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Foundations of the Proposed  
Modified Supervisory Formula Approach 

1. This technical paper describes the modelling framework underlying the Modified 
Supervisory Formula Approach (MSFA) as proposed in the Basel Committee’s recent 
consultative paper “Revisions to the Basel Securitisation Framework.”1 In contrast to the 
current Basel securitisation framework’s Supervisory Formula Approach (SFA), which 
assumes a one-year maturity for the underlying pool of securitised loans (‘pool’), the MSFA is 
based on an underlying Expected Shortfall, Mark-to-Market (MtM) framework for setting 
regulatory capital. This MtM underpinning, along with other key assumptions, is intended to 
render the MSFA more consistent with the Basel’s Internal Ratings-Based (IRB) framework 
for wholesale exposures.  

I. Background: Current Supervisory Formula Approach 

2. The conceptual framework underlying the SFA was developed in Gordy-Jones 
(2003b), and is based on a Value-At-Risk (VAR) approach to regulatory capital along with 
highly stylised models of the process generating pool credit losses and the mechanism for 
allocating pool losses among tranches.2 The capital horizon along with the maturities of the 
securitisation and underlying pool are assumed to be one year, in effect creating a pure 
default mode (as opposed to a MtM) modelling approach. 

3. Credit losses on the bank’s overall portfolio are assumed to be driven by an 
Asymptotic Single Risk Factor (ASRF) process.3 This implies that any asset’s VAR capital 
charge equals its expected one-period economic loss conditional on a stress realisation of 
the global risk factor (ie for a 99.9% confidence level, a realisation of the global risk factor, X�, 
equal to its q-percentile value, xq, where q=0.001).4  

4. When the underlying pool is infinitely granular, within a one-period setting a well-
known limitation of ASRF-based VAR models for securitisation tranches is the so-called 
‘knife-edge’ property: the capital charge for an infinitesimally thin tranche (‘tranchelet’) is 0% 
or 100% depending on whether the tranchelet’s attachment point exceeds a critical threshold 
value, equal to the model’s implied capital charge for the entire underlying pool. Partly to 
mitigate this problem, Gordy-Jones (2003b) incorporates model risk as an explicit risk driver 
through an Uncertainty in Loss Prioritisation (ULP) model. The ULP model presumes 
uncertainty in how pool credit losses are allocated among tranches. For a hypothetical first-
loss or equity tranche, the true economic detachment point is treated as a beta-distributed 
random variable having a mean of D and variance equal to D(1−D)

1+τ
, where τ is a precision 

parameter. Within the SFA, τ is set equal to 1000.  

                                                
1  Basel Committee on Banking Supervision (2012b). 
2  To address model risk issues beyond those addressed within the Gordy-Jones (2003b) framework, the SFA 

incorporates various prudential add-ons (ie the capital floor, the so-called Omega Adjustment, and the 100% 
capital charge for tranches covering losses below the IRB charge for the underling pool).  

3 For a discussion of the ASRF modelling approach, see Gordy (2003a).  
4 Henceforth, a ‘tilda’ over the variable name (eg 𝑋�) denotes a random variable.  
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5. The ULP model is too complex to allow tractable exact solutions for tranche capital 
charges, but Gordy-Jones (2003b) develops a closed-form approximation which is the basis 
for the SFA. Let K[D] denote the ULP-implied capital charge for the equity tranche in the 
preceding paragraph. This charge can be approximated by a function K�[D] that depends on 
τ, D and, conditional on X� = xq, the expected value and variance of pool losses and the 
probability of zero of pool losses. Within the SFA, the pool’s IRB capital charge (KIRB) is used 
to measure the conditional expected value of pool losses. Hence, this input depends on the 
PDs, LGDs, and EADs of the exposures in the underlying pool and the IRB framework’s 
assumed asset value correlations (AVCs). The other inputs also are related to these same 
loan-level IRB risk parameters. For an arbitrary tranche with expected attachment point A 
and detachment point D, the exact ULP charge equals K[D]-K[A], which can be approximated 
as K�[D] − K�[A].  

6. Regulators have identified several shortcomings with the SFA associated with the 
tendency for capital charges to fall off sharply (‘cliff effects’) as a tranche’s notional 
attachment point increases above KIRB. Even with the SFA’s prudential add-ons, when the 
attachment point exceeds KIRB the SFA often produces very low charges for tranches that, if 
externally rated, would be well below investment grade. SFA capital charges, particularly for 
relatively thin mezzanine positions, also can be very sensitive to small changes in KIRB. Such 
cliff effects and input sensitivities seem excessive in light of the modelling uncertainties 
inherent in the SFA. The MSFA attempts to reduce these concerns through three 
modifications to the Gordy-Jones (2003b) model.  

7. First, we relax the one-year maturity assumption. When dealing with maturities 
greater than one year a MtM-based modelling approach is appropriate for quantifying 
portfolio risk and capital charges. The SFA makes the implicit assumption that a given 
tranche will not incur any market value loss until the values for all more-junior tranches have 
been reduced to zero. Indeed, for given attachment and detachment points the SFA 
presumes that maturity affects a tranche’s capital charge only through the KIRB input – 
presuming that no further adjustments are needed so long as this input fully captures the 
pool’s MtM risk. Conceptually, this treatment is problematic. The MtM modelling approach 
used herein avoids this unrealistic assumption as well as a related apples-oranges problem 
in the treatment of expected losses within the SFA and IRB frameworks.5  

8. Second, in contrast to the SFA’s underlying VAR approach, we adopt an Expected 
Shortfall (ES) approach to estimating regulatory capital.6 Within an ASRF framework, the ES 
approach avoids the knife-edge result of VAR-based models by explicitly incorporating the 
notion that regulators are concerned not only with the probability of a bank’s losses 
exceeding capital, but also with the expected magnitude of any such shortfall.  

                                                
5  The apples-oranges issue pertains to the SFA’s implicit treatment of expected losses beyond the one year 

capital horizon. The IRB framework ignores expected default losses beyond one year (in effect, presuming 
they will be covered by excess spread). However, in practice the credit enhancement associated with a 
tranche’s attachment point (𝐴) generally is available to cover pool credit losses up to A regardless of whether 
the losses are expected or unexpected. Thus, in practical applications of the SFA there is an apples-oranges 
problem in that a positive 𝐴 − 𝐾𝐼𝑅𝐵 (reflecting a tranche attaching above the pool’s IRB capital charge) 
generally overstates the degree to which the tranche is protected against unexpected pool losses over the life 
of the transaction. The amount of this overstatement equals the pool’s (unconditional) expected losses beyond 
the capital horizon.  

6  See Basel Committee on Bank Supervision (2012b). The Basel Committee’s consultative paper on a 
fundamental review of capital charges for the trading book, published in May 2012 and available at 
www.bis.org/publ/bcbs219.pdf, also proposes an ES-based capital metric.  



 
 

Foundations of the Proposed Modified Supervisory Formula Approach 7 
 
 

9. The third difference relates to the treatment of model risk. Unlike the SFA, the MSFA 
incorporates model risk by focusing on uncertainty around the true process governing pool 
losses. Estimated capital charges for securitisation tranches, particularly for mezzanine and 
junior positions, tend to leverage model risks inherent in the assumed process generating 
pool losses. In the aftermath of the financial crisis there is recognition of a need to reflect 
model risks to a greater extent within the Basel’s securitisation framework. While in principle 
the ULP could perhaps incorporate greater model risk through a smaller τ, a key ULP 
approximation result may break down for τ values materially below 1000.7 The MSFA 
framework herein enables setting the τ parameter much lower than 1000 without sacrificing 
formulaic tractability.  

10. The remainder of this paper is organised as follow. Section II reviews the ES metric 
for calculating an arbitrary asset’s capital charge within an ASRF modelling approach and 
summarises the methodology used to calibrate the ES confidence threshold parameter within 
the MSFA. In Section III, we derive the key approximation result underpinning the MSFA, 
through which a tranche’s capital charge can be expressed as a closed-form function of (a) 
the expected value and variance of the pool’s lifetime default losses under a particular 
conditional, risk-neutral probability distribution; (b) the probability of zero lifetime pool losses 
under the same probability distribution; and (c) a τ parameter that captures regulators’ 
confidence in the underlying regulatory model for quantifying pool credit risk. Section IV then 
derives the MSFA’s equations for estimating these inputs as functions of the IRB risk 
parameters for the securitised exposures. Lastly, section V presents some concluding 
remarks. 

II. Expected Shortfall Approach to Regulatory Capital Within an 
ASRF Setting 

11. Although retaining the assumption of a one-year capital horizon, the MSFA departs 
from the VAR-based framework underlying the SFA and, instead, adopts an ES-based 
approach to regulatory capital. However, before describing this ES approach in some detail, 
it is necessary to establish some notational conventions. The date t=0 corresponds to the as-
of date for which we are estimating a tranche’s capital charge (ie ‘today’s date’), and t=1 
corresponds to the end of the capital horizon. Obviously, the estimated capital charge must 
depend on currently available information at t=0. For notational ease, all monetary variables 
are normalised relative to the amount of pool principal at t=0 (‘current pool principal’). Thus, 
for example, current pool principal equals 1, and the lifetime loss rate for pool principal can 
potentially vary between 0 and 1. The maturity of securitisation is denoted M, and is 
measured in years. 

