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EFFICIENT INFLATION ESTIMATION
Abstract

This paper investigates the use of trimmed means as high-frequency estimators
of inflation. The known characteristics of price change distributions, specifically the
observation that they generally exhibit high levels of kurtosis, imply that simple averages
of price data are unlikely to produce efficient estimates of inflation. Trimmed means
produce superior estimates of ‘core inflation,” which we define as a long-run centered
moving average of CPI and PPI inflation. We find that trimming 9% from each tail
of the CPI price-change distribution, or 45% from the tails of the PPI price-change
distribution, yields an efficient estimator of core inflation for these two series, although
lesser trims also produce substantial efficiency gains. Historically, the optimal trimmed
estimators are found to be nearly 23% more efficient (in terms of root-mean-square error)
than the standard mean CPI, and 45% more efficient than the mean PPI. Moreover, the
efficient estimators are robust to sample period and to the definition of the presumed
underlying long-run trend in inflation.
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1 Introduction

How should we interpret month-to-month changes in the measured Consumer Price
Index? Over the years, this question has led to the construction of several measures of
what has come to be called ‘core’ inflation. Common measures of core inflation regularly
remove certain components from the construction of the CPI. In the U.S., ‘volatile’ food
and energy price movements, are often ignored, and core inflation is synonymous with the
CPI that excludes food and energy.! But is it truly the case that food and energy price
changes never contain information about trend inflation? Or, for that matter, is it only
the volatile food and energy components that distort attempts to measure the underlying
inflation trend? Surely not. This leads us to consider how we might develop a systematic,
statistical methodology for reducing the transitory noise in measured inflation indices.

This paper follows our recent work, largely beginning with Bryan and Cecchetti (1994),
where we investigate the estimation of aggregate consumer price inflation using trimmed
means of the distribution of price changes. These are estimators that are robust to the
distributional anomalies common to price statistics. They are order statistics that are
computed by trimming a percentage from the tails of a histogram, and averaging what
is left. For example, the sample mean trims zero percent, while the median trims fifty
percent, from each tail of the distribution of price changes.

Every student in introductory statistics learns that, when data are drawn from a
normal distribution, the sample mean is the minimum variance estimator of the first
moment. But price changes are not normally distributed. In fact, as we discuss in
Bryan and Cecchetti (1996), the cross-sectional distribution of inflation has very fat tails,
with a sample kurtosis that is often substantially above ten. Underlying leptokurtotic
distributions create inferential difficulties, as they routinely produce skewed samples. In
our earlier papers, we discuss how these problems lead to transitory movements in the
sample mean, causing it to have a high small-sample variance.

Given what we know about the distribution of price changes, what is the most efficient
estimator of the first moment of the price change distribution? How can we produce a
reduced-noise estimate of aggregate inflation at high frequencies? Our answer is to trim
the price change distribution, not by removing food and energy prices every time, but by
ignoring some percentage of the highest and lowest price changes each month.

We study monthly changes in both consumer and producer prices in the U.S. Data
availability dictate that we examine 36 components of the CPI from 1967 to 1996 and 29
components of the PPI over the same period. Throughout, we take as our benchmark
the thirty-six month centered moving average of actual inflation. We evaluate the ability
of candidate estimators to track the movements in the benchmark. Our conclusions are
that the most efficient estimate of inflation at the consumer level comes from trimming
9% from each tail, while efficient estimation of producer prices trims 45%. By trimming

'The 1997 Economic Report of the President is a prime example. Chart 2-6 on page 76, and ac-
companying text, use the now commonplace designation of core inflation as the ‘Consumer Price Index
excluding the volatile food and energy components.’



a cumulative 18% of the consumer price distribution we are able to reduce the root-
mean-square-error (RMSE) of aggregate inflation by nearly one-quarter. For the PPI,
the improvement is even more dramatic, as the RMSE declines by over 45 percent!

The remainder of the paper is composed of five sections. Section 2 reports descriptive
statistics for the distribution of CPI and PPI price changes. Section 3 discusses the
statistical problems we attempt to overcome. Section 4 follows with by a discussion of
the Monte Carlo results that guide our choice of the optimal trimmed estimator. We
provide various robustness checks in Section 5. These include examining changes in
sample period, changes in the degree of disaggregation of CPI data, and changes in the
benchmark. Section 6 concludes.

2 Characteristics of Price Change Distributions

By how much would the monthly measure of the consumer price index have to deviate
from its recent trend for us to be relatively certain that the trend has changed? This is
the question that is in most people’s minds when the Bureau of Labor Statistics releases
the price statistics each month.? Figure 1 plots the monthly changes in consumer and
producer prices, at an annual rate, together with a three-year centered moving average,
both for the period 1967:02 to 1997:04.3

As is evident from the figure, the monthly changes in both of these price indices
contain substantial high-frequency noise. By this we mean that deviations of the monthly
changes from the trend are quite large and often reversed. In fact, the standard deviation
of the difference between the monthly and the moving average aggregate price change
is 6.92 percentage points for the PPI and 2.50 percentage points for the CPI (both at
annual rates). A look at the actual distributions shows that a 90% confidence interval for
the CPI is from -3.92 to 43.76 percentage points, while for the PPI it is from -10.35 to
+8.97 percentage points. In other words, since 1967, monthly changes in producer prices
have been either more than 10 percentage points below or 8 percentage points above the
thirty-six month moving average one in every ten months!

