.99 R/$), Jan 31, 1996 through February 18, 1997 (.97-1.06 R/$), and February 19, 1997 through July
30, 1997, the end of the data set (1.05-1.14 R/$).  Number of observations is provided below each statistic.

3/10/95 – 6/ 22/95 6/23/95 – 1/30/96 1/31/96 – 2/18/97 2/19/97 – 7/30/97
R/$ Band .88-.93 .91-.99 .97-1.06 1.05-1.14

Spot
    Std. Dev. 0.0045 0.0010 0.00073 0.00076
    # obs. 69 149 259 110

1-30 Day
    Std. Dev. .0065 .0026 .0015 .0017
    # obs. 67 146 247 107

31-60 Day
    Std. Dev. .0071 .0024 .0016 .0018
    # obs. 67 147 251 107

61-90 Day
    Std. Dev. .0079 .0026 .0018 .0018
    # obs. 67 146 240 102
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Table 3: Implied Volatilities from Real-U.S. Dollar Options

This table reports the mean and standard deviation of the implied volatilities (in percentage terms) of the
options in the sample, 3/95 to 7/97. Observations on the options are separated into three categories defined
by maturity (1-30 days, 31-60 days, and 61-90 days).  The four periods over which these statistics are
computed correspond to different exchange rate maxiband regimes: March 10, 1995 through June 22, 1995
(.88-.93 R/$), June 23, 1995 through Jan 30, 1996 (.91-.99 R/$), Jan 31, 1996 through February 18, 1997
(.97-1.06 R/$), and February 19, 1997 through July 30, 1997, the end of the data set (1.05-1.14 R/$).  The
number of observations is provided below each statistic.

3/10/95 – 6/ 22/95 6/23/95 – 1/30/96 1/31/96 – 2/18/97 2/19/97 – 7/30/97
R/$ Band .88-.93 .91-.99 .97-1.06 1.05-1.14

1-30Day
  Mean 46.64 13.65 5.06 5.75
  Std. Dev. 29.20 19.85  6.68 6.43
  # obs. 11 151 520 385

31-60Day
  Mean 18.74 4.57 4.13 4.23
  Std. Dev. 7.83 5.96 4.48 3.41
  # obs. 14 202 702 433

61-90 Day
  Mean 19.85 4.37 3.48 3.59
  Std. Dev. 11.74 2.32 4.19 2.56
  # obs. 20 201 581 311
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Table 4: Probabilities of a 2% and of a 5% depreciation over 35, 60, and 91-day
horizons, 8/95-7/97.

This table reports the probability that the expected exchange rate will  depreciate by more than 2% and 5%
over a given horizon.  These probabilities are estimated monthly from implied PDFs at three different
horizons (35, 60 and 91-days).

Date 35 Day 60 Day 91 Day
2 % 5% 2 % 5% 2 % 5%

Regime II: [.91-.99]
Aug-95 3.32 0.51 12.38 2.98 21.78 9.47
Sep-95 25.39 19.38 12.00 4.04 12.35 1.90
Oct-95 31.48 24.64 32.43 26.27 9.68 1.82
Nov-95 15.88 12.70 35.18 24.59 8.26 1.57
Dec-95 28.00 18.80 10.79 7.75 2.74 0.24
Jan-96 22.34 14.56 3.76 0.86 4.72 0.56
Feb-96 0.50 0.02 2.12 0.17 3.50 0.37

Regime III: [.97-1.06]
Mar-96 2.95 2.25 2.76 0.78 4.42 1.04
Apr-96 0.20 0.01 0.03 0.00 11.35 9.16
May-96 0.52 0.06 0.82 0.08 37.15 28.82
Jun-96 0.43 0.02 7.09 5.05 2.01 0.18
Jul-96 0.06 0.00 0.06 0.00 1.98 0.15

Aug-96 0.09 0.00 0.00 0.00 . .
Sep-96 0.66 0.04 2.26 0.20 2.42 0.19
Oct-96 0.00 0.00 . . 0.02 0.00
Nov-96 0.00 0.00 0.30 0.00 0.84 0.01
Dec-96 1.34 0.07 0.12 0.00 0.00 0.00
Jan-97 0.06 0.00 6.28 2.17 2.35 0.09
Feb-97 0.33 0.00 0.89 0.00 0.00 0.00
Mar-97 0.33 0.00 0.01 0.00 1.96 0.22

Regime IV: [1.05-1.14]
Apr-97 0.43 0.00 0.46 0.00 0.11 0.00
May-97 0.03 0.00 1.81 0.09 65.21 53.23
Jun-97 0.19 0.00 0.83 0.00 1.12 0.00
Jul-97 0.23 0.00 0.23 0.00 0.25 0.00
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Table 5: Significant Events Affecting the Real-Dollar Exchange Rate,

November 1994 – July 1997

Table presents a list of significant world or Brazilian events that occurred over the period covered by the data.

Date Event(s)

1994:   March Unit of Real Value introduced as basis for all Brazilian financial contracts and indices
            July Real first introduced as official Brazilian currency
            November U.S. Congress approves GATT
            December Devaluation of  Mexican Peso
1995:   January Continued depreciation of Mexican Peso
            February $40 billion bail-out plan for Mexico announced
            March First Real/Dollar Maxibands introduced  [.88-.93].