12. For reference we note that under the ASRF modelling approach herein, the VAR-
based capital charge for a securitisation tranche be calculated as  

(1)    KVAR = V0 − E0
NP�V�1�X�1 = x1

qVAR� ∙ e−R 

where V0 is the tranche’s known value at t=0;  V�1 is its random value at t=1; E0
NP{. |. } denotes 

the conditional expectation at t=0 under the natural or physical probability distribution; X�1 is 
the realised value of the global risk factor at t=1; x1

q is the q-percentile of the global risk factor 
at t=1; and R is the bank’s funding rate, which is assumed to equal the fixed risk-free interest 

                                                
7  See Gordy-Jones (2003a) and Gordy (2005). 
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rate. Within the IRB framework q is set at 0.001 (consistent with a 99.9% nominal confidence 
level). The e−R term in (1) discounts the tranche’s conditional future expected value (at t=1) 
back to the current time (t=0).   

13. Similarly, a tranche’s ES-based capital can be calculated as  

 (2)    KES = V0 − E0
NP�V�1�X�1 ≤ x1

qES� ∙ e−R 

where x1
qES is the assumed stress threshold for the global risk factor under the ES metric. For 

notational simplicity, in what follows we will drop the ES subscript from K when referring to 
ES-based capital charges.  

14. To provide consistency with capital charges produced by the IRB wholesale 
framework, the ES threshold parameter qES is calibrated such that for maturities of one year 
the ES-based capital charges and IRB capital charges are similar for wholesale loans. For 
M=1, a loan’s wholesale IRB charge per unit of exposures equals   

(3a) kIRB = LGD ∙ Φ[(Φ−1[PD1] − xqVAR√AVC )/√1 − AVC ] 

where Φ[z] is the cumulative distribution function (CDF) for a standard normal random 
variable, xqVAR = Φ−1[0.001], and LGD, PD1, and AVC are the loan’s loss rate given default, 
the loan’s one-year default probability, and the loan’s asset value correlation, respectively.  

15. For M=1, the ES-based charge per unit of exposure is calculated as  

(3b)    k = (LGD
qES

) ∙ ∫ Φ[(Φ−1[PD1] − x√AVC )/√1 − AVCxqES

−∞ ] ϕ[x] dx  

             = �LGD
qES

� ∙ Φ2�Φ−1[PD1], Φ−1[qES]; √AVC� 

where ϕ[z] is the probability density function for a standard normal random variable, and 
Φ2[a, b, ; c] is the CDF for the standard bivariate normal random variable with correlation 
parameter c.8  

16. After some experimentation, the value of qES corresponding to a 99.7 percentile 
stress threshold (eg qES = 0.003) was found to generate ES-based capital charges for one-
year wholesale exposures (k) comparable to the IRB framework’s 99.9 percentile VAR 
standard (KIRB). As shown in Chart 1, with qES set at this value and M = 1, ES-based 
charges for non-tranched wholesale loans (inclusive of expected credit losses) are virtually 
identical to those produced by the IRB wholesale equation.9 In the remainder of this paper, 
qES is calibrated to this value.   

  

                                                
8  The second equality above follows from application of equation (30c) in Andersen-Sidenius (2004/2005). 
9  Since required capital is proportional to LGD, for simplicity charts 1 and 2 assume that LGD=100% 
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Chart 1 

Wholesale IRB Capital Charges and ES-based Charges  
with 99.7% Confidence Threshold 

(assumes LGD=100%, M=1 year, and wholesale IRB asset value correlations) 
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17. Chart 2 presents a similar comparison for M =  5. As in the IRB wholesale 
framework, within the proposed MSFA the maturity input is capped at five years. In this chart, 
the dashed line depicts capital charges implied by the MSFA’s ES-based model, while the 
dotted line shows charges implied by the IRB framework inclusive of a loan’s expected 
lifetime credit losses. Since tranche capital charges under the MSFA are based on 
attachment points that represent protection against both unexpected and expected lifetime 
pool losses, the IRB charge inclusive of lifetime expected credit losses is one possible metric 
for viewing the MSFA’s consistency with the VAR standard underling the IRB approach.10 

This metric avoids the apples-oranges issue noted above. By this yardstick, at a maturity of 
five years the 99.9% VAR standard embedded in the IRB is somewhat more conservative 
than the ES-based standard with a 99.7 percentile stress threshold.  

Chart 2 

Wholesale IRB Capital Charges and ES-based Charges  
with 99.7% Confidence Threshold 

(assumes LGD=100% and M=5 years) 
 

                                     

 
  

                                                
10  For both the ES-based and IRB-based calculations underlying this chart, we assume the term structure of PDs 

described in section IV.  
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18. The comparison is reversed, however, when IRB wholesale capital charges are 
measured in Pillar 1 terms (as shown by the solid line) – that is, calculated as the sum of 
unexpected loss and expected default losses over the capital horizon. Under this metric the 
ES-based charge for a five-year wholesale loan generally exceeds the pool’s IRB charge. 
This relationship arises because IRB Pillar 1 charges assume, in effect, that expected default 
losses beyond the capital horizon will be covered by margin income or excess spread. This 
assumption was problematic for many securitisations during the financial crisis, as sharp 
deteriorations in the underlying pools eroded anticipated excess spread. A key difference 
between the IRB framework for wholesale exposures and the MSFA framework is that the 
latter does not provide any capital benefit for excess spread. For maturity exceeding one 
year, this difference in the treatment of excess spread is one of several reasons why the sum 
of MSFA charges across all tranches of a securitisation would tend to exceed the IRB charge 
for the underlying pool, even abstracting from the proposed MSFA’s prudential add-ons.  

III. Conceptual Framework for Calculating Tranche Capital Charges 

19. In this section we develop the MSFA framework for calculating ES capital charges 
within an MtM setting. The discussion distinguishes between the true, but unknown, process 
driving pool credit losses and the assumed regulatory model used in calibration. The 
regulatory model is assumed to be an unbiased, but nevertheless imprecise, estimator of the 
true model. The key result from this section is a system of equations for approximating a 
tranche’s capital charge in terms of (a) the mean and variance of lifetime pool credit losses 
under the conditional risk-neutral probability distribution implied by the regulatory model; (b) 
the conditional risk-neutral probability of zero lifetime pool losses under the regulatory model; 
and (c) a model risk parameter τ that captures regulators’ confidence in the regulatory model. 

Pool Cash Flows  
20. We assume an underlying pool consisting of N bullet loans where both contractual 
interest and principal are payable at maturity (t=M). The jth loan’s current principal 
outstanding is denoted θj, while it’s contractual interest rate is Rj.11 If the loan defaults at or 
prior to maturity, the payout is assumed to be θj ∙ eRj∙M ∙ �1 − LGD�j�, received at maturity. The 
random loss given default LGD�j is independent of all other risk factors and has a continuous 
probability distribution with mean given by LGDȷ������ and variance given by 0.25 LGDȷ������  ∙
�1 − LGDȷ�������. 12   

21. Lifetime principal losses incurred by the pool (‘pool credit losses’) equal 

(4) L� = ∑ θjĨj ∙N
j=1  LGD�j 

where the random default indicator Ι̃j equals 1 if the jth loan defaults by t=M, and zero 
otherwise. Notice that the timing of loan defaults has no impact on the lifetime cash flows for 
individual loans or the pool as a whole.  

22. All cash accumulated within the securitisation special purpose vehicle is distributed 
to investors. At maturity, the pool’s lifetime principal losses are allocated among tranches 

                                                
11  Thus, ∑ 𝜃𝑗

𝑁
𝑗=1 = 1. 

12  This specification for loss severities is the same as that within the SFA. 
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based on seniority. Specifically, consider a tranche with notional attachment and detachment 
points A and D. The remaining principal of this tranche at maturity, denoted P�M[A, D], is equal 
to (D − A) − min [D − A, max[0, L� − A]]. The tranche’s total payout at maturity (principal plus 
interest) then equals P�M[A, D] multiplied by eRT∙M, where RT is the tranche’s contractual 
coupon rate. Below, we will make use of the fact that  

(5) eRT∙M P�M[A, D] = eRT∙M(P�M[0, D] − P�M[0, A]). 

MtM Framework for Tranche Capital Charges 
23. We now set forth the basic MtM framework underlying the MSFA. At t=0, the tranche 
is assumed to be valued at par (ie V0 = D − A). At t=1, let the tranche’s market value be 
represented as V1[A, D; Ω�1] which depends on the information available to the market 
participants at that time, denoted Ω�1.   At the beginning of the capital horizon not all 
information used in setting prices at t=1 will be revealed to market participants (eg defaults 
occurring during the capital horizon). Thus, as of t=0, the information that will be available at 
t=1 is a random vector.  

24. From (2), the tranche’s ES-based capital charge equals  

(6) K[A, D] = (D − A) − e−R ∙ E0
NP�V1�A, D; Ω�1�� X�1 ≤ x1

qES� 

where the notation E0
NP�Z[Ω�] �X�1 ≤ x1

qES� denotes the expected value at t=0 of the random 
variable Z[Ω�] under the natural probability distribution for Ω�, conditional on a stressed 
realisation of the global risk factor X�1 at t=1. 