The common method of excluding food and energy simply does not help much. In
fact, the standard deviation of the difference between the CPI ex food and energy and the
thirty-six month average CPI is 2.31 percentage points, and the 90% confidence interval
shrinks slightly to [-3.73,4-3.76] percentage points. By contrast, for the PPI, excluding
food and energy improves things, as the standard deviation of difference between the PPI

2Cecchetti (forthcoming) suggests a preliminary answer to exactly this question.

3We use 36 components of the Consumer Price Index for Urban Consumers, seasonally adjusted by the
BLS. These data are all available continuously, monthly, since 1967:01. The housing service component
is based on the rental equivalence measure of owner occupied housing, and so prior to 1982, the series is
essentially the experimental CPI-X1. The producer price is based on the PPI for commodities, and uses a
set of between 29 and 31 components. All data are seasonally adjusted using the ARIMA X-11 procedures
available with SAS. A detailed Appendix containing descriptiona of the sources and construction of the
data sets used is available from the authors upon request.
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excluding food and energy and the 36 month centered moving average of the actual PPI
drops by about 40% to 4.14, and the 90% confidence interval shrinks by about the same
amount to [-5.94,+4.76].

In an effort to better understand the nature of the transitory fluctuations in high-
frequency inflation measurement, we begin by examining the characteristics of the price
change distributions. It is useful to pause at this stage to introduce some notation. We
define the inflation in an individual component price over an horizon k as

1
775 = E ln(pit/pit—k:> ) (1)

where p;; is the index level for component 7 at time ¢. From this, we define the mean
inflation in each time period, over horizon k, as

Hf = Zritﬂft ’ (2)

where the 7;;’s are relative importances that are allowed to change each month to reflect
the fact that the actual index is an arithmetic average.*
The higher-order central moments are then

mly = Y ralrly — T (3)

Skewness and kurtosis are the scaled third and fourth moments, respectively:
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Table 1 reports numerous descriptive statistics for the cross-sectional distribution of
monthly price changes at overlapping horizons of one to thirty-six months. Among the
noteworthy characteristics is that the distributions are often skewed. The mean absolute
value of the skewness, the mean of S}, in monthly CPI changes is 0.20 and in PPI
changes it is 0.04, suggesting that the distributions are nearly symmetrical on average.
But the standard deviation of S} is 2.35 for the CPI and 2.36 for the PPI, implying that
distributions of one-month changes are often highly skewed. This standard deviation
falls off as the horizon increases, implying that the distribution of longer-run changes are

41t is straightforward to show that if the price level index utilizes fixed weights, call these w;, then the
percentage change in the aggregate index can be approximated by the weighted sum of the percentage
changes in the components, where the weights change to reflect changes in relative prices. Defining the
aggregate price level P, = > w;p;t, then 7y = w;(pir/pr—1).



Table 1: Summary Statistics for Price Change Distributions

Deviations from 36 Month Moving Average
Consumer Prices, 1967.01 to 1997.04
36 Components
| k=1[k=3|k=12]k=24]|k=36
Standard Deviation
Average 9.18 6.64 4.06 3.36 3.14
Std. Dev. | 190.45 | 79.80 | 25.49 | 11.81 8.83
Skewness
Average 0.20 0.16 0.21 0.29 0.26
Std. Dev. | 2.35 2.15 1.51 1.38 1.41
Kurtosis
Average 11.24 | 9.56 5.72 4.52 4.23
Median 8.60 7.37 4.65 3.89 3.75
Std. Dev. | 9.80 8.36 3.49 2.39 2.20
Producer Prices, 1967.02 to 1997.04
29-32 Components
| k=1 k=3 |k=12|k=24|k=36
Standard Deviation
Average 15.59 | 10.60 6.24 4.82 4.44
Std. Dev | 955.66 | 266.64 | 86.85 | 35.08 | 22.82
Absolute Skewness
Average 0.04 0.14 0.04 0.02 0.01
Std. Dev. | 2.36 2.12 1.74 1.53 1.46
Kurtosis
Average 10.35 | 8.80 7.26 5.47 4.03
Median 6.38 6.23 4.89 3.51 2.78
Std. Dev. | 11.51 8.47 6.50 6.11 3.43

All data are at annual rates.




FIGURE 2

Weighted Kurtosis of Consumer Prices
Monthly Changes, 196/ to 199/
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much less likely to exhibit skewness.?