Mexican Peso continues to tumble
Argentina seeks $3 billion in credit lines to counter contagion effects from Mexican
crisis

            April Mexican peso shows steady appreciation / Mexican stocks start to rebound / Four
largest Japanese brokerage houses announce $1 billion in losses

            May Dollar begins to appreciate against yen / trade gap with Japan declines
            June Realignment of the Real/Dollar Maxibands. New bands [.91-.99].

Dow Jones experiences second largest decline in history
            August Toyota Invests $150 million in new car manufacturing facility in Brazil
            October Mexico begins repayment of US loan package.
            November Delays in approval of constitutional reform for Social Security, Indexation and Taxes
1996:   January Realignment of the Real/Dollar Maxibands. New bands [.97-1.06].

FEF established by the Brazilian congress to eliminate fiscal deficit, renewed for 18
months

            February US bond prices tumble, biggest drop in 7 months
            March Dow experiences 3rd largest decline ever at beginning of month, then reaches record

levels March 18
            May Yields on US 30 year treasuries exceed 7% for first time in months
            June Brazilian government suffers humiliating defeat on Social Security Reform in Congress
            July Dow tumbles;  219 point swing in trading
            August Argentina’s finance minister is replaced raising uncertainty in emerging markets
            November Brazilian municipal elections are held with mixed results for the party in power
            December Peruvian terrorists seize Lima residence of Japanese Ambassador /

300 point decline and recovery of Dow
1997:   January Mexico repays final $3.5 billion of US loan package
            February Realignment of the Real/Dollar Maxibands. New bands [1.05-1.14].

Constitutional amendment for reelection of high officials passes lower house
            May Scandal on the government buying some congressional votes.

Transaction tax is introduced to “cool” the economy
Massive speculative attack on the Thai baht

            July The baht devalues by about 15-20 percent
Philippines, Indonesia, Singapore and Malaysia widened or abandoned their existing
exchange rate bands
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Table 6: Probabilities of Realizations outside the Maxiband and Intensities of
Maxiband Realignment, 8/95-7/97

This table reports the total probability of the expected exchange rate realizations outside the maxiband and
the annualized expected intensities of realignment (as a % of the upper end of the band) from the estimated
PDFs at three different horizons (35, 60 and 91-days).

Probability (in %) outside the Upper Band      Intensity of Realignment
Date:
(start of Month) 35-Day 60-day 91-Day 35-Day 60-day 91-Day

Regime II: [.91-.99]
Aug-95 2.01 7.82 25.63 0.19 1.04 3.52
Sep-95 24.50 15.97 35.29 10.95 2.42 2.33
Oct-95 31.97 32.85 26.40 15.16 16.58 1.48
Nov-95 15.88 39.53 30.69 7.66 15.55 1.71
Dec-95 31.79 13.22 9.80 11.67 5.02 0.39
Jan-96 36.95 22.58 33.85 10.37 1.29 1.45

Regime III: [.97-1.06]
Feb-96 0.00 0.04 0.19 0.00 0.00 0.01
Mar-96 1.93 0.48 0.80 0.67 0.07 0.08
Apr-96 0.00 0.00 8.79 0.00 0.00 2.59
May-96 0.04 0.05 28.56 0.00 0.00 7.96
Jun-96 0.02 5.16 0.33 0.00 1.95 0.02
Jul-96 0.00 0.00 0.47 0.00 0.00 0.02

Aug-96 0.00 0.00               . 0.00 0.00               .
Sep-96 0.19 1.11 2.21 0.01 0.09 0.12
Oct-96 0.00               . 0.01 0.00               . 0.00
Nov-96 0.00 0.46 3.27 0.00 0.01 0.09
Dec-96 3.61 1.12 3.45 0.20 0.03 0.05
Jan-97 4.92 25.59 38.11 0.12 2.46 1.50
Feb-97 0.00 50.37 97.96 0.00 1.55 2.75

Regime IV: [1.05-1.14]
Mar-97 0.00 0.00 0.11 0.00 0.00 0.01
Apr-97 0.00 0.00 0.00 0.00 0.00 0.00
May-97 0.00 0.06 54.80 0.00 0.00 20.21
Jun-97 0.00 0.00 0.02 0.00 0.00 0.00
Jul-97 0.00 0.00 0.00 0.00 0.00 0.00
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Table 7: Relationship between Realignment Intensities and Fundamentals, 8/95-7/97

This table reports the estimated coefficients from OLS regressions of the estimated monthly realignment
intensities on a set of macroeconomic indicators.  The indicators are: RER – real/US$ real exchange rate,
INFL – Brazilian inflation rate, OUTPUT – index of industrial production, TRADE – trade balance, FRES
– Brazilian foreign reserves, and MONEY – high-powered money.  All variables except INFL are expressed
as the log of the ratio of the value for Brazil of the corresponding measure to that for the U.S.  Standard
errors appear in italics below each reported coefficient.