25. We assume the existence of a risk-neutral probability distribution for valuing loans 
and their derivatives at t=1, which will depend on the realisation of Ω�1. Thus, the tranche’s 
market value at t=1 equals the expected value of the tranche’s cash flow under the risk-
neutral distribution, discounted at the risk-free interest rate. Letting H1

RN�L; Ω�1� denote the 
risk-neutral CDF for pool credit losses, upon substituting (5) into (6) we obtain13  

(7)     K[A, D] = (D − A) − e(RT−R)∙M ∙ E0
NP �� H1

RN�L; Ω�1� dL
D

A
 � X�1 ≤ x1

qES� 

                           = (D − A) −  e(RT−R)∙M ∙ � G[L] dL 
D

A
 

where G[L] ≡ E0
NP�H1

RN�L; Ω�1� �X�1 ≤ x1
qES} . 

26. The function G[L] represents the expected value at t=0 of the risk-neutral CDF for 
pool credit losses at t=1, conditional on an ES-stress event. In other words, if a stress event 
�X�1 ≤ x1

qES� were to occur over the capital horizon, G[L] represents the probability that market 
prices at t=1 would imply risk-neutral lifetime pool principal losses not greater than L. Note 
that this function satisfies the basic properties of a CDF.14 At some risk of imprecision 

                                                
13 Note that for any CDF given by H[z], and associated expectation operator 𝐸{. }, from the definition of 𝑃�𝑀[0, 𝑏] 

we have 𝐸{𝑃�𝑀[0, 𝑏]} = 𝐸{𝑏 − min[𝑏, max[0, 𝐿�]]} = 𝑏 − 𝑏 ∙ (1 − 𝐻[𝑏]) − ∫ 𝐿 ∙ H′[L] d𝐿𝑏
0  = ∫ H(L) d𝐿𝑏

0 , where the 
last equality follows from integration by parts. 

14  That is, 𝐺[𝑧] ≥ 0 ∀ 𝑧;  𝐺[1]=1; and 𝐺[𝑧] non-decreasing. 
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(because we use an ES rather than VAR capital metric), for brevity we shall refer to G[L] as 
the conditional CDF for pool losses. Similarly, for any function of pool credit losses,Y[L], we 
shall refer to the expectation ∫ Y[L]∙ dG[L]1

0  as the expected value of Y under the conditional 
probability distribution.  

27. For future reference, EG and VG denote the mean and variance implied by G[L], and 
hG ≡ G[0]. 15 Thus, EG equals the pool’s overall expected credit loss under the conditional 
probability distribution. 

Zero Excess Spread Assumption 
28. In equation (7) the tranche coupon rate RT enters in the form of the tranche’s 
contractual excess spread, namely RT − R. Within the Basel framework, capital charges are 
generally calibrated to give no credit for excess spread. For MSFA purposes we do the 
same; that is, tranche capital charges are calibrated assuming that RT = R. Making this 
substitution into (7), we obtain:16  

(8) K[A, D] = K[D] − K[A] 

where K[z] ≡ K[0, z] = z −  ∫  G[L] dL.  z
0  

29. It is worth noting that K′[z] = 1 − G[z] represents the marginal capital charge for a 
tranchelet with attachment point z.  The capital charge against a tranchelet covering the first 
marginal Euro of pool credit losses equals K′[0] = 1 − hG.  While non-negative, this charge 
will not equal 100% unless there is a zero probability of the pool incurring zero losses under 
the conditional CDF (ie unless hG = 0). For pools that are extremely granular, such as those 
characterising most retail securitisations, one would expect that hG = 0. However, for non-
granular, it is quite possible that hG > 0.  

Key Approximation Formula  
30. For reasonable specifications of G[L], exact close-form solutions for (8) generally will 
be analytically intractable. However, a closed-form approximation formula can be developed 
using an approach similar to that developed in Gordy-Jones (2003b).    

31. Define F[z] ≡ 1 − K′[z]
K′[0]  for values of z ranging from zero to one, and note that over 

this range F[z] has the properties of a CDF. The mean and variance implied by this CDF are 
given by 

(9)        µ =  ∫ z dF = 1 − ∫ F[z]dz = ( 1
K′[0]

) ∙ ∫ K′[z]dz1
0

1
0  1

0 = � 1
K′[0]

� ∙ EG , and  

 (10)    σ2 =  ∫ z2dF − µ21
0 = � 1

K′[0]� ∙ �VG + EG
2� − µ2. 

32. Next, let F�[z] ≡ B[z; γ, δ] denote the CDF for a beta distribution with parameters γ 
and δ, where γ and δ are selected so that the mean and variance of this distribution equal 

                                                
15  𝐸𝐺 = ∫ 𝐿 𝑑𝐺[𝐿]1

0  and 𝑉𝐺 =  ∫ 𝐿2 𝑑𝐺[𝐿] − 𝐸𝐺
2.1

0  
16  This assumption precludes recognising excess spread on the underlying loans as a form of credit 

enhancement for any tranche. 
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µ and σ2.   Using the following relationships, K[z] can be approximated in terms of γ, δ, and 
hG: 17  

(11)     K[z] =  ∫ K′[x]dxz
0  = K′[0](z − ∫ F[x]dx )  z

0  

                       = (1 − hG) ∙ (z − � F[x]dx )  
z

0
 

                       ≈ (1 − hG) ∙ (z − � F�[x]dx )  
z

0
 

                       = (1 − hG) ∙ (z − zB[z; γ, δ] + µB[z; 1 + γ, δ]) 

                  ≡  K�[z; γ, δ, hG]  

where γ = µ ∙ �µ(1−µ)
σ2 − 1�   and  δ = γ ∙ �1−µ

µ
�. 18   

Model Risk 
33. The above discussion presumes that G[L], the true conditional CDF for pool losses, 
is known. Of course, in reality this is not the case and capital calibrations must rely on G�[L], 
the conditional CDF calculated from some known regulatory model which is a simplification 
of the true process and subject to errors and uncertainties. In this setting, we need a way to 
infer the above beta-approximation parameters µ and σ2 from properties of G�[L].  

34. The MSFA accounts partially for the model risk inherent in calibrating capital 
charges based on G�[L].  Let EG� and VG� represent the mean and variance of pool losses 
implied by G�[L], and let hG� = G�[0]. We assume that G�[L] is an unbiased estimator of G[L] in 
the sense that both models imply the same conditional expected value for pool credit losses 
and the same conditional probability of zero pool credit losses; that is, EG = EG� and hG = hG� . 

35. Let VG� represent the variance of the conditional distribution for pool credit losses that 
is implied by the regulatory model. To recognise the possibility that the regulatory model 
understates the tail risk of G[L], we assume that VG is related to VG� as 

(12) VG = VG� + EG� �1−EG� �−VG�

τ
 

where τ > 1.  Since EG�(1 − EG�) > VG� , the assumed variance of pool credit losses implied by 
the true conditional CDF generally will exceed the variance implied by the regulatory model.19  

36. The τ parameter could be seen as reflecting regulators’ confidence in the regulatory 
model. Higher values of τ correspond to a greater degree of confidence in the regulatory 
model and, hence, a lower value of VG for given values of EG� and VG� . The τ parameter is 
treated below as a regulatory calibration parameter. Depending on value of τ set by 
regulators, VG could assume values between VG� and EG�(1 − EG�). 

                                                
17  The fourth line below follows from the properties of the beta distribution. See equation (3) in Gordy (2004). 
18  Since the parameters of the beta distribution must be positive, the approximation requires that 𝜎2 <  𝜇(1 − 𝜇) 

and, hence, 𝑉𝐺 < 𝐸𝐺 ∙ (1 − 𝐸𝐺). This condition will be met for a random variable 𝐿� that satisfies 0 ≤ 𝐿� ≤ 1 and 
0 < 𝐸{𝐿�} <1, which is the case here (assuming at least one exposure in the pool has a positive default 
probability and an expected LGD that is greater than zero but less than one). 

19  The inequality follows from the discussion in preceding footnote. 
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37. On substituting (12) into (11), the capital charge for a hypothetical tranche with 
attachment and detachment points A and D can be approximated in terms EG� , VG�, and hG� as 
follows: 

(13)     K�[A, D] =  K�[D] − K�[A], where  

  K�[z] = (1 − hG� ) ∙ (z − zB[z; γ, δ] + µB[z; 1 + γ, δ]) ,  

                          γ = µ ∙ �
µ ∙ (1 − µ)

σ2 − 1�,  

                         δ = γ ∙ �
1 − µ

µ
�, 

                         µ =
EG�

1 − hG�
, 

                       σ2 =
�V + EG�

2�
1 − hG�

− µ2, and 

                        V = VG� +
EG� ∙ (1 − EG�) − VG� 

τ
. 

38. It is readily verified that if (13) is applied to all of the individual tranches of a 
securitisation, the sum of the tranche capital charges is equal to G�. Thus, for a given EG�, the 
above equation system serves to allocate this total charge among the various tranches. 

39. Within the MSFA, the τ parameter can have a significant impact on estimated capital 
charges for mezzanine and senior securitisation positions with attachment points above KIRB. 
Gordy (2003b) provides insight into plausible ranges for τ when dealing with a particular type 
of model specification error. Specifically, assume that the true model for pool losses 
comports with the ARSF framework developed by Pykhtin-Dev (2002, 2003), wherein for 
each securitisation, pool losses are driven by a common global risk factor and a pool-specific 
random factor which impacts all of the underlying exposures and is independent of other 
risks. For homogeneous wholesale pools and M=1, Gordy (2003b) demonstrates that the τ 
parameter within the Gordy-Jones (2003b) model (which is comparable the MSFA model for 
M=1) generally can be calibrated so that this model and the Pykhtin-Dev model produce very 
similar tranche capital charges when other parameters are calibrated consistently so that the 
two models produce the same capital charge for the overall pool.  