The price change distributions also have very fat tails. The average kurtosis of
monthly changes, the average value of K}, is 11.24 for the CPI and 10.35 for the PPI. In
fact, the weighted kurtosis of monthly price changes is in excess of 20 about ten percent
of the time. See Figure 2.

These facts allow us to identify a potentially important source of high frequency noise
in the measurement of inflation. In a given month, there is a high probability of observing
some subset of prices change by a substantial amount — generating the skewness and
kurtosis that we see. But, over time, these extreme changes are balanced out, reducing

®For example the 5th and 95th percentiles of S} for the CPI are [—3.52, 4.26]. But the same percentiles
for S3¢ are [—2.39,1.93].



the observed skewness.

One economic interpretation of these distributional characteristics is that if price
change is costly, we will not observe the distribution of desired price changes each month.
If the size and timing of price changes are based on two-sided state-dependent rules, as
in Caballero and Engel (1991), or Caplin and Leahy (1991), what we observe will depend
on the rule used by the price-setter and the history of the shocks to desired prices. As
a result, we will rarely see prices that exactly equal the price that would be set in the
absence of any price-adjustment costs. The amount of noise decreases over longer periods,
when each price has changed numerous times. But for high frequencies of one quarter or
one month, the problem can be a serious one.°

However, one need not necessarily attach oneself to a particular model of price-setting
behavior in order to accept our conclusions. It is well known that a mixture of random
draws from normal distributions with differing variances will produce a leptokurtic sam-
ple. As a statistical matter, then, we can show that the mean price-change statistic is
unlikely to provide the efficient estimate of inflation, regardless of the price setting model
that is assumed.

We can think of two possible approaches to handling the problem. One would be to
actually model price-setting explicitly using the theory as it has been worked out. But
this has substantial drawbacks, as it requires that we actually estimate the time-varying
price change rules themselves. Alternatively, we can treat the complication presented
by state-dependent price change rules as a statistical sampling problem. We view the
monthly, skewed distributions as small-sample draws from the longer-horizon (roughly)
symmetrical population distribution. The fact that the population has such high kurtosis
leads us to consider a family of estimators that are robust to the presence of fat tails, a
topic to which we now turn.

3 Robust Estimation

We begin by assuming that we have available a sequence of samples from a symmetric
distribution with an unknown, and possibly changing, mean. At issue is the efficient
estimation of the mean. We consider a set of estimators called trimmed means, that
average centered portions of the sample. The method of averaging is to order the sample,
trim the tails of the sample distribution, and average what remains.

To calculate the (weighted) a-trimmed mean, we begin by ordering the sample,
{z1,...,x,}, and the associated weights, {ws,...,w,}. Next, we define W; as the cu-
mulative weight from 1 to ¢; that is, W; = Z§:1 w;. From this we can determine the set

of observations to be averaged for the calculation: the #'s such that 55 < W; < (1—55).

6An alternative interpretation is implied by Balke and Wynne (1996), who show that a multi-sector,
dynamic general equilibrium model with money and flexible prices can produce similar characteristics in
an environment of asymmetric supply shocks. A distinguishing feature of this model is that the ‘noise’
in the estimator need not significantly diminish at lower frequencies.



We call this I,. This allows us to compute the weighted a-trimmed mean as

1
Ifa = PR Z W;Lj . (6)
1= QW icl,

There are two obvious special cases. The first is the sample mean, Zy, and the second is
the sample median, Zs.”

The efficient estimator of the mean, in the class of trimmed sample means, will depend
on the characteristics of the data-generating process.® If, for example, the data are drawn
from a normal distribution, then we know that the sample mean is the most efficient
estimator. That is, the sample mean is the estimator that has the smallest small-sample
variance.

But when the data are drawn from leptokurtic distributions — distributions with
much fatter tails than the normal — the sample mean will no longer be the most efficient
estimator of the population mean, even in the class of trimmed sample means. It is
relatively easy to see why this is so. With a fat-tailed distribution, one is more likely
to obtain a draw from one of the tails of the distribution that is not balanced by an
equally extreme observation in the opposite tail. That is to say, as the kurtosis of the
data-generating process increases, samples have a higher probability of being skewed.’

The impact of kurtosis on the efficiency of trimmed-mean estimators is straightforward
to demonstrate. To do so we construct a simple experiment in which we draw a series of
samples from distributions with varying kurtosis and compute the efficiency of the entire
class of trimmed-mean estimators, including the mean and the median.

In all of our experiments, the data-generating process is characterized by a two pa-
rameter distribution that is a mixture of two normals, one with unit variance, and one
with changing variance. We consider a random variable z, such that

z=s*xy1+ (1 —s)*ys, (7)
where

Pr(s=1) = p,
Yy o~ N(07 1) ) and
Yo ~ N(Oa A) .