35-Day 60-Day 91-Day

RER 0.17 0.19 -0.29
0.97 1.33 -1.27

INFL 0.00 0.00 0.00
-1.05 -0.42 0.19

OUTPUT 0.02 0.07 -0.02
0.68 2.12* -0.42

TRADE 0.00 -0.02 0.02
0.14 -2.04* 0.93

FRES -0.01 -0.05 0.01
-0.35 -4.32* 0.13

MONEY 0.04 0.04 -0.01
2.05* 1.86** -0.37

Adj. R2 0.38 0.60 -0.14
N. Obs. 21 25 25
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Figures 1a-1d: Real/Dollar Spot Rate and 30, 60 and 90 day Forward Rates
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Figures 2a-2c: Implied Exchange Rate Probability Distributions 10/94-7/97, 35, 60 and 91
days
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Figures 3a-3l: Arbitrage-Based Tests of Exchange Rate Credibility
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Figures 4a-4c: Probabilities and Intensities of Realignment, 5/95-8/97
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Discussion of the paper by Campa, Chang and Refalo

“An Options-Based Analysis of Emerging Markets Exchange Rate
Expectations: Brazil’s Real Plan, 1994 – 1997”

Paul Söderlind*

Data and the Results

This paper studies the credibility of the (moving) Brazilian exchange rate bands, the “maxiband”

between early 1995 and mid 1997. The main idea is to explore the information in data on US

dollar/Brazilian Real futures and options from the Commodities and Futures Exchange in Sao Paolo,

Brazil. A series of biweekly PDFs of the future exchange rate (at the 30, 60 and 90 days horizon) is

estimated. This gives information about how the probability of a realignment evolved over time. The

data is also checked for if no-arbitrage conditions implied by complete credibility of the exchange rate

band are satisfied.

The main results from the estimated PDFs are as follows:

• In general, the Real regime became increasingly more credible over time.

• However, there were temporary decreases in credibility in May 1996 (probably associated with the

defeat of the social security reform in congress) and in May 1997 (probably associated with the

revelation of the government’s bribes to some congress members).

• When the spot rate approached the upper boundary, as in early 1997, the current band was no

longer credible.

All these results are clearly visible from the estimated PDFs, in particular for the 90 days horizons.

However, only the first is easily seen from the no-arbitrage test. It would be useful to add a discussion

of why there are so few significant results for the shorter horizons (30 to 60 days). It would also be

interesting to get some more information about the “power” of the arbitrage tests. For instance, under

which circumstances can we expect these tests to perform well?

According to Figure 1 of the paper, the most dramatic movements of the spot and futures rates

occurred around the establishment of the first maxiband in March 1995. This is discussed relatively

little in the paper. It would be interesting to say some more about how market expectations changed

around this time. It would also be very interesting to extend the sample to include more recent events

(Asian crisis, collapse of the Real).

The lack of data lurks behind many of the methodological choices made in the paper. It would be

interesting to see some more details on how much data there is. One possibility is to show a figure

                                                     
* Stockholm School of Economics and CEPR.
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with time on the horizontal axis and strike prices on the vertical and to mark all points of time and

strikes where there was trade. Dates and ranges of strike prices with little trade is likely to give less

precise estimates of the PDF, so such a figure would help the readers to get a grasp of the quality of

the results. It might also be useful to include some more details on exactly which data is used in the

estimation and tests (min, max, last traded?).

The Methods

My remaining comments are on the assumptions behind the different tests and measures for European

call options used in the paper.

Denote the (future) exchange rate at the expiry of the option by TS , the lower exchange rate boundary

S, and the upper S . The idea of the first arbitrage test is that if the upper exchange rate boundary is

perfectly credible, 0,  )S  Pr( =>TS then a European call option with a strike prices, K, at or above S

should be worth zero. (The distinction between the risk neutral and true distribution is not important

here, since zero probability in the true distribution means zero probability in the risk neutral

distribution). If no such option is available, then for SK   <  the highest possible value of the option

price, KC , is  (S – ),  1/() iK +  where i is the interest rate times time to expiry. This would be the

option price if all probability mass is located at the upper boundary. Any call option price above this

value indicates that the band is not completely credible. This test requires a minimum of assumptions

and data, and is therefore very attractive. It is unclear, however, if 100% credibility is a reasonable

hypothesis. In any case, it would be very useful to illustrate the power of this test in various

circumstances – perhaps with some examples.

The second arbitrage test is somewhat tighter, but comes at the cost of assuming that the lower

boundary is completely credible, )  (Pr SST ≥  = 1. In that case an option with strike price SK   =  is

always in the money and is therefore worth  ),  )/(1  (  iSFCS +−= where F is the forward price. This

second test is that any option with strike price within the band must, by convexity, have a price below

the straight line between 
,

 and 
SS CC where the latter is zero if the band is 100% credible. The new

assumption of perfect credibility of the lower boundary is probably reasonable in most cases.

The devaluation intensity is defined as the price of a European call option of ,
S

C  which can be

thought of a weighted probability of realignment. If no data is available for this strike price, then a

lower bound can be derived by once again assuming that the lower boundary is perfectly credible. By

convexity, 
S

C  must be above a straight line between KCC KS for  and   inside the band. This seems to

be a good complement to the no-arbitrage tests in the sense that it tries to capture whether a lack of

credibility is due to expectations of a small or large devaluation.
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The PDFs are estimated by a modified version of Shimko’s approach, where a smooth curve is fitted

to the volatility smile, which is then inverted (via the Black-Scholes formula) to option prices. This

option pricing function is differentiated (following Breeden-Litzenberger) twice with respect to the

strike price to get the risk neutral PDF (divided by 1 + i). This method seems to be flexible and there is

evidence that it works well in many cases. However, the properties seem to be somewhat dependent on

how the interpolation between the available implicit volatilities is done and also on the number/range

of existing strike prices. It would be useful to discuss this in the text, and to highlight how much data

has been available – and to give an assessment of the quality of the estimated PDFs (especially, the

mass in the upper tail).
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Discussion on “An Options-Based Analysis of Emerging Market Exchange Rate

Expectations: Brazil’s Real Plan, 1994 – 1997”

by Campa, Chang and Refalo (1999)

Disscussant: Ma Cruz Manzano

Firstly, I would like to thank the Bank for International Settlements and the organizers for the

celebration of this interesting seminar.