40. The value of τ that aligns the tranche charges produced by the two models is shown 
to depend on the pool’s average PD and LGD and the within-pool AVC. Depending on the 
precise settings for these parameters, the implied τ can take a wide range of values, with 
estimates apparently quite sensitive to the latter two parameters.  In many cases one might 
expect the average within-pool AVC to exceed the average AVC implied by the IRB formulas, 
reflecting similar latent characteristics among loans in the pool that are not captured within 
the IRB framework (eg loans drawn from similar sectors or geographic regions, or subject to 
similar underwriting biases). Gordy (2003b) presents simulation results showing that for 
pools with average LGDs between 50% and 100%, and ratios of within-pool AVC to IRB-
implied AVC ranging from 1.1 to 2, the implied τ values vary from around 10 to 200.20  In 

                                                
20  See Figure 2 in Gordy (2003b). 
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comparison, the current SFA sets τ at 1000, while the proposed MSFA sets this parameter at 
100. 

41. Finally, before concluding this discussion of model risk, it should be noted that when 
developing (13) we have continued to assume that an underlying ASRF model governs the 
true process driving pool credit losses. Otherwise, the interpretation of the ES-based capital 
charge as the conditional expectation in (2) would no longer hold. Thus, implicitly we assume 
that the model risk inherent in each securitisation is purely idiosyncratic and unrelated to all 
other risk factors, including model risks associated with other securitisation transactions. 
Clearly, this is unlikely in practice, as evidenced by the failures of industry-standard risk 
models across a wide swath of securitisation transactions during the financial crisis. Thus, 
the MSFA’s treatment of model risk is likely to be partial at best, suggesting a need for 
further prudential add-ons to cover other model risks.21  

IV. Regulatory MtM Model for Pool Credit Losses 

42. This section sets forth the MSFA’s regulatory model for pool credit losses and 
market risk premiums, from which we develop estimates of 𝐸𝐺� , 𝑉𝐺� , and ℎ𝐺�  that are used in 
computing tranche capital charges via (13). The specification of this regulatory model was 
selected to replicate as closely as possible the ASRF model underpinning the IRB wholesale 
capital functions.   

ASRF Model Governing Credit Losses on Individual Loans 
43. As in the ASRF model underpinning the IRB framework, credit losses on the bank’s 
overall portfolio are assumed to be driven by a single global risk factor X�, and each asset in 
the bank’s portfolio is assumed to represent an infinitesimal share of this portfolio. 

44. Defaults on individual loans are governed by a Merton-type model.22 The jth loan 
defaults at the end of the capital horizon if the logarithm of the borrower’s asset value at t=1 
is less than a default threshold DT1j. If the loan does not default at t=1, it defaults at maturity 
if the logarithm of the borrower’s asset value at t=M is less than DTMj.23 For expositional 
ease, below we refer to the logarithm of the borrower’s asset value more simply as the 
‘borrower’s asset value.’ 

45. The jth borrower‘s asset value, Υ�j(T), is assumed to evolve according to a geometric 
Brownian motion process:  

(14)     Υ�j(t) = Υj(0) +  �mj − .5πj
2� ∗ t + πj ∙ �rj ∙  X�(t) +  U�j(t)�1 − rj

2 �, where 

             Υj(0) = borrower’s  asset value at t=0; 

                                                
21  As with the SFA, the proposed MSFA incorporates several additional prudential add-ons for model risk in the 

form of a capital floor, an Omega Adjustment, and the 100% capital charge for tranches covering losses below 
𝐾𝐼𝑅𝐵. 

22  The modelling approach described below is similar to that in Vasicek (1991) and Gordy-Marrone (2012). 
23  We assume two default barriers, one at t=1 and another at t=M, in order to allow the model to be calibrated 

consistent with historical data on the term structure of default rates.  
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                    mj, πj = annual mean and standard deviation of the drift in the borrower’s asset 
value; 

                     X�(t)  = realised value of the global risk factor at time t, with X�(0) = 0 ; 

                     U�j(t) = realised value of the idiosyncratic risk factor at time t, with U�j(0) = 0;  and 

                           rj  = correlation between the borrower’s asset value and the global risk factor. 

46. For future reference, we note that when calibrating this model below, the parameter 
rj is set equal to the value implied by the IRB framework. Specifically, rj = �AVCj, where 
AVCj is the loan’s (positively signed) IRB asset value correlation parameter.   

47. The above global risk factor and idiosyncratic risk factors are themselves assumed 
to be generated by independent geometric Brownian motion processes having zero drifts and 
unit annualised volatilities. These risk factors can be decomposed temporally in the following 
manner: 

(15)     X � (M) = X�1  +  X�2√M − 1 , and 

(16)    U�j(M) =  U�1j + U�2j√M − 1 

where  X�1 ≡ X�(1), and X�2 ≡ X�(M) − X�(1) is the change in the global risk factor from the end 
of the capital horizon through maturity.  The random variables U�1j and U�2j are defined in a 
similar fashion. In this representation, the random variables {X�1, X�2, U�11, U�21, … , U�1N, U�2N}  are 
independent and identically distributed standard normal random variables.  

48. In solving the regulatory model, we assume that at t=0 market participants know all 
model parameters, but not future realisations of random risk factors. At t=1, the realisations 
of X�1 and the 𝑈�1𝑗 are revealed to market participants, while at t=M the realisations of all 
remaining random variables are revealed, including loss severities for defaulting loans.   

Calibrating the Default Thresholds 
49. The default thresholds DT1j and DTMj can be determined from the term structure of 
default probabilities for the jth borrower and other model parameters. Let PD1j and 
PDMjdenote the probability that the jth borrower defaults after 1 year and after M years, 
respectively. Then DT1j satisfies the implicit relationship  

(17)     PD1j = Φ �
DT1j−Υj(0)−�mj−.5πj

2�

πj
� 

                    ≡ Φ�DT1j
∗�. 

Thus, we can solve for DT1j
∗ as 

(18)     DT1j
∗ = Φ−1�PD1j�. 

50. Similarly, if we define TMj
∗ ≡

DTMj−Υj(0)−M∙�mj−.5πj
2�

πj√M
 , then DTMj

∗ satisfies the implicit 

relationship  
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(19)     PDMj = PD1j + Φ2[−DT1j
∗, DTMj

∗ ;  − 1
√M

]. 

Notice that DT1j
∗ and DTMj

∗ can be solved solely as functions of M, PD1j and PDMj, with no 
need to know mj, πj, rj, or  Υj(0). 

Calibrating the Term Structure of Default Probabilities 
51. To allow banks to implement the MSFA using IRB risk parameters for the underlying 
pool, the MSFA assumes a specific relationship between one-year and M-year probabilities 
of default. The assumed relationship between PD1 and PDM is given by   

(20)     PDM =
1

1 + e−�x+(5−0.15x)∙(M0.2−1)�
 

where x = log � PD1
1−PD1

�. The derivation of this relationship is summarised in Annex 1.  

Calibration of 𝐄𝐆�  

52. 𝐸𝐺� represents the pool’s expected loss rate (at t=0)  under the conditional probability 
distribution implied by the regulatory model. We will show that 𝐸𝐺� can be calculated using 
numerical methods. The MSFA employs a simple approximation that is constructed by 
simulating the exact solution over a broad range of inputs, and then fitting an empirical 
relationship to these data points. This approximation is shown to be highly accurate under a 
range of test scenarios. 

53. From the definition of EG �  we have EG � = E0
NP� { E1

RN� �Z ��| X�1 = x1
qES} , where E0

NP� {∙ |X�1 =
x1

qES} denotes the conditional expectation at t=0 under the natural probability distribution 
implied by the regulatory model, and  E1

RN� �Z �� denotes the expected value at t=1 of an 
arbitrary random variable Z� under the risk-neutral probability distribution implied by the 
regulatory model.  The expectation E1

RN� �Z �� depends on realisations of the random risk 
factors �X�1, U�11, … U�1N� revealed to market participants at t=1, denoted {x1, u11, … , u1N}.  In 
the remainder of this section all probability distributions pertain to the regulatory model.     

54. Under the natural probability distribution, the risk factors {X�1, U�11, … , U�1N} are 
mutually independent, standard normal random variables. Thus, 

(21)    EG� =  � 1
qES

� ∙ ∫ (∫   ∙∙∙  ∫ E1
RN� [L�]  ∙ ϕ[u11] ∙∙∙ ϕ[u1N] du11 … du1N)∞

−∞
∞

−∞ ∙ ϕ[x1] dx1
x1

qES

−∞  . 

55. Next, recall that the underlying risk factors driving firms’ asset values are Brownian 
motion processes, while the remaining random variables in the model (ie the loss severities 
for individual loans) are idiosyncratic and, hence, should not earn any risk premium. Thus, 
 E1

RN� �Z �� can be calculated as the expected value at t=1 of pool credit losses when (a) the 
mean drift rates mj in (14) are replaced with the risk-free rate R and (b) the random vector 
{X�1, U�11, … , U�1N}  is set equal to {x1, u11, … , u1N}.    