With probability p draws come from a standard normal and with probability (1 — p)

"See Stuart and Ord (1987) pg. 50-51 and particularly Huber (1981) for general definitions of limited-
influence estimators and their properties.

8For example, Yule and Kendall (1968) discuss the impact of changing kurtosis on the relative effi-
ciency of the sample mean and the sample median. But we know of no general results concerning the
relative efficiency of trimmed-mean estimators.

9Bryan and Cecchetti (1996) demonstrate this point in another context. We can show that the
standard deviation of the sample skewness increases with the kurtosis of the data-generating process.



they come from a N(0,A). The population mean, E(z), is zero. The kurtosis of this
distribution, %Z;))g, varies with p and A:
3p + 3(1 — p) A2
K(A,p) = .
(42) [p+ (1 —p)AP

We examine five cases, all with p = 0.90, and A set such that I = (3,10, 15, 20, 30).
In each of our experiments, we construct 10,000 replications of 250 draws each. We
then compute the z, for a = {0,1,...,49,50}. This yields 10,000 estimates of all of the
trimmed-mean estimators, which we label 7/, . From these we compute the root-mean-
square error (RMSE) and the mean absolute deviation (MAD). These are

(8)

(10)

Figure 3 plots the RMSE, and the MAD,, for experiments based on distributions with
varying kurtosis, K(A, p). To adjust for the fact that the variance of the distribution also
changes with A and p, we have normalized RMSE, and MADj to one for each case. The
results clearly show that the efficient trim — the trim that minimizes either the RMSE or
the MAD — increases with the kurtosis of the data generating process. As the kurtosis
increases from 3 to 30, the efficient trim goes from 0 to 16%.

We caution that the results from these experiments are illustrative and apply only
to the specific distributions we examine. We know of no general analytic result deriving
the optimal trimmed mean estimator as a function of the moments of the underlying
distribution and the size of the sample.

4 Efficient Estimation of Inflation: Preliminaries

We have now established one property of price data and a related statistical fact.
First, the cross-sectional distribution of price changes, both in the CPI and the PPI, is
fat-tailed. Second, trimmed-means are the efficient estimator of the mean of a leptokurtic
distribution. We now combine these two insights and ask what is the most efficient
estimator of inflation?

We begin with a preliminary examination of the data using a simple Monte Carlo
experiment based on actual price data. In order to judge efficiency, we need to have a
measure of the population mean we are trying to estimate. Following Cecchetti (forth-
coming), we choose the thirty-six month centered moving average of actual inflation.
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FIGURE 4: Consumer Prices

Efficiency of Trimmed Estimators, Monte Carlo Results

Root Mean Sgugare Error Meanmn Absolute Deviationm

5

This is an approximation of the long-term trend in inflation that is likely to be what
people have in mind when they attempt to construct measures they label core inflation.

To proceed, we take the deviation of monthly component price changes from this
thirty-six month centered moving average of inflation. For the CPI, we use 36 components
of the CPI-U over the period 1967.02 to 1997.04, with its 1985 weights. To simplify the
experiments, we set the relative importances (r;) equal to the 1985 weights (w;), and
leave them fixed throughout. For the PPI, we use a reduced set of 27 components
also available over the 1967.02 to 1997.04 sample and their fixed 1982 weights. After
subtracting each price change from the thirty-six month moving average change in the
appropriate index, we have two matrices of relative price changes.

In each experiment, we randomly draw a series of samples by taking one observation
for each of the component time-series — one draw from each column in the relative-price-
change matrix. This is a bootstrap procedure from which we generate 10,000 samples,
each with 36 relative price changes for CPI data, or 29 relative price changes for PPI
data. We then compute the two measures of efficiency — the root-mean-squared error
(RMSE) and the mean absolute deviation (MAD).

The results are reported in Figures 4 and 5. The weighted means are found to be the
least efficient of all of the estimators. The efficiency of the inflation estimates greatly
improves with even very small trims from the sample. For example, in the case of the
CPI, trimming as little as 3% from each tail of cross-sectional distribution improves the
efficiency of the estimator by over 15%. The most efficient estimator for monthly CPI
data was the 7% trimmed mean where the efficiency gain is approximately 20%, although

11



FIGURE 5: Producer Prices

Efficiency of Trimmed Estimators, Monte Carlo Results
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trims in the neighborhood of this estimator perform nearly as wel

For the PPI, however, much larger trims of the sample distribution are necessary to
achieve the efficient estimator. The optimal trim, which occurs in the range of 40%, has
an RMSE that is only one-third that of the sample mean!

5 Efficient Inflation Estimation: Historical Data

We now move to a more complete examination of the actual data. Here we will
compare the relative efficiency of trimmed estimators using the historical time series,
taking account of the changes in the relative importances [the r;’s in equation (2)] over
time. That is to say, we will compute the weighted distributions of inflation each month,
where the weights vary based on changes in relative prices as well as the periodic rebasing
done by the Bureau of Labor Statistics roughly once per decade.