The availability of indicators on agents expectations is a very relevant issue for monetary authorities

and financial analysts, given the predominant role of those for the monetary transmission mechanism

in developed financial markets. Agents assign subjective probabilities to each of the possible values of

a variable in the future and, as a result, a specific probability distribution characterised and

summarised the agents "feelings" about future realisations of variables. These distributions are not

observed and an attempt is usually made to estimate some of the moments of the underlying

distribution. Options markets, by definition of these assets, collect a very rich set of information on

such distributions.  But it has not been until very recently that such information has started to be

analysed. The paper of Jose Mª Campa, Kevin Chang and James Refalo is an example of this growing

body of analysis.

These authors exploit the information content of currency option data in terms of agents’ expectations

on future exchange rates and apply the analysis to the Brazilian case. The paper is an interesting

contribution to the analysis of credibility of target zones regimes and, not less important, to the

analysis of exchange rate developments in emerging countries.

There exists a large body of literature on credibility measures of target zone regimes both from a

theoretical and an empirical point of view. But, to my knowledge, there are few studies on the case of

emerging economies. It is not necessary to show the importance of these economies for world

economic developments as the current world situation is stressing.

Campa, Chang and Refalo apply an analysis of credibility measures to the target zone regime

governing the real –US $ exchange rate. As is explained in the paper, the Brazilian regime combine

the imposition of a maxi-band- an upper and a lower band for the exchange rate- and a system of

crawling peg in which movements within the band are controlled. The analysis of credibility is very

close related to that of developments in expectations and in this regard, options are a privileged source

of information as the authors show.

They use a PDF approach to examine the credibility of the crawling peg system and to build a

realignment intensity indicator through the estimate of the exchange rate expectations distribution. In

addition, they analyse the credibility of the upper band imposed on the exchange rate using some other
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credibility measures – based on arbitrage and convexity hypothesis on options pricing – which are

explained in an article of Campa and Chang published in the American Economic Review in 1996.

Let me make some comments on only two points of the paper: one of them related to the data used and

the other in relation to the conclusions reached by the authors.

The main contribution of the paper is the estimation of PDFs for expected exchange rates of the

Brazilian real. Because of this, data used to estimate these functions are very relevant.

Focusing my attention on this point, I would like to stress that the analysis carried out uses daily data

on options but, as is explained by the authors, because of data limitations – insufficient range of

strikes, the need of comparing PDFs with the same time horizon,etc – only a semi-monthly series of

probability distribution functions are obtained. Hence, options observations are aggregated over a

period of 15 days making the hypothesis that the relationship between volatility and the strike forward

ratio remains constant.

With the data aggregation mentioned, a volatility smile is fitted as a quadratic function of the strike

and, finally, PDFs are smoothed using an exponential smoothing technique.

In my opinion, the manipulation of data carried out is a point to be carefully discussed because it could

distort the analysis in a relevant way.

In fact, the estimation of daily PDFs is a crucial issue in markets in which news and economic and

political events are rapidly incorporated into expectations and, hence, into prices. This is the case of

exchange rates markets. In this regard, the aggregation carried out in the paper could be blurring

relevant information because is taking into account events happened in a period of fifteen days, which

could have drastically affected expectations distributions. In addition, smoothing techniques used

could worsen the problem.

Aggregation could be particularly negative if one of the purposes of the credibility analysis is to

analyze the content of options to anticipate realignments of the exchange rate bands, as is pointed out

by the authors. In my opinion, if the role of options as leading indicators of realignments is to be

stressed, a daily frequency in the analysis is required.

For this reason, it is highly advisable to calibrate the disadvantages and advantages of using daily data,

particularly when aggregation does not solve some of the problems of having sparse data and it is

doubtful that other more serious concerns do not emerge as a consequence of data manipulation.

On the other hand, aggregation of data is also particularly problematic when an attempt to explain

realignment intensities – the product of the probability of devaluation and the expected size of it – by

economic variables is made. The absence of significance in the regressions carried out, could be

attributed to the fact that, in this type of markets, realignment probabilities can be subject to daily and

sudden changes. External or domestic events and news can cause them. Then, it would be more
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convenient to analyse how certain events have affected, on a daily basis, the probabilities of

realignment.

With respect to the estimation of the PDFs presented in the paper, some more details on the results

would be desirable. In fact, because of the manipulation of option data carried out, it would be suitable

to provide some measures of goodness to calibrate the quality of the exercise. In my view, some

diagnosis -such as, for example, the comparison of first moments of distributions with forward

exchange rates or the sum of probabilities estimated, is essential to evaluate to what extent the

estimate of risk-neutral probability functions is a good, or at least a sensible, approximation of

subjective probabilities.

My second comment is on the conclusions reached by the authors. They point out that their findings

reinforce the superior ability of options relative to other indicators, to anticipate realignments of the

exchange rate bands. In my opinion, there is no proof of such a statement. The paper highlights the

relevance of the information content of options to characterise agents expectations on exchange rates

and hence how they “feel” about the possibility of realignment. But the paper does not provide any

evidence, in the Brazilian case, to state that options permit to anticipate realignments and no proof is

given about the superior performance of options as leading indicators of realignments in relation to

others.