56. From the linearity of the expectation operator, it follows that  

(22)     ∫ ∙∙∙  ∫ E1
RN� {L�}  ∙ ϕ[u11]  ∙∙∙ ϕ[u1N] du11 … du1N

∞
−∞

∞
−∞  
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                                        = � ∙∙∙  � E1
RN� {� θjĨj ∙

N

j=1

 LGD�j}  ∙ ϕ[u11]  ∙∙∙ ϕ[u1N] du11 … du1N

∞

−∞

∞

−∞
 

                                        = � θj

N

j=1

 ∙ LGD������j ∙ W�x1; PD1j, PDMj, rj� 

where W�x1; PD1j, PDMj, rj� ≡ ∫ E1
RN� �Ĩj� ∙ ϕ�u1j� du1j

∞
−∞  is the expected risk-neutral probability 

(at t=0) that the jth loan defaults during the life of the securitisation conditional on X�1 = x1. 

57. Using properties of the bivariate normal distribution, Annex 2 shows that 
W�x1; PD1j, PDMj, rj� has a closed-form solution given by  

(23)    W�x1; PD1j, PDMj, rj� = �
DT1j

∗−rj∙x1

�1−rj
2

�  +  Φ2 �−
 DT1j

∗−rjx1

�1−rj
2

 ,
DTMj

∗−rjx1+�
mj−R

πj
�∙(M−1)

�M−rj
2

;  −�
1−rj

2

M−rj
2�. 

58. In the above expression, the term mj − R represents the market risk premium built 
into the jth borrower’s asset value process to compensate investors for that borrower’s 
systematic risk (ie the correlation between the borrower’s asset values and the global risk 
factor). We shall assume that these risk premiums are proportional to an assumed constant 
market price of risk  λ: 

(24)      mj − R = λ ∙ rj ∙ πj.24 

59. Bohn (2000b) presents evidence suggesting that empirical estimates of λ  generally 
fall in the range 0.3 to 0.5.  For MSFA purposes, we set λ = 0.4. Combining (21)-(24), we 
obtain  

(25)     𝐸𝐺� = ∑ 𝜃𝑗
𝑁
𝑗=1  ∙ 𝐿𝐺𝐷������𝑗 ∙ 𝑤𝑗, where 

              𝑤𝑗 ≡ �
1

𝑞𝐸𝑆
� ∙  �  𝑊�𝑥1; 𝑃𝐷1𝑗, 𝑃𝐷𝑀𝑗, 𝑟𝑗� ∙ 𝜙[𝑥] 𝑑𝑥,

𝑥1
𝑞𝐸𝑆

−∞
 

and 𝑊�𝑥1; 𝑃𝐷1𝑗, 𝑃𝐷𝑀𝑗, 𝑟𝑗� = Φ �
𝐷𝑇1𝑗

∗ −𝑟𝑗∙𝑥1

�1−𝑟𝑗
2

� + Φ2 �−
𝐷𝑇1𝑗

∗ −𝑟𝑗∙𝑥1

�1−𝑟𝑗
2

,
𝐷𝑇𝑀𝑗

∗−𝑟𝑗∙𝑥1+0.4𝑟𝑗∙(𝑀−1)

�𝑀−𝑟𝑗
2

;  −�
1−𝑟𝑗

2

𝑀−𝑟𝑗
2�. 

60. The above expression for wj can be computed using standard numerical methods, 
but for regulatory capital purposes a simpler expression is desirable. After some numerical 
experimentation, we find that over a broad range of values for M, PD1, and r, the above 
equation for wj can be closely approximated with the simpler function.25 

(26)    𝑤�𝑗 = Φ�𝑠𝑗 + �0.56 + 0.074𝑠𝑗 − 0.34𝐴𝑉𝐶𝑗
0.3� ∙ (𝑀 − 1)0.7� ,  

                                                
24  This specification can be motivated from CAPM considerations, as in Agrawal, Arora, and Bohn (2004), 

Kealhofer (2003), and Bohn (2000a). 
25  Recall that from (9) that PDM is a function of PD1 and M. 
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where 𝑠𝑗 = �Φ−1[𝑃𝐷1𝑗]+3.09𝑟𝑗

�1−𝑟𝑗
2

� and 𝐴𝑉𝐶𝑗 = 𝑟𝑗
2 is the IRB framework’s implied AVC for borrower 

j. 

61. Chart 3 summarises the quality of this approximation over the parameter range 
𝑀 = {1,2,3,4,5}, √𝐴𝑉𝐶 = {0.05, 0.15, 0.25}, and 𝑃𝐷1 values from 0.03% to 30%. 

Chart 3 

Actual and Approximated Values of w 
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62. Within the MSFA, the estimator w� j is used to calculate EG� as  

(27)    𝐸�𝐺� = ∑ 𝜃𝑗
𝑁
𝑗=1  ∙ 𝑐̂𝑗,  where 𝑐̂𝑗 = 𝐿𝐺𝐷������𝑗 ∙ 𝑤�𝑗. 

Calibration of  𝑽𝑮� 

63. We next derive an expression for the regulatory model’s implied conditional risk-
neutral variance for pool credit losses, VG�. Proceeding along the same lines as above,26  

(28)     𝑉𝐺� =  �
1

𝑞𝐸𝑆
� ∙ � (� ∙∙∙  � 𝐸1

𝑅𝑁� {𝐿�2}  ∙ 𝜙[𝑢11]  ∙∙∙ 𝜙[𝑢1𝑁] 𝑑𝑢11 … 𝑑𝑢1𝑁)
∞

−∞

∞

−∞
∙ 𝜙[𝑥1] 𝑑𝑥1

𝑥1
𝑞𝐸𝑆

−∞
− 𝐸𝐺�

2 

                 = � 1
𝑞𝐸𝑆

� ∙ ∫ ∫ ∙∙∙  ∫ 𝐸1
𝑅𝑁� ��∑ 𝜃𝑖 ∙ 𝐼𝑖 ∙ 𝐿𝐺𝐷�𝑖

𝑁
𝑖=1 �2�  ∙ 𝜙[𝑢11] ∙∙∙ 𝜙[𝑢1𝑁] 𝑑𝑢11 … 𝑑𝑢1𝑁

∞
−∞

∞
−∞ ∙ 𝜙[𝑥1] 𝑑𝑥1

𝑥1
𝑞𝐸𝑆

−∞     

                                  − �∑ 𝜃𝑗
𝑁
𝑗=1  ∙ 𝐿𝐺𝐷������𝑗 ∙ 𝑤𝑗�

2
   

                    =    � 𝜃𝑖
2(0.25𝑤𝑖 ∙ 𝐿𝐺𝐷������𝑖 ∙ (1 − 𝐿𝐺𝐷������𝑖)

𝑁

𝑖=1

 + 𝑤𝑖 ∙ �1 − 𝑤𝑗� ∙  𝐿𝐺𝐷������𝑖
2) 

                                             + � � 𝐶𝑂𝑉𝑖𝑗𝜃𝑖𝜃𝑗𝐿𝐺𝐷𝚤�������  ∙  𝐿𝐺𝐷𝚥������� 
𝑗≠𝑖

𝑁

𝑖=1

 

where COVij is the conditional risk-neutral default covariance between borrowers i and j, 
which equals 

(29)   C𝑂𝑉𝑖𝑗 = � 1
𝑞𝐸𝑆

� ∙ ∫ (∫ ∙∙∙ ∫ 𝐸1
𝑅𝑁� �(𝐼𝑖 − 𝑤𝑖) ∙ �𝐼𝑗 − 𝑤𝑗��  ∙ 𝜙[𝑢11] ∙∙∙ 𝜙[𝑢1𝑁] 𝑑𝑢11 … 𝑑𝑢1𝑁)∞

−∞
∞

−∞ 𝜙[𝑥1] 𝑑𝑥1.𝑥1
𝑞𝐸𝑆

−∞  

64. While the above expression for COVij can be calculated using numerical methods, as 
before, we seek a simpler closed-form approach. For computational simplicity we are also 
willing to accept a somewhat conservative estimator for VG�. To this end, note that the last 
term in (28) can be bounded from above.27 

(30)     ∑ ∑ COVijθiθjLGDı������  ∙  LGDȷ������ j≠i
N
i=1   

                         ≤  � � 𝜃𝑖𝜃𝑗𝐿𝐺𝐷𝚤�������  ∙  𝐿𝐺𝐷𝚥�������  ∙ �𝐶𝑂𝑉𝑖𝑖 ∙ 𝐶𝑂𝑉𝑗𝑗
𝑗≠𝑖

     
𝑁

𝑖=1

 

                                                
26  Below, we use the assumption that the variance of 𝐿𝐺𝐷�𝑖 is 0.25𝐿𝐺𝐷������𝑖(1 − 𝐿𝐺𝐷������𝑖) and the observation that 

𝐼𝑖 = 𝐼𝑖
2. 