10The technique we suggest here is appropriate for cases in which the price-change distributions are
symmetrical on average. We know of instances where this is not the case. For example, Roger’s (1997)
examination of New Zealand price data reveals a persistent, positive skewness in the price change distri-
bution that produces a bias in the trimmed estimators of the mean. Roger constructs trimmed estimators
centered on the mean percentile, or the percentile of the distribution corresponding to the mean of the
distribution. That is, for New Zealand price data, Roger trims the tails of the distribution asymmetri-
cally, centering on the 57th percentile. In this way, the trimmed estimator is an unbiased estimate of
the CPI trend in New Zealand. Roger’s insight implies a procedure in which the trim and centering
parameter are chosen jointly to minimize either the RMSE or MAD criterion, subject to the estimator
being unbiased in the sample.

12



FIGURE 6: Consumer Prices

Efficiency of Trimmed Estimators, Historical Data

Root NMe amn Sguare Error Meamn Absolute Deviatiomn

In Section 5.1, we look for the optimal trimmed mean estimator using the entire 1967
to 1997 sample currently available. Are the results of the previous section robust to
several obvious changes in methods? We examine three cases. In the first, reported in
Section 5.2, we study more disaggregated CPI data over a shorter sample period. In
Section 5.3, we look at the implications of changing the measurement benchmark from
the thirty-six month centered moving average of actual inflation to moving averages of
from twenty-four to sixty months. Finally, in Section 5.4, we study estimator stability
by looking at optimal trims over varying sample periods. We conclude this section with
a summary and comparison of the trimmed means with the inflation measures that
arbitrarily exclude food and energy.

5.1 The Baseline Case

In this section we consider the time-series characteristics of the trimmed-mean estima-
tors. We calculate the RMSE and the MAD for each trimmed estimator using monthly
historical component price data. That is, we compute the trimmed-mean estimators
of inflation month-by-month, and compare their deviations from the centered thirty-six
month moving average. The results, reproduced in Figure 6 for the CPI, and Figure 7
for the PPI, are virtually identical to those in the Monte Carlo experiments shown in
Figures 4 and 5.1

It is easy to see how much inflation measures are stabilized by trimming. Figure 8

" Throughout this section, the PPI data set uses a set of components that varies from 29 to 31 in
number, depending on data availability

13



FIGURE 7: Producer Prices

Efficiency of Trimmed Estimators, Historical Data
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Table 2: Comparison of Inflation Estimators

Mean (zg)

ex Food& Energy
Median (Z50)
Optimal Trim
Trim at Opt.

CPI

1967 to 1997
RMSE MAD

2.50 1.76

2.31 1.62

2.04 1.51

1.93 1.31

9% 9%

PPI
1967 to 1997
RMSE MAD
6.91 4.27
4.14 2.55
3.98 2.55
3.80 2.52
40% 45%

All values are computed from monthly changes as annual rates. Deviations are from the 36-month centered moving average.

The optimal trim is the trim that minimizes either RMSE, or MAD,.

14



FIGURE 8
Monthly CPI Estimators
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plots the mean, the thirty-six month centered moving average, and the efficient trimmed
estimator for monthly CPI and PPI data for the January 1990 to December 1996 period.

Table 2 compares the properties of a number of commonly used estimators for con-
sumer and producer price inflation. Focusing first on the CPI, we note that excluding
food and energy produces little improvement in efficiency. The CPI excluding food and
energy is only slightly more efficient than the CPI-U itself, reducing the RMSE from 2.50
to 2.31. But trimming clearly helps. Trimming 9% of the cross-sectional distribution of
consumer prices reduces the RMSE by just under 23 percent.!?

For producer prices, the improvements are even more dramatic. Using the long sample
period, we find that trimming 40% of the distribution from each tail improves the RMSE
by over 45 percent. Excluding food and energy from the PPI reduces the RMSE by less
than 40 percent.!?

5.2 More Disaggregated Data

The price statistics are collected at a much more disaggregated level than what we
have used thus far. Does the optimal trim change with the level of aggregation? The
experiments in Section 3 suggest that the answer to this question will depend on what
happens to the kurtosis of the cross-section distribution of price changes as we vary the
level of aggregation.

To examine this issue, we assembled a data set composed of between 142 and 175
components of the CPI-U from 1978 to 1996. The number of series (and the relative
importance of each series) varies each month depending on availability. The weighted
kurtosis of these data is much higher than that for the 36 component dataset examined
in the previous section. For monthly changes, for example, Table 1 reports that inflation
in the 36 components of the CPI-U has median kurtosis of 9.68. By contrast, the kurtosis

12Bryden and Carlson (1994) also note that this trim produces the minimum time-series variance of
any trimmed-mean estimator over the 1967 to 1994 period.