To conclude, I would like to stress again the relevant contribution of the paper to the analysis of

expectations in financial markets and, particularly, to the study of emerging economies.
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Abstract

The options premiums are frequently used to obtain probability density functions (pdfs) for

the prices of the underlying assets. When these assets are bank deposits or notional

Government bonds it is possible to compute probability measures of future interest rates.

Recently, in the literature there have been many papers presenting methods of how to

estimate pdfs from options premiums. Nevertheless, the estimation of probabilities of forward

interest rate functions is an issue that has never been analysed before. In this paper, we

propose such a method, that can be used to study the evolution of the expectations about

interest rate convergence. We look at the cases of Spain and Italy against Germany, before the

adoption of a single currency, and conclude that the expectations on the short-term interest

rates convergence of Spain and Italy vis-à-vis Germany have had a somewhat different

trajectory, with higher expectations of convergence for Spain.
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I. Introduction

Derivative prices supply important information about market expectations.

They can be used to obtain probability measures about future values of many

relevant economic variables, such as interest rates, currency exchange rates

and stock and commodity prices (see, for instance, Bahra (1996) and SCderlind

and Svensson (1997)).

However, many times market practitioners and central bankers want to know

the probability measure of a combination of economic variables, which is not

directly associated with a traded financial instrument. This paper presents

and illustrates a simple method of obtaining a density function of a

combination of economic variables, f(x,y), when there is an option for the

variable x and another for the variable y but there is not an option for the

variable f(x,y).

To get the implied probability density function on the combination f(x,y),

when no options are traded on f(x,y) itself, requires knowledge of the implied

correlation between x and y. If variables x and y are exchange rates the

implied correlation may be obtained from currency option implied

volatilities. Campa and Chang (1997) show how correlations can be calculated

via the triangular relationship that exists between options on different

currency pairs. However, there is no known procedure of computing implied

correlations when variables x and y are not exchange rates. In such cases,

proxies (for instance, historical correlations or cross-section correlation

between the futures prices for different maturities) are the only alternative.

Given that the proxies may not coincide with the market implied correlations,

it is necessary to carry out a sensitivity check of the results to the correlation

assumption.
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We restrict our attention to the case f(x,y) = x-y, being x a 3-month forward

interest rate of the Spanish peseta or the Italian lira and y a 3-month forward

interest rate of the German mark. Such method is particularly relevant for

assessing convergence probabilities of monetary policies. This was a relevant

issue in the assessment of the transition towards EMU, having been an

important subject of empirical work by central banks and investment banks

over the last years.

In this context, “EMU convergence calculators” were developed to compute

the probability of a given country joining the EMU.1 These convergence

calculators have as domain the set of forward interest rate differentials and as

counterdomain the interval [0,1]. However, this procedure of computing

convergence indicators is controversial, to say the least, since the link between

forward interest rate differentials and convergence probabilities is not clear.

In fact, those differentials change due to other factors than the referred

probabilities, namely those related with the business cycle and the economic

convergence.

Moreover, the EMU calculators are based on the estimation of the interest rate

spread that would happen if the country did not join the EMU. This spread

has been estimated using the estimators of a regression between the observed

spreads and term structure variables related to international risk-aversion and

liquidity during a recent period in which the EMU probability was near zero.

The identification of such sample period is difficult. Besides, the estimators’

values are subject to the Lucas critique or other structural breaks. Therefore,

the regression results are evidently conditioned by the sample period

considered, as well as by the explanatory variables chosen.

The method presented in this paper goes further than previous methods that

compute probabilities of future events, as it is based on risk-neutral

probabilities that can be estimated directly from the prices of traded financial
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instruments. However, it has the disadvantage of the information about

options premiums traded in exchanges being limited to one year horizons,

while, for instance, indicators built from the current term structure of interest

rates enable the computation of forward interest rates for longer horizons.

We focus on the probability of short-term interest rate convergence instead of

on the probability of EMU participation for two reasons. The first has to do

with the fact that a zero interest rate differential does not imply a unitary

probability of monetary union. The second has to do with the fact that the

monetary integration in January 1999 did not preclude positive interest rate

differentials in earlier settlement dates.2

In fact, the European monetary unification, on 1/1/1999, implied a zero

interest rate differential between Germany and the remaining participating

countries only at that time. The announcement of the participating countries

took place in the Brussels summit of 1-3 May 1998. The bilateral parities were

defined as the ERM-EMS central exchange rates, which were different from

the spot exchange rates. Thus, the associated spot interest rate differentials

would likely be different from zero and would converge to zero, as EMU

starting date would approach. Therefore, a small probability of a country

short-term interest rates convergence for dates before 1/1/1999 did not

necessarily mean that the market expected that country would stay out of the

European Monetary Union.

The evidence presented in the paper suggests that the options market

participants did not consider likely that there would be complete convergence

of interest rates between Germany, Spain and Italy before June 1998. There is

also evidence that the Italian short-term interest rate convergence was

expected to be behind the Spanish one. Moreover, there is evidence that the

option markets expected both spreads to be smaller in June of 1998 than in

March 1998.
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This paper has four more sections. The second section describes the model;

the third section contains the estimation technique; the data and the empirical

results obtained are presented in the fourth section and the fifth section

concludes.