27  The first inequality below follows from the observation that under the regulatory model 𝐶𝑂𝑉𝑖𝑗 ≤ �𝐶𝑂𝑉𝑖𝑖 ∙ 𝐶𝑂𝑉𝑗𝑗 
for 𝑖 ≠j. To see this, consider two hypothetical infinitely-granular, homogeneous pools of loans, one having 
parameters 𝑃𝐷1𝑖 and 𝑟𝑖, and the second having parameters 𝑃𝐷1𝑗 and 𝑟𝑗. Under the conditional risk-neutral 
probability distribution the random variable 𝐼𝑖 has a Bernoulli distribution with a mean of  𝑤𝑖 , implying a 
variance equal to 𝑤𝑖 ∙ (1 − 𝑤𝑖). Thus, the correlation between the average default rates of the two pools under 
the conditional risk neutral probability distribution is equal to 𝐶𝑂𝑉𝑖𝑗/�𝐶𝑂𝑉𝑖𝑖 ∙ 𝐶𝑂𝑉𝑗𝑗, which implies that 𝐶𝑂𝑉𝑖𝑗 ≤
�𝐶𝑂𝑉𝑖𝑖 ∙ 𝐶𝑂𝑉𝑗𝑗 . 
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                            =  �∑ 𝜃𝑖�𝐶𝑂𝑉𝑖𝑖  ∙  𝐿𝐺𝐷𝚤�������  𝑁
𝑖=1 �

2
− ∑ 𝐶𝑂𝑉𝑖𝑖 ∙ (𝜃𝑖 ∙ 𝐿𝐺𝐷������𝑖)2𝑁

𝑖=1   

                      ≤ �∑ 𝜃𝑖�𝐶𝑂𝑉𝑖𝑖  ∙  𝐿𝐺𝐷𝚤�������  𝑁
𝑖=1 �

2
 

where COVii is the regulatory model’s (positively signed) implied conditional risk-neutral 
default covariance between two hypothetical loans having PD1 and r values equal to PD1i 
and ri.28   

65. From (28) and (30) it follows that  

(31)   𝑉𝐺� ≤  �∑ 𝜃𝑖�𝐶𝑂𝑉𝑖𝑖  ∙  𝐿𝐺𝐷𝚤�������  𝑁
𝑖=1 �

2
+  ∑ 𝜃𝑖

2(0.25𝑤𝑖𝐿𝐺𝐷������𝑖 ∙ (1 − 𝐿𝐺𝐷������𝑖)𝑁
𝑖=1  + 𝑤𝑖 ∙ (1 − 𝑤𝑖) ∙  𝐿𝐺𝐷������𝑖

2). 

66. Next, we seek a simple expression for approximating the first right-hand-side term in 
this inequality. Upon calculating COVii numerically for PD1 values between .03% and 99.9%, 
M values from 1 to 5, and four sets of AVC values (corresponding to AVCs implied by the 
IRB functions for wholesale exposures, residential mortgages, qualifying retail exposures, 
and other retail exposures) we find that a simple upper bound for COVii is given by  

(32)    COV�ii = 0.09M ∙ wi ∙ (1 − wi) ∙ AVCi.   

67. Substituting (32) into (31), and w� i for wi, we obtain the MSFA equation for 
estimating VG� 

(33)     V�G� =  �∑ θi N
i=1 �v�i �

2
+  ∑ θi

2 �0.25w� iLGD������i ∙ (1 − LGD������i) + w� i ∙ (1 − w� i) ∙ LGDı������2�N
i=1  

where v�i ≡ LGD������i
2 ∙ 0.09M ∙ w� i ∙ (1 − w� i) ∙ AVCi. Chart 4 summarises the overall fit of this 

approximation.   

  

                                                
28  𝐶𝑂𝑉𝑖𝑖 is calculated as in (29), but using 𝑃𝐷1𝑖 and 𝑟𝑖 in place of 𝑃𝐷1𝑗 and 𝑟𝑗. 



 
 

Foundations of the Proposed Modified Supervisory Formula Approach 23 
 
 

Chart 4 

Actual and Approximated Values of 𝑽𝑮� 
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Calibration of 𝐡𝐆� 

68. The input hG� represents the conditional probability of zero pool credit losses under 
the regulatory model. To motivate the MSFA’s approach to estimating this input, we first 
discuss its role in the context of equation (13).  

69. Chart 5 illustrates that the value of hG� can have a substantial impact on MSFA 
capital charges. The chart shows marginal capital charges (computed via simulation) for 
infinitesimally thin tranches with attachment points represented by the X axis. For this 
purpose, we assume no difference between the true model and the regulatory model (ie τ is 
set at infinity) and no prudential add-ons. The chart examines two homogeneous wholesale 
pools, one corresponding to an infinitely-granular pool and another consisting of only five 
loans. The underlying loan-level parameters are PD1 = 1%, M = 5, and  LGD������ = 50%. 29  
Geometrically, 1 − hG� denotes the marginal capital charge for a thin tranche having an 
attachment point just slightly above zero. Since the number of loans in the pool does not 
affect the pool’s overall conditional expected credit loss (ie the corresponding EG�) the area 
under each curve is the same. The diagram illustrates that if hG� is underestimated, on 
average the marginal capital charges for more senior tranchelets will be underestimated as 
well.   

  

                                                
29  The variance of LGDs is equal to 0.25𝐿𝐺𝐷������ ∙ (1 − 𝐿𝐺𝐷������). 
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Chart 5 

Simulated Thin Tranche Capital Charges for  
Infinitely-Granular and Non-Granular Pools 

(homogeneous wholesale pools; M = 5 years; 𝑃𝐷1 = 1%; 𝐿𝐺𝐷������ = 50%;  
five loans in non-granular pool) 

  
   

 
 

ℎ𝐺 

1 − ℎ𝐺 
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70. For a homogeneous pool, the conditional risk-neutral probability of default under the 
regulatory model is equal to EG�

LGD������ , where LGD������ is the expected loss rate given default for loans 
in the pool. If individual loan defaults were independent under this probability distribution, 

then we could calculate hG� as simply �1 − EG�

LGD������ �
N

,  where N is the number of loans in the pool. 

71. However, it is readily apparent that defaults are not independent under the 
conditional risk-neutral distribution. Conditional on X�1 ≤ x1

qES, borrower defaults within the 
capital horizon will be positively correlated owing to the positive dependence of each 
borrower’s asset value on the actual realised value of X�1. And, for those borrowers not 
defaulting within the capital horizon, under the conditional risk-neutral distribution future 
defaults also will be positively correlated, since borrowers’ asset values at maturity will 
depend positively on X�2, the change in the global risk factor between t=1 and t=M. This 
intuition also suggests that conditional default correlations may tend to increase with M other 

things the same.  Hence, �1 − EG�

LGD������ �
N

 will tend to be downward biased estimator of hG�, with 
the magnitude of the bias a positive function of M. Stated differently, even with homogeneous 
pools, the effective number of loans in the pool will be less than the actual number of loans. 

72. Chart 6 illustrates this effect.  Using simulations of the regulatory model for a M=5 
and a broad range of other parameter inputs, the chart compares actual values of hG� with 

those generated from the approximation hG� ≈ �1 − EG�

LGD������ �
N

. As can be seen, the 
approximation consistently underestimates the true value of hG�.   
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Chart 6 

Actual and Approximated Values of 𝒉𝑮 Assuming Conditional Independence  
of Defaults 

(wholesale pools, 𝑀 = 5 years, 𝑁 from 1 to 1000, and 𝑃𝐷1 from 0.03% to 99%) 
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73. With further investigation (based on simulated data for homogeneous wholesale 
pools) it was found that the accuracy of this approximation could be improved markedly by 
adjusting N to compensate for higher average conditional risk-neutral default correlations as 
M increases: 

(34)    hG� ≈ �1 − EG�

LGD������ �
N∗

 , where  

            N∗ =
N�

�1 + 0.0079M�N��
2. 

 

The variable N∗ can be interpreted as the effective number of loans in the pool. Thus, 
consistent with the above intuition, the effective number of loans in the pool will tend to be a 
decreasing function of maturity. 

74. For maturities of one and five years, Charts 7 and 8 summarise the accuracy of this 
approximation for homogeneous pools. Note that where prediction errors are visually 
significant for M=5 years, the approximation generally works to overestimate the true value of  
hG� . Thus, on average the MSFA is less likely to underestimate average capital charges for 

more senior tranchelets compared with the simplistic approximation  hG� ≈ �1 − EG�

LGD������ �
N

. 
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Chart 7 

Actual and Approximated Values of 𝒉𝑮 Based on Effective Number of Loans 
(wholesale pools, 𝑀 = 1 year, 𝑁 from 1 to 1000, and 𝑃𝐷1 from 0.03% to 99%) 
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Chart 8 

Actual and Approximated Values of 𝒉𝑮 Based on Effective Number of Loans 
(wholesale pools, 𝑀 = 5 years, 𝑁 from 1 to 1000, and 𝑃𝐷1 from 0.03% to 99%) 
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75. Equation (34) performs well for homogeneous pools and can be adapted readily to 
deal with non-homogeneous pools. However, as in the current SFA, to avoid issues relating 
to defaults or near-defaults of non-material loans, within the MFSA we estimate the 
conditional probability of zero defaults in terms of the pool’s exposure-weighted conditional 
probability of default and exposure-weighted LGD. Specifically, hG� is estimated as 

(35)     h�G� = �1 − E�G�

LGD
�

N∗

, where 

             N∗ =
N�

�1 + 0.0079M�N��
2 , 

            N� = �∑ θi
2N

i=1 �
−1 , and         

        LGD = ∑ θiLGD������ii  . 

For a homogeneous pool, this approximation is identical to (34). 

V. Concluding Remarks 

76. The preceding sections have summarised the modelling assumptions underpinning 
the proposed MSFA and the methods used to calibrate its inputs. The conceptual framework 
underlying the MSFA seeks to improve upon that underlying the SFA in a number of areas, 
particularly in the treatment of maturity effects through the adoption of a MtM modelling 
approach. However, this comes at the cost of greater complexity, both in derivation and 
implementation. A particular concern is whether banks seeking to implement the MSFA 
would have access to the loan-level IRB risk parameters that are the inputs to the MSFA. 
Even under the current SFA, many banks are challenged in developing estimates of the 𝐾𝐼𝑅𝐵 
input, and in some cases other inputs as well, when they are not the originator or servicer of 
the securitised loans. This problem will be more acute under the MSFA, where the current 
proposal would require an estimate of the PD, LGD, and EAD for each loan in the underlying 
pool. 