13A common technique for reducing the noise in the high frequency inflation estimates uses time-
series averages. We have conducted experiments that combine trimming with time-averaging. We note
that averaging the component price change data prior to trimming, or pre-trim averaging, decreases
the amount of trimming necessary to produce a minimum RMSE estimator of the inflation trend. For
example, using three-month average price changes of component CPI data, the minimum RMSE of the
inflation trend is found by trimming 6% from the tails of the price change distribution, compared to the
9% trims required of monthly data. Similar results were found for post-trim averages, where we average
the monthly trimmed means. That is, if we calculate the trimmed estimators, and compute a 3-month
average of that result, the minimum RMSE estimate of the inflation trend is found by trimming 6% from
each tail of the price change distribution. Even at relatively low frequencies, some amount of trimming
of the price change distribution seems warranted. For example, using a 6-month component price change
and a 6-month average of the trimmed estimators, the minimum RMSE estimator of the CPI trend is
obtained by trimming 5% from each tail of the price change distribution. These alternative smoothing
techniques address a somewhat different question from the one posed in this paper: How much new
information does a monthly price report contain? We leave the investigation of this important area for
future research.
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FIGURE 9: Consumer Prices, 142 to 175 Components

Efficiency of Trimmed Estimators, Historical Data
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in the more disaggregated data set has a median of 43.1!

As in Section 5.1, we construct, using historical data, the RMSE and MAD for each
of the trimmed estimators, from o = 0 to 50. These provide a gauge of the efficiency
gains from trimming the outlying tails of the price-change distribution. The results in
Figure 9 confirm that, in the case of consumer prices, the efficient estimation of inflation
requires more trimming when more disaggregated data are used. In this experiment, the
optimal trim is 16%, at which point the RMSE is cut nearly in half. But again, virtually
any trimming helps. For example, trimming 9% from each tail — the optimal amount
for the 36 component data set — reduces the RMSE by about 40%.

The practical implications of this exercise are fairly important. We have found that
since the kurtosis of the price-change distributions depends on the level of disaggrega-
tion, so does the optimal trim. As a result, implementation of these techniques for the
production of a core inflation index will depend critically on the exact dataset used.

5.3 Changes in the Benchmark

As we noted at the outset of the previous section, in order to assess efficiency, we must
specify a goal: What is it we would ideally like to measure? Our second robustness check
involves deviating from the thirty-six month centered moving average as the benchmark.

Table 3 reports optimal trims as a function of the length of the moving average
specified for the benchmark, similar to those in Sections 4 and 5.1 for the optimal trim.
Included are the optimal trims using the Monte Carlo methods, as well as those for the
historical data. The table also reports an informal confidence interval constructed as the
set of trims with RMSE or MAD within five percent of the minimum. For example, using
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Table 3: Optimal Trim for Changes in the Benchmark

Monte Carlo Results

CPI PPI
MA RMSE MAD RMSE MAD
24 0.07 0.07 0.43 0.45
(0.03,0.35) (0.03,0.17) | (0.31,0.50) (0.33,0.50)
36 0.07 0.07 0.41 0.43
(0.03,0.44) (0.03,0.17) | (0.31,0.50) (0.33,0.50)
48 0.06 0.07 0.43 0.46
(0.03,0.42) (0.03,0.17) | (0.31,0.50) (0.34,0.50)
60 0.06 0.07 0.42 0.45
(0.03,0.41) (0.03,0.17) | (0.30,0.50) (0.33,0.50)
Historical Data
CPI PPI CPI
36 Components 29 to 31 Components | 142 to 175 Components
1967 to 1997 1967 to 1997 1978 to 1996
MA RMSE MAD RMSE MAD RMSE MAD
24 0.09 0.09 0.40 0.45 0.14 0.16
(0.05,0.25) (0.05,0.17) | (0.25,0.49) (0.30,0.50) | (0.08,0.23) (0.09,0.24)
36 0.09 0.09 0.40 0.45 0.16 0.17
(0.05,0.48) (0.05,0.19) | (0.25,0.50) (0.31,0.50) | (0.10,0.24) (0.11,0.26)
48 0.09 0.09 0.43 0.45 0.17 0.17
(0.05,0.50) (0.05,0.21) | (0.25,0.50) (0.29,0.50) | (0.11,0.25) (0.12,0.25)
60 0.09 0.09 0.43 0.49 0.18 0.18
(0.05,0.50) (0.05,0.23) | (0.25,0.50) (0.27,0.50) | (0.12,0.26) (0.12,0.28)

Numbers in parentheses are trims with RMSE or MAD within 5% of the value at the minimum. Monte Carlo experiments

use 10,000 replications.
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FIGURE 10: Consumer Prices, 36 Components

Efficiency of Trimmed Estimators, Changing Sample
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the historical data in the case of the 36 components CPI data and the thirty-six month
centered moving average benchmark, the minimum RMSE of 1.93 occurs at a trim of 9%
(see Table 2). The fourth line in the first bottom panel of Table 3 reports that all of the
trims between 5% and 48% have an RMSE below 1.93%1.05=2.03.1

Several patterns emerge from these results. First, the ‘point estimate’ of the optimal
trim does not vary as we change the benchmark. But the approximate confidence intervals
have a tendency to grow as the degree of the moving average increases. Second, for the
PPI, there is little difference between the ‘optimal trim’ and the median. In all cases but
one, the RMSE and MAD of the median are well within the 5% standard. Finally, for
CPI at both levels of aggregation there is a large benefit to trimming a small amount.