II. Model

Let S1 and S2 be two futures contracts. We assume that ( )tt SS 21 ln,ln  are

stochastic variables distributed as a mixture of two bivariate normal

distribution. Thus, the bivariate probability density function (pdf) of ( )tt SS 21 ,

is a mixture of two bivariate lognormal, given by:
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bivariate normal distributions, kt�  are the covariance matrices of the

corresponding bivariate normal distributions and θt and (1-θt) are the weights

of the distributions.
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The marginal pdf for itS , ( )itSf ' , is:
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To get an unconditional pdf for S1t - S2t we transform the variables.3 Define

Y1t=S1t-S2t and Y2t = S2t. The bivariate pdf of Y1t and Y2t is:

(3)
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Thus, the marginal pdf for Y1t corresponds to the pdf for the interest rate

differential, being determined as:

(4) ( ) ( ) tttt dYYYfYf 2211 ,*** ∫
+∞

∞−

=

Since the algebraic integration of ( )tt YYf 21 ,*  with respect to tY2  revealed itself

complex, we decided to get the marginal pdf of Y1t through a computer code,

which integrates numerically ( )tt YYf 21 ,*  with respect to Y t2 .4
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III. Estimation

To compute the conditional distribution of interest rates, as well as the

marginal distribution of interest rate differentials, it is necessary to know the

vectors of expected values kt�′ and the matrices of covariances kt� . The

expected values and the variances in the matrices kt�  can be estimated from

the options premiums on futures contracts. As it is well known, when

investors are risk-neutral, an European call option on a futures contract at

time t with strike price X and term to maturity τ, C(X,τ), obeys the expression:

 (5) ( ) [ ] 0,max, , XSeEXC iT
r

t
t −= − τττ

        = ( ) ( ) iT

X

iTiT
r dSSqXSe t ∫

∞
− −ττ,

where Et is the conditional (on information known at date t) expected value

operator, SiT is the price of the underlying asset at maturity date T, r a riskless

interest rate for maturity τ (being τ = T-t), and

( ) ( ) ( ) ( )iiiiiT LNLNSq 2211 ,1,~ σµθσµθ −+  (i.e., a combination of two lognormal

pdfs, being i = 1, 2). The solution to the problem below gives an estimate for

the nine parameters of  q(SiT):
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where M and N  represent the number of strike prices available for each

option, jX ,1  and jX ,2 the strike prices observed for each option, jC ,1
ˆ  and jC ,2

ˆ

are the estimated option premiums for each option and strike price for the

maturity τ and 0
,1 jC  and 0

,2 jC  are the premiums observed for each option and

strike price.5
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There is a relationship between the elements off the diagonal of the matrices

t1�  and t2�  and the correlation between lnS1t and lnS2t. It can be shown, using

the moment generating function technique, that the resulting correlation

between tS1ln  and tS2ln  is:

(7)
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The assumptions about the elements off the diagonal matrices, kt� ’s, will be

discussed in the next section.

IV. Data and empirical results

We applied the model described to the conditional and unconditional

differentials between 3-month German mark and Italian lira interest rates, on

one hand, and German mark and Spanish peseta, on the other. For that

purpose we used daily quotes between 18/3/1997 and 7/7/1997 of LIFFE’s

futures options on 3-month interest rates (for the mark and the lira) and

MEFF Renta Fija’s futures options on 3-month interest rates (for the peseta),

with maturity on March 1998 and June 1998.6

Given that a fast nominal convergence process marked this period, we

suspected that neither the historical correlation nor the futures prices

correlation might estimate correctly the true correlation between the interest

rates.7 Thus, we opted for assuming several correlation figures and assessing

the sensitivity of the results to those figures. We verified that the higher the

values for • 1 and • 2 we consider, the more probability would be concentrated

in higher differentials. That has to do with the fact that during the sample

period the 3-month interest rate differentials were still substantial (see figure

1).
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Consequently, the upper and the lower bounds of the interest rate

convergence probability are obtained when the • k’s are near –1 and 1,

respectively. Therefore, we initially considered • 1, • 2 = 0.99,8 in order to

characterise the less favourable scenario to lower interest rate differentials.

The unconditional interest rate differential pdfs, estimated according to (6),

evidence lower expected differentials for the Spanish peseta and for June 1998

(figure 2).

According to the shape of the estimated pdfs, the statistical measures of the

distributions evidence a significant positive skewness in both differential pdfs

for March 1998, as the mode is consistently lower than the median and the

latter is consistently lower than the mean (figure 3). This difference is reduced

only in the last sample days. The shape of the estimated pdfs is different for

June 1998, as they consistently exhibit a negative skewness.

The results suggest that major improvements about the prospects on interest

rate convergence of the Spanish peseta in March 1998 were achieved between

March 1997 and July 1997, as the mean decreased from around 2.1 to below

1.5. Further convergence was expected to be done between March 1998 and

June 1998, given that the mean of the distribution for June 1998 was between

0.75 and 1 in the sample considered. In spite of the large Italian lira

differential, the evolution was not so remarkable, but the results obtained also

show an expectation of lower spreads in June 1998 than in March 1998.

The distribution functions for the interest rate differentials can be used to get

an indicator about the expectations of the lira and the peseta short-term

interest rate convergence. This indicator could be the cumulative probability

in zero, or any low enough differential that may be considered as

corresponding to interest rate convergence.
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The distribution functions for the interest rate differentials (peseta-mark and

lira-mark) revealed small lower bounds to the probabilities for non-positive

interest rate differentials (figure 4). However, the figures for the differentials

in June 1998 (which were for Spain between 10% and 14% and for Italy up to

4%) were clearly higher than for March 1998. This may reflect that the

markets were not completely sure of the peseta and lira integration in the

European Monetary Union, or that they expected the continuation of

convergence between June 1998 and the starting of the European Monetary

Union in 1/1/1999.