77. Pending feedback from the industry on this proposal, it may be possible to further 
simplify the MSFA framework so as to reduce the information requirements on banks. For 
example, it may be feasible to develop proxies for the MSFA’s EG� , VG� , and hG� inputs in terms 
of aggregate pool-level statistics, such as a demonstrably conservative estimate of KIRB, 
which could provide meaningful implementation benefits to both banks and supervisors. 

78. Lastly, it is worth emphasising that the MSFA framework developed herein does not 
address a number of well-known shortcomings of SFA and IRB framework more generally. 
The single systematic risk-factor model embedded in the SFA and IRB frameworks remains 
a key postulate within the MSFA, and is in fact critical to affording tractable solutions or 
approximations to key inputs. Nevertheless, the assumption is simplistic and restrictive, and 
may not adequately represent the credit risks within pools containing concentrations of 
borrowers from multiple sectors, geographic regions, etc. As with the SFA, the MSFA also 
assumes a highly simplistic structure for how pool losses are allocated among tranches. 
Many complex structures of the form seen prior to the financial crisis cannot be readily 
mapped into the simplified MSFA template. Other MSFA shortcomings include reliance on 
the questionable assumptions that risk factors are normally distributed with fixed variances 
over time and that the market price of risk is stable over time. While the proposed MSFA 
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incorporates assumptions and prudential add-ons to offset some potential modelling 
weaknesses, these may only partially cover the full range of model risks. 
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Annex 1 

Estimating Term Structure of Default Probabilities from  
One-year Default Probabilities 

Step 1:  Estimating Multi-Year Default Probabilities from One-Year Rating 
Transitions 

1. We start from the average one-year letter rating transition matrix reported by 
Moody’s for the time period from 1970 to 2010 (Exhibit 27 in Moody’s (2011)), shown in 
Table 1.1.  

2. The two highlighted cells in the table indicate places where adjustments were made: 
we replaced the actual AAA default rate of 0 with a more conservative value of 0.005% and 
reduced the AAA withdrawn rating (WR) rate from 3.336% to 3.331% to maintain the total 
probability of 1 for the AAA row.  

3. We transform the matrix by removing the WR column and reallocating the WR 
probabilities across the other final states. For each pair of initial rating i  and final rating j , 
we adjust the transition probability ijp  from i  to j  according to 

(1.1) (adj)

,WR1
ij

ij
i

p
p

p
=

−
  

where ,WRip  is the one-year probability of rating withdrawal for initial rating i . Probability 
(adj)
ijp  can be interpreted as the probability of transition from rating i  to rating j  conditional 

on no rating withdrawal.  

4. After this adjustment the rating transition probability matrix takes the form in Table 
1.2.  Note that within this table we have added an extra row corresponding to the initial 
default (D) state. The probabilities of default (PD) for time period T , ranging from 2 to 10 
years, are taken from the D column of the matrix obtained by raising the adjusted transition 
probability matrix to power T . Table 1.3 shows the PDs obtained via this procedure. 

5. PDs for the finer alphanumeric rating grid are obtained via interpolation. We assign 
successive integer values to the alphanumeric ratings: Aaa=1, Aa1=2, Aa2=3, …, Caa3=19, 
Ca=20 and assume that the default probabilities of ratings Aaa, Aa2, A2, Baa2,…, Caa2, Ca 
are the same as the default probabilities for the alphabetical ratings given in Table 1.3. 
Linear interpolation is performed for the logarithm of the default likelihood ratios, i.e. 
( )ln PD ( ) / [1 PD ( )]i iT T−  at fixed T  as function of i where i  denotes the initial alphanumeric 

rating. The outcome of this interpolation procedure is shown in Table 1.4, where the 
interpolated values are shown in red.   
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Step 2:  Estimating Multi-year Default Probabilities from One-Year PDs  

6. The MSFA framework requires specifying each borrower’s expected default rate 
over the remaining life of the securitisation. Under the IRB approach, banks are required to 
estimate the one-year PDs of their obligors, but not multi-year PDs.  Moreover, allowing 
banks to estimate multi-year PDs may not be prudent. We propose a formula that calculates 
multi-year PD as a function of one-year PD. The formula is designed to provide a good fit to 
multi-year PDs shown in Table 1.3 for time periods T  from 1 to 5 years and for all 
alphabetical ratings.  

7. Let 𝑥(𝑇) denote the logarithm of the default likelihood ratio; that is, 
( )( ) ln PD( ) / [1 PD( )]x T T T= − .  Then the PD for time period T can be expressed as  

(1.2) 1PD( )
1 exp[ ( )]

T
x T

=
+ −

. 

After exploring alternative functional forms for 𝑥(𝑇), we adopt the specification   

(1.3) 0.2( ) (1) [5 0.15 (1)] ( 1)x T x x T= + − ⋅ ⋅ −  

where, from above, 

(1.4) PD(1)(1) ln
1 PD(1)

x
 

=  − 
. 

  
8. Figures 1.1 and 1.2 and Table 1.5 illustrate the quality of the fit. Data points in 
Figure 1.1 represent the logarithm of default likelihood ratios calculated for all cells of Table 
1.3, while the curves ( )X T  are calculated according to Equation (1.3) using the one-year 
column of Table 1.3 as the PD(1)  inputs. Figure 1.2 transforms the default likelihood ratios of 
Figure 1.1 into PDs. Table 1.5 compares PD( )T  of Table 1.3 with PD( )T  calculated 
according to Equation (1.3) using one-year PDs for all alphabetical ratings from Table 1.3. 
One can observe that multi-year PDs obtained with the fit function are reasonably close to 
the ones in Table 1.3.  
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Table 1.1 

 
 
 

Table 1.2 

 
 
 

Table 1.3 

 
 
  

Aaa Aa A Baa Ba B Caa Ca D WR
Aaa 87.395% 8.626% 0.602% 0.010% 0.027% 0.002% 0.002% 0.000% 0.005% 3.331%
Aa 0.971% 85.616% 7.966% 0.359% 0.045% 0.018% 0.008% 0.001% 0.020% 4.996%
A 0.062% 2.689% 86.763% 5.271% 0.488% 0.109% 0.032% 0.004% 0.054% 4.528%
Baa 0.043% 0.184% 4.525% 84.517% 4.112% 0.775% 0.173% 0.019% 0.176% 5.476%
Ba 0.008% 0.056% 0.370% 5.644% 75.759% 7.239% 0.533% 0.080% 1.104% 9.207%
B 0.010% 0.034% 0.126% 0.338% 4.762% 73.524% 5.767% 0.665% 4.230% 10.544%
Caa 0.000% 0.021% 0.021% 0.142% 0.463% 8.263% 60.088% 4.104% 14.721% 12.177%
Ca 0.000% 0.000% 0.000% 0.000% 0.324% 2.374% 8.880% 36.270% 35.451% 16.701%

Aaa Aa A Baa Ba B Caa Ca D
Aaa 90.406% 8.923% 0.623% 0.010% 0.028% 0.002% 0.002% 0.000% 0.005%
Aa 1.022% 90.118% 8.385% 0.378% 0.047% 0.019% 0.008% 0.001% 0.021%
A 0.065% 2.817% 90.878% 5.521% 0.511% 0.114% 0.034% 0.004% 0.057%
Baa 0.045% 0.195% 4.787% 89.413% 4.350% 0.820% 0.183% 0.020% 0.186%
Ba 0.009% 0.062% 0.408% 6.216% 83.441% 7.973% 0.587% 0.088% 1.216%
B 0.011% 0.038% 0.141% 0.378% 5.323% 82.190% 6.447% 0.743% 4.729%
Caa 0.000% 0.024% 0.024% 0.162% 0.527% 9.409% 68.419% 4.673% 16.762%
Ca 0.000% 0.000% 0.000% 0.000% 0.389% 2.850% 10.660% 43.542% 42.559%
D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.00%

1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y
Aaa 0.005% 0.013% 0.024% 0.038% 0.057% 0.082% 0.113% 0.152% 0.200% 0.257%
Aa 0.021% 0.049% 0.085% 0.132% 0.191% 0.264% 0.354% 0.463% 0.593% 0.745%
A 0.057% 0.138% 0.249% 0.393% 0.574% 0.794% 1.056% 1.360% 1.707% 2.096%
Baa 0.186% 0.486% 0.899% 1.421% 2.045% 2.765% 3.573% 4.458% 5.411% 6.423%
Ba 1.216% 2.755% 4.585% 6.652% 8.899% 11.267% 13.706% 16.174% 18.635% 21.061%
B 4.729% 10.078% 15.606% 21.035% 26.204% 31.030% 35.481% 39.552% 43.260% 46.629%
Caa 16.762% 30.671% 41.655% 50.194% 56.836% 62.050% 66.201% 69.556% 72.312% 74.612%
Ca 42.559% 63.016% 73.565% 79.493% 83.148% 85.603% 87.375% 88.725% 89.797% 90.672%
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Table 1.4 

 
 
 

Table 1.5 

 
  