5.4 Variations in the Sample Period

Next, we examine the sensitivity of the results to the sample period. This is analogous
to asking whether the underlying distributional characteristics of the data are stable. To
do this, we perform a series of Monte Carlo experiments comparable to those in Section 4,
but instead of using the full sample from which to draw, we use rolling ten year samples.
For example, in the case of the CPI we compute the optimal trim based on data from
1967 to 1976, then from 1968 to 1977, moving forward twelve months at a time.

Figures 10 and 11 report the results of these experiments. Each figure has a horizontal
line at the optimal trim calculated using the full sample, together with a second line

Note that there is no reason for the approximate confidence intervals to be either symmetrical or
continuous. The ones reported in Table 3 all happen to be continuous.
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FIGURE 11: Producer Prices

Efficiency of Trimmed Estimators, Changing Sample
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plotting the optimal trim based on each of the ten year samples. The horizontal axis
shows the final date of the sample. To give some sense of precision, the X’s in the figures
represent the approximate confidence intervals constructed as all of the trims such that
the criterion, RMSE or MAD, is within 5 percent of the minimum.

The RMSE and MAD of the optimal full-sample trim are nearly always within 5
percent of the minimum value for the 10 year sub-samples. In fact, for the CPI, using
the mean absolute deviation (MAD) criteria, the optimal trim is never outside of this
rough confidence bound. For the PPI, there are thirty-six 10 year sub-periods. Using the
RMSE criteria, the optimal full sample trim of 40 percent is within the confidence band
in 33 of the 36 cases.

5.5 Summary and Comparisons

Given that the “CPI excluding food and energy” is the measure of core inflation in
common use, it is useful to compare this measure of core inflation to ours. We do this is
two ways. First, we ask which components we are trimming. And second, we look at a
closer comparison of various candidate measures based on the RMSE criteria used above.

Table 4 examines which components we are trimming. For each month, we counted the
frequency at which some portion of the weight of each component was trimmed using the
optimal trim — 9% for the CPI and 40% for the PPI. We also note which components are
systematically excluded by the ‘ex food and energy’ measures (highlighted in bold-faced
type). The results show that we often trim some of the food and energy prices. Indeed,
for the CPI, food and energy components are trimmed from the efficient estimator nearly
40% of the time — nearly one and one-half times as frequently as the average component.
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Table 4: Frequency That a Component is Trimmed: CPI 9% trim

Percent of Sample

Average period that a
Relative | portion of the good
CPI Component Importance is trimmed
Fruits and vegetables 2.26 69.61
Motor fuel 3.82 67.13
Fuel oil and other household fuel commodities 0.80 59.94
Used cars, etc. 2.27 58.84
Infants and toddlers apparel 0.11 54.97
Meats, poultry, fish and eggs 4.61 54.70
Womens and girls apparel 2.71 43.09
Public transportation 1.41 40.33
Other apparel commodities 0.58 37.85
Other private transportation commodities 0.67 37.85
Gas and electricity (energy services) 3.35 34.81
Tobacco and smoking products 1.63 33.43
Dairy products 1.92 28.73
Other private transportation services 3.35 24.59
Mens and boys apparel 1.90 23.48
Other utilities and public services 2.30 23.20
Personal and educational services 1.96 22.65
Toilet goods and personal care appliances 0.93 20.99
Medical care services 5.20 20.72
Other food at home 3.01 19.06
Footwear 1.02 19.06
Cereals and bakery products 1.86 17.96
School books and supplies 0.48 17.96
New vehicles 3.64 17.13
Housekeeping supplies 1.37 16.57
Housefurnishings 4.00 16.30
Entertainment services 1.88 15.47
Medical care commodities 1.01 14.92
Shelter 25.24 12.98
Housekeeping services 1.80 9.67
Entertainment commodities 2.37 7.46
Personal care services 0.94 7.18
Alcoholic beverages 1.73 6.91
Apparel services 0.92 5.25
Auto maintenance and repair 1.37 3.87
Food away from home 5.58 3.31
Mean of All Items 26.89
Mean of Food & Energy 39.93
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Table 5: Frequency That a Component is Trimmed: PPI 40% trim