As it was referred at the beginning of this section, until now we have assumed

a correlation coefficient for both distributions of 0.99. Consequently, it is

important to assess the sensitivity of the results to the correlation coefficient

figures.

That analysis was performed for the Spanish differentials in March 1998. The

results obtained confirm the conjecture that the higher the correlation

coefficient, the smaller the probability of small interest rate differentials.

Furthermore, our results also show that higher correlation coefficients imply

lower dispersion and less smooth curves (figure 5).9

We also performed a sensitivity test to the estimation method. We compare

the results obtained with a mixture of two lognormal distributions

specification, previously presented, with those obtained with a lognormal

distribution specification. In general, the pdfs obtained with the two

specifications are rather different. The two-lognormal distribution is more

asymmetric, sometimes has more than one mode and has fatter tails. As a

result, the indicator we used to assess interest rate convergence, the

probability of non-positive interest rate differential, assumes higher values in

the two-lognormal specification.
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In figure 6 we have the Spanish differential pdfs for March 1998 in 20/3/97

and 7/7/1997 (assuming 0.99 correlation coefficients). The day 7/7/1997

represents better the more frequent differences associated with the two

estimation methods. In that sense, that day is a more standard day than the

day 20/3/97.

V. Conclusion

The option premiums have been recently used to extract information about

the expected future behaviour of many economic variables, in particular

interest rates. Nevertheless, this literature does not have anything to say

about the expected future behaviour of interest rate differentials. It is this

paper objective to perform that task, with the estimation of the density

function of short-term interest rate differentials.

The estimation of unconditional pdfs for the peseta-mark and lira-mark

differentials shows that the conjecture that Spain was ahead of Italy in the

convergence process was correct, at least with respect to short-term interest

rates.10 Moreover, the exercise shows that financial markets expected further

convergence in the short-term interest rates after June 1998.

The interest rate differentials pdfs can also be used, for instance, to identify

the convergence of long-term interest rates, supplying, in this case, useful

information about the expectations of sovereign and liquidity risk and/or

accomplishment of the long-term interest rates convergence criteria.11



11

ACKNOWLEDGEMENTS

The authors would like to thank to LIFFE and MEFF Renta Fija for making

available the data used in this paper. A special acknowledgement is due to

Nuno Cassola for encouragement and for the intensive discussions he had

with us. The paper has also improved substantially from very useful

suggestions and comments by an anonymous referee. The second author

acknowledges support of the Lisbon Stock Exchange.



12

                                                          
1 See, for instance, De Grauwe (1996), Dillén and Edlund (1997), Favero et al. (1997) and

JPMorgan (1997).

2 At the time the exercise was done March and June 1998 were the maturity dates available

nearest to January 1999.

3 The conditional pdfs are obtained from the bivariate and marginal pdfs. The conditional pdf

for tS1  given tS2  is the ratio 
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4 The grid for Y2t was chosen between with an interval of 10 basis point.

5 About different alternative estimation techniques of the distribution for TS see, e.g., Bahra

(1996).

6 Even though the options traded in LIFFE are American, since they are pure options, they can

be treated as European options.

7 Simple historical correlation coefficients, as well as exponentially weighted moving average

of the correlation coefficients (between the futures contracts prices with term to maturity

between September 1996 and June 1998, in the period between March 14, 1995 and the day for

which the pdf is estimated), are in general positive and high. On the other hand, daily cross-

section correlation coefficients between the interest rates implicit in futures prices for different

settlement dates are in general non-positive.

8 For the period under consideration this corresponds to a correlation coefficient between

ln lnS St t1 2 and  in the interval [0.3,0.7]. These values are almost always below the

corresponding historical correlation coefficients.

9 Similar conclusions are also obtained for conditional density functions.
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10 As we are estimating risk-neutral density functions, any difference in risk-aversion patterns

is not taken into account, which means that some of the probability differences between the

Italian and the Spanish spread, as well as their time changes, may have been motivated by

risk-aversion differences or variations.

11 It is also possible to extract information about long-term interest rate differentials

expectations from the prices of DIFF future contracts prices traded at MEFF Renta Fija. It

would be interesting to evaluate the consistency of the information obtained by this method,

confronting the expected values estimated with the differentials implicit in the quotes of the

DIFF contracts.
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3-month interest rates
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Figure 2
Unconditional density functions of 3-month interest rate differentials vis-à-vis German mark (ρρ1, ρρ2=0.99)
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Figure 3
Statistical measures of 3-month interest rate differentials vis-à-vis German mark ( ρρ1, ρρ2=0.99)

Peseta-German mark differential for March 1998
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Figure 4
Probability of a non-positive interest rate spread vis-à-vis Germany (ρρ1, ρρ2=0.99)

March 1998
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Figure 5
Sensitivity to the correlation coefficient of the unconditional density functions of 3-month interest rate

differentials between the Spanish peseta and the German mark for March 1998
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Figure 6
Sensitivity to the estimation method of the unconditional density functions of 3-month interest rate

differentials between the Spanish peseta and the German mark for March 1998
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This paper combines market data on a pair of interest rates with an estimate of the correlation of those rates to

arrive at estimates of the probability distribution of the interest rate spread. It applies this method to interest

rate spreads between German mark money markets on the one hand and Italian lira and Spanish peseta rates

on the other, with a view to assessing expectations regarding convergence of interest rates in the approach

to European Monetary Union (EMU) at the beginning of 1999. Since perfect interest rate convergence was

presumed to be a consequence of credibly fixing exchange rates with no fluctuation limits, market views

on interest rate convergence serve also as indicators of expectations regarding the credibility, timing and

membership of EMU.