1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y
Aaa 0.005% 0.013% 0.024% 0.038% 0.057% 0.082% 0.113% 0.152% 0.200% 0.257%
Aa1 0.010% 0.025% 0.045% 0.071% 0.105% 0.147% 0.200% 0.266% 0.344% 0.438%
Aa2 0.021% 0.049% 0.085% 0.132% 0.191% 0.264% 0.354% 0.463% 0.593% 0.745%
Aa3 0.029% 0.069% 0.122% 0.190% 0.275% 0.381% 0.510% 0.664% 0.844% 1.053%
A1 0.041% 0.098% 0.174% 0.273% 0.398% 0.551% 0.734% 0.951% 1.201% 1.487%
A2 0.057% 0.138% 0.249% 0.393% 0.574% 0.794% 1.056% 1.360% 1.707% 2.096%
A3 0.084% 0.210% 0.382% 0.604% 0.878% 1.207% 1.590% 2.028% 2.518% 3.060%
Baa1 0.125% 0.320% 0.586% 0.927% 1.342% 1.830% 2.389% 3.014% 3.702% 4.448%
Baa2 0.186% 0.486% 0.899% 1.421% 2.045% 2.765% 3.573% 4.458% 5.411% 6.423%
Baa3 0.349% 0.870% 1.557% 2.396% 3.374% 4.474% 5.677% 6.967% 8.327% 9.741%
Ba1 0.652% 1.553% 2.683% 4.015% 5.518% 7.159% 8.907% 10.731% 12.605% 14.507%
Ba2 1.216% 2.755% 4.585% 6.652% 8.899% 11.267% 13.706% 16.174% 18.635% 21.061%
Ba3 1.922% 4.289% 7.003% 9.958% 13.058% 16.218% 19.373% 22.473% 25.483% 28.377%
B1 3.024% 6.617% 10.555% 14.650% 18.761% 22.787% 26.660% 30.339% 33.802% 37.041%
B2 4.729% 10.078% 15.606% 21.035% 26.204% 31.030% 35.481% 39.552% 43.260% 46.629%
B3 7.335% 15.047% 22.486% 29.333% 35.468% 40.889% 45.647% 49.816% 53.474% 56.692%
Caa1 11.210% 21.870% 31.276% 39.275% 45.967% 51.539% 56.189% 60.095% 63.404% 66.232%
Caa2 16.762% 30.671% 41.655% 50.194% 56.836% 62.050% 66.201% 69.556% 72.312% 74.612%
Caa3 27.864% 46.473% 58.498% 66.404% 71.822% 75.717% 78.641% 80.917% 82.741% 84.239%
Ca 42.559% 63.016% 73.565% 79.493% 83.148% 85.603% 87.375% 88.725% 89.797% 90.672%

Rating
Probability of Default

Exact Fit Exact Fit Exact Fit Exact Fit Exact Fit
Aaa 0.005% 0.005% 0.013% 0.014% 0.024% 0.025% 0.038% 0.041% 0.057% 0.061%
Aa 0.021% 0.021% 0.049% 0.053% 0.085% 0.098% 0.132% 0.156% 0.191% 0.227%
A 0.057% 0.057% 0.138% 0.140% 0.249% 0.254% 0.393% 0.399% 0.574% 0.575%
Baa 0.186% 0.186% 0.486% 0.449% 0.899% 0.797% 1.421% 1.230% 2.045% 1.750%
Ba 1.216% 1.216% 2.755% 2.776% 4.585% 4.713% 6.652% 6.984% 8.899% 9.550%
B 4.729% 4.729% 10.078% 10.041% 15.606% 15.926% 21.035% 22.069% 26.204% 28.224%
Caa 16.762% 16.762% 30.671% 30.505% 41.655% 42.193% 50.194% 51.793% 56.836% 59.564%
Ca 42.559% 42.559% 63.016% 61.071% 73.565% 71.907% 79.493% 78.785% 83.148% 83.422%

1Y 2Y 3Y 4Y 5Y
T
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Figure 1.1 

 
 

Figure 1.2 
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Annex 2 

Derivation of Solution for  𝑾�𝒙𝟏; 𝑷𝑫𝟏𝒋, 𝑷𝑫𝑴𝒋, 𝒓𝒋� 

Step 1:  Risk-neutral probability (at t=1) that jth loan defaults by maturity  

1. A loan can default either at the end of the capital horizon or at the maturity of the 
securitisation. Conditional on {𝑋�1 = 𝑥1 , 𝑈�11 = 𝑢11, … , 𝑈�1𝑁 = 𝑢1𝑛}, the jth loan defaults under 
the risk-neutral distribution if and only if (a) the loan defaults at t=1, or (b) loan does not 
default at t=1, but defaults at t=M. 

2. At t=1, the loan has already defaulted the following inequality obtains  

(2.1)     𝑟𝑗𝑥1 + 𝑢1𝑗�1 − 𝑟𝑗
2 ≤ 𝐷𝑇1𝑗

∗. 

3. Otherwise (ie if the above inequality does not hold, implying the loan has not 
defaulted at t=1), then the loan defaults at t=M under the risk-neutral distribution if 

(2.2)     �𝑟𝑗𝑋�2 + 𝑢�2𝑗�1 − 𝑟𝑗
2 � √𝑀 − 1 + �𝑅−𝑚𝑗

𝜋𝑗
� ∙ (𝑀 − 1) + �𝑟𝑗𝑥1 + 𝑢1𝑗�1 − 𝑟𝑗

2 � ≤ 𝐷𝑇𝑀𝑗
∗ 

where 𝑋�2 and 𝑢�2𝑗 are independent, standard normal random variables.30 Thus, the risk-
neutral probability of the loan defaulting by maturity, given that the loan did not default at t=1, 
is given by   

(2.3)   𝑃𝑟𝑜𝑏{Default at t = M | no default at t = 1} = Φ �
𝐷𝑇𝑀𝑗

∗−�𝑟𝑗𝑥1+𝑢1𝑗�1−𝑟𝑗
2 �+�

𝑚𝑗−𝑅
𝜋𝑗

�∙(𝑀−1)

√𝑀−1
�. 

Step 2:  Expected risk-neutral probability that loan j defaults conditional 
on stress event  

4. From the definitions of conditional and joint probability distributions, the expected 
risk-neutral probability that loan j defaults conditional on 𝑋�1 = 𝑥1 is the sum of two terms: 

𝐴 = The natural probability that the loan defaults at t=1; and 

𝐵 = The probability of no default at t=1 multiplied by the natural probability 
expectation of   (2.3) conditional on realisations of 𝑢1𝑗 for which (2.1) does not hold 
(for the given 𝑥1).  

                                                
30  Note that for 0 ≤ 𝑡 < 1, the asset value drift under the risk-neutral probability distribution prevailing at t=1 

should be set equal to 𝑚𝑗. This is because at 𝑡 = 1, 𝛶𝑗(1) is known and was generated from the borrower’s 
actual asset value process.  
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5. From (2.1), we have  

(2.4)  𝐴 = Φ�𝜉𝑗�,  where 𝜉𝑗 =  
𝐷𝑇1𝑗

∗ −𝑟𝑗𝑥1

��1−𝑟𝑗
2�

 .   

6. From (2.1) and (2.3), 

 

(2.5)  𝐵 =  ∫    Φ �
𝐷𝑇𝑀𝑗

∗−�𝑟𝑗𝑥1+𝑢1𝑗�1−𝑟𝑗
2 �−�

𝑚𝑗−𝑅
𝜋𝑗

�∙(𝑀−1)

√𝑀−1
� ∙ 𝜙�𝑢1𝑗� d𝑢1𝑗 ∞

−𝜉𝑗
 

 

                      = �    Φ

⎣
⎢
⎢
⎡𝐷𝑇𝑀𝑗

∗ − �𝑟𝑗𝑥1 − 𝑢1𝑗�1 − 𝑟𝑗
2 � − �

𝑚𝑗 − 𝑅
𝜋𝑗

� ∙ (𝑀 − 1)

√𝑀 − 1
⎦
⎥
⎥
⎤

∙ 𝜙�𝑢1𝑗� d𝑢1𝑗 
−(

𝐷𝑇1𝑗
∗ −𝑟𝑗𝑥1

�1−𝑟𝑗
2

)

−∞
 

 
 

           = Φ2 �−
 𝐷𝑇1𝑗

∗ −𝑟𝑗𝑥1

�1−𝑟𝑗
2

 ,
𝐷𝑇𝑀𝑗

∗−𝑟𝑗𝑥1+�
𝑚𝑗−𝑅

𝜋𝑗
�∙(𝑀−1)

�𝑀−𝑟𝑗
2

;  −�
1−𝑟𝑗

2

𝑀−𝑟𝑗
2�  

 
where the last line follows from equation (30c) in Andersen-Sidenius (2004/2005).  

7. On combining (2.4) and (2.5), we have the desired result  

(2.6)  

∫ 𝐸1
𝑅𝑁� �𝐼𝑗� ∙ 𝜙�𝑢1𝑗� 𝑑𝑢1𝑗

∞
−∞ = Φ �

𝐷𝑇1𝑗
∗ −𝑟𝑗𝑥1

�1−𝑟𝑗
2

� + Φ2 �−
 𝐷𝑇1𝑗

∗ −𝑟𝑗𝑥1

�1−𝑟𝑗
2

 ,
𝐷𝑇𝑀𝑗

∗−𝑟𝑗𝑥1+�
𝑚𝑗−𝑅

𝜋𝑗
�∙(𝑀−1)

�𝑀−𝑟𝑗
2

;  −�
1−𝑟𝑗

2

𝑀−𝑟𝑗
2�.  
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