Percent of Sample

Average period that a
Relative | portion of the good
PPI Component Importance is trimmed
Farm products 7.47 98.90
Fats and oils 0.42 97.52
Meats, poultry, and fish 3.56 96.97
Prepared animal feeds 1.22 96.14
Fuels and related products and power 12.16 96.14
Metals and metal products 11.86 92.84
Hides, skins, leather, and related products 0.81 90.08
Lumber and wood products 2.40 88.98
Sugar and confectionery 1.04 87.88
Electronic computers and computer equipme 0.65 86.78
Transportation equipment 8.88 86.78
Chemicals and allied products 6.86 86.23
Processed fruits and vegetables 0.75 85.67
Dairy products 1.72 85.40
Cereal and bakery products 1.58 83.20
Miscellaneous processed foods 1.15 82.64
Miscellaneous Instruments 0.55 82.09
Beverages and beverage materials 1.90 81.54
Motor vehicles and equipment 7.01 81.54
Miscellaneous products 3.47 80.72
Electrical machinery and equipment 4.54 78.79
Construction machinery and equipment 0.74 78.51
Agricultural machinery and equipment 0.58 77.41
Textile products and apparel 5.33 77.13
Rubber and plastic products 2.56 77.13
Pulp, paper, and allied products 6.82 76.03
Nonmetallic mineral products 2.75 74.10
Miscellaneous machinery 1.73 72.45
Special industry machinery and equipment 1.19 71.35
Furniture and household durables 2.98 70.80
General purpose machinery and equipment 2.06 69.42
Metalworking machinery and equipment 1.24 66.39
Mean of All Items 83.05
Mean of Food & Energy 90.08
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Still, some food and energy goods, notably food away from home, appear to provide an
efficient signal of core inflation as we define it here. In fact, of the 36 CPI components
considered, food away from home was the least likely to be trimmed. Moreover, many
non-food, non-energy goods appear to provide little information about the economy’s
inflation trend. Notable among these are used cars and infant and toddler apparel that
are likely to be trimmed out of the efficient estimator nearly twice as frequently as the
average good (the average component is trimmed out of the 9% trimmed mean in 27%
of the months in the sample).

The components most likely to be included in the calculation of the efficient CPI
estimator include a wide variety of services and the shelter component which, despite its
hugh average relative importance of 25.24, is likely to be on one of the trimmed tails of
the price change distribution only about 13% of the time.

Similarly for the PPI, food and energy goods tend to be trimmed from the efficient
estimator a disproportionately large share of the time. But some food components, such
as beverages and beverage materials and miscellaneous processed foods, are trimmed at
the same frequency as the average component. The least frequently trimmed component,
metalworking machinery and equipment, is still trimmed about two-thirds of the time.
This is a relatively low proportion when one considers that, for any given month, 80% of
the price change distribution is trimmed to produce an efficient estimator for PPI core
inflation.

Finally, in Figure 12 we plot the ratio of the RMSE of various measures to the RMSE
of the CPI-U and PPI themselves over different sample periods. For example, for the
ten-year period ending July 1995, the RMSE for the CPI ‘ex food and energy’ was 57.8%
than of the CPI-U itself — about the same as that of the median. But the RMSE of the
9% trim was 42.5% of the RMSE of the CPI-U. The main result is that, for the CPI, the
9% trim is always more efficient that the CPI excluding food and energy. But for the
optimally trimmed PPI and the PPI ‘ex food and energy’ are very close.

6 Conclusion

In this paper we challenge the conventional wisdom that core inflation can be mea-
sured by simply excluding food and energy from monthly price data. We show that
price change distributions are highly leptokurtic, or ‘fat-tailed,” and so commonly used
measures, such as the sample-mean, are inefficient estimators of the population mean of
interest. We demonstrate that trimmed-mean estimators significantly improve the effi-
ciency of inflation estimates. Furthermore, we are able to show that as the kurtosis of
the distribution increases, efficiency dictates trimming an increasing percentage of the
sample.

We proceed to apply these insights to inflation data. For consumer prices beginning
in 1967, we find that trimming 9% from each tail of the cross-sectional price-change
distribution produces the minimum root-mean-square error and minimum mean-absolute
deviation estimate of monthly inflation. This estimator provides efficiency improvements
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FIGURE 12: Comparison of Various Estimators
Efficiency with Changing Sample
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on the order of 23 percent relative to the mean. By contrast, the CPI excluding food
and energy provides virtually no efficiency improvement at all.

More disaggregated data amplify the difficulties, as the kurtosis of the distributions
increases. Moving from a dataset composed of 36 components of the CPI to one with
185 components beginning in 1978, we show that the optimal trim nearly doubles to
16%. Here we find an efficiency gain of nearly 50 percent (although the sample period
is substantially shorter). For producer prices beginning in 1947, where price-change
distributions are more leptokurtic, trimming 40% to 50% from each tail produces the
most efficient estimate of monthly aggregate price movements and improves efficiency by
over 40 percent relative to the mean.
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