The estimation exercise requires an estimate of the expected correlation of interest rates. The authors base

most of the results they report on a “benchmark" estimate in which the correlation is assumed to be close to

0.99. Given the estimated parameters, this assigns the lowest possible probabilities to narrow interest rate

spread outcomes. It thus represents the most cautious assessment from the point of view of a policy maker

aiming at convergence.

The authors estimate the probability density function by fitting a mixture of bivariate joint lognormals to

prices of options on short-term interest rate futures. This is a natural extension of the by-now standard

procedure of applying mixture distributions in PDF estimation. The correlation between the two interest

rates is then determined by both the estimated parameters and the postulated values of the correlations of

the lognormal distribution entering into the mixture. The highest possible correlation between the rates

themselves is arrived at by postulating the correlations among the mixture components to be +0.99.



The paper draws several broad conclusions from the estimates:

• The market expected substantial interest rate convergence to occur between March and June 1998.

• Convergence was not, however, expected to be complete by June 1998.

• Interest-rate convergence was lower for the lira than for the peseta

One consequence of this procedure is that the outcome of a negative future interest-rate spread vis-à-vis

the mark is assigned a positive, even substantial, probability. The probability of negative spreads is highest

for the authors’ benchmark case in which the mixture components have correlations of +0.99. However, a

negative spread is difficult to interpret: the flip side of the “cautious" benchmark is this rather implausible

scenario.

What were the correlations? They varied widely over 1996-1998, as seen in the accompanying chart. The

red line represents lira and the blue line peseta. Correlations are based on one year of daily data.

Figure 1: Correlations of 3-month cash rates
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As can be seen, correlations were moving fast towards -1 during the period studied. Later, in 1998, with

much convergence already attained and rates across Europe dropping, the correlations moved back towards

+1. The chart suggests that market participants may have anticipated much smaller correlations that +0.99.
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It would have been interesting to know whether the PDFs of the individual interest rates were also skewed,

or if only the German or only the non-German PDFs were skewed.

The paper pushes the envelope on the uses of risk-neutral PDFs. It would be useful, however, to display

additional information pertinent to convergence, since it is difficult to interpret PDFs in isolation from other

markets and other dimensions of the money markets. In particular, it would be interesting to see

• The evolution of the term structure: How rapidly had longer term rates converged? How had the slopes

of the yield curves changed over time? How do forward rate agreements behave?

• Exchange rates and deviations from central parity.

• Historical implied volatility for interest rates and currencies.

It would also be useful to discuss the liquidity of the lira and peseta contracts.
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Comments on Adão & Barros Luís

by Christian Upper1

Outline of the paper

The paper by Adão and Barros Luís extends the literature of implied probability density functions

(PDFs) to variables for which no options. More precisely, they derive an implied PDF for spread

between Spanish and German, and Italian and German 3-month interest rates. Since there do not exist

any options on the spread, this information has to be extracted from the prices of options on the

underlying interest rates.

For this purpose, they set up a bivariate probability density function for the underlying interest rates,

which is then transformed into the bivariate density of the spread and of one of the interest rates.

Integrating over the latter yields the implied PDF for the spread. They then estimate the parameters of

the implied marginal PDFs for each contract. This does not, however, yield any estimate for the

correlation between the two contracts. Instead, they try out different values and check to which

extend this affects their results. They find that high values for the correlation coefficient lead to more

mass being concentrated in higher differentials.

Their results indicate that option market participants did not expect complete convergence of interest

rates by either March or June 1998, although the mean differential implied in the March contracts

declines over the sample period, more so for the peseta than for the lire. There did not find any

equivalent decline for the June 1998 contract.

                                                          
1

The opinions expressed here are the author’s own and should not be attributed to the Deutsche Bundesbank.



2

Comments

Let me first comment on the methodology. The main difficulty is the choice of ρ. Historical

correlations cannot be used due to non-stationarity under the null hypothesis of convergence. Implied

correlations a la Campa & Chang (1998) could in principle be used if exchange rate at maturity were

known, but this was not the case here. Hence the approach of choosing a ρ and then undertaking a

sensitivity analysis seems reasonable. The problem is that densities become very flat for low values of

ρ, which makes it very difficult to say anything about convergence. A possible alternative would have

been to wait a bit until the January 1999 contract became traded, assume that the currencies would

enter monetary union at their EMS central rates, and use Chang & Campa’s approach to compute

implicit correlations.

Let me turn to data issues. The different results they get for the two contract maturities may be due to

the low liquidity of the June contract. In fact, even the March contract had a large residual maturity

and may thus not be very liquid. Unfortunately, I cannot offer any solution to this problem. Perhaps

we should take seriously only implied PDFs that are computed for short residual maturities.

A more serious question is why we should have expected any convergence in short term interest rates

by March or June 1998. For both Italy and Spain it seemed clear, although possibly for different

reasons, that they would attempt to keep interest rates higher than those in Germany as long as

possible. There was certainly no point in aligning monetary policy as early as half a year before EMU.
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