Irving Fisher Committeeon  gw B | S
Central Bank Statistics -

IFC-ECCBSO-Bank of Spain Workshop on "New insights from financial statements™
17 October 2024

It's in the financials, stupid! But is it certain?’

Christian Haas, Ulf Moslener and Sebastian Rink,
Frankfurt School of Finance and Management

! This contribution was prepared for the workshop. The views expressed are those of the authors and do not necessarily reflect

the views of the European Committee of Central Balance Sheet Data Offices (ECCBSO), the Bank of Spain, the BIS, the IFC or
the other central banks and institutions represented at the event.

1/1



It’s in the Financials, Stupid! But is it
Certain?

Christian Haas', Ulf Moslener' and Sebastian Rink!

Frankfurt School of Finance & Management

This version: September 2024

Abstract

Sustainability data is increasingly relevant for multinational enterprises (MNEs),
financial institutions, and researchers. However, sustainability data remain incom-
plete, fragmented, or scarce. In our paper, we propose a novel approach to address
this challenge using machine learning (ML) to predict sustainability metrics from
readily available financial data. This method allows for a more detailed and ac-
curate assessment of sustainability in MNEs and their global value chains. Our
approach is tested using a comprehensive dataset of financial and sustainability
information at the company level. The results indicate that ML is helpful in pre-
dicting key sustainability metrics, such as corporate carbon emissions and water
discharge. However, users should reflect on the specific use case when applying ML
since model performance can vary sectorally, spatially, and temporally. In addition,
we develop a metric to assess the uncertainty of the predictions and find that it can
substantially affect the model output. Regulators should build on our findings to
encourage the use of ML-generated sustainability data while also requiring more

transparency from data providers and model users.
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I. Introduction

Sustainability commitments such as the Paris Climate Agreement (United Nations, 2015)
and the Kunming Biodiversity Declaration (Kunming Declaration, 2021) show the ambi-
tion to transform economies worldwide. As a result, multinational enterprises (MNEs), fi-
nancial institutions, and researchers increasingly require sustainability information. Avail-
ability and quality of sustainability data throughout the dimensions environment (E),
social (S), and governance (G) are more important than ever. However, these data are
incomplete, fragmented, or scarce. In this paper, we present a novel approach to using

machine learning to fill these sustainability gaps.

MNEs have different reasons for improving the sustainability of their products and services
such as innovation capacity (Acemoglu, 1997; Balasubramanian and Lee, 2008), regulatory
and investor pressure (Slager et al., 2023), or financial performance (Kim and Starks,
2016; Adams and Ferreira, 2009). A key component in the evaluation and management of
sustainability in MNEs is the availability and quality of sustainability data for MNEs, their
subsidiaries, and their global value chains (GVCs) (Marano et al., 2024). As reported and
audited data are only gradually and incompletely becoming available, MNEs are forced

to rely on other data sources.

Financial institutions and regulators have received increasing attention to sustainability
in recent years. In particular, internationally operating banks and investors have com-
mitted to steer their portfolios in line with sustainability goals (Bolton et al., 2022) while
retail investors display some preference for green financial products (Bauer et al., 2021).
An increasing awareness of the financial risk associated with sustainability has led many
regulators to strengthen sustainability-related risk management regulation (ECB, 2022).
Today, financial markets reflect biodiversity and climate-related risks to some extent (II-
han et al., 2021, 2023; Giglio et al., 2023; Garel et al., 2023). These developments require

increasing amounts of sustainability data from investees and lendees.

Research on sustainability and business practices has grown in recent years (e.g. Marano
et al. (2024) and Starks (2023)). Many empirical studies require company-level sus-
tainability data. Sufficient data quality and data availability, as well as understanding

modeling assumptions for non-reported data, is required in the process.

Currently, sustainability at the company level is typically measured by ESG ratings. How-
ever, these ratings diverge in terms of measuring specific ESG aspects (Berg et al., 2022).
Given the difficulty of measuring company sustainability (Edmans, 2023), granular phys-

ical indicators would allow different actors to assess corporate sustainability more inde-



pendently, allowing greater diversity of views and, as a result, potentially more efficient
functioning of markets, for example, through capital allocation and GVC engagement.
These granular physical indicators include corporate carbon emissions, the corporate bio-
diversity footprint, corporate resource usage (water, primary materials, etc.), and diversity

measures such as gender ratios.

However, granular physical sustainability data remain incomplete, fragmented, or scarce.
Corporate ESG disclosure around the world is currently evolving but far from being
established (Krueger et al., 2024). Tt is unlikely that full sustainability information on
GVCs will be available soon. Corporate carbon reporting seems to be the most evolved,
but it remains incomplete (Busch et al., 2022). This can lead to frictions in the efficient

use of these data for decision making. Therefore, methods are needed to fill the data gaps.

Data providers and researchers have realized this need and have provided different mod-
eling approaches to estimate ESG data. To date, this work has typically been limited
to corporate carbon emissions. Methods include simple estimations, which use a direct
proportional relationship between a company’s size (e.g., revenue, number of employees)
and the corporate carbon footprint, and regression setups, where emissions are regressed
against a variety of operational and financial predictors to encapsulate a company’s busi-
ness model, scale, and technological practices (e.g., Goldhammer et al. (2017) and Griffin
et al. (2017)). However, these approaches suffer from simplicity and thus potential biases
for out-of-sample predictions, as well as a lack of a generally accepted theory on how

accounting data drive corporate emissions.

Machine learning can help overcome these shortcomings, even beyond corporate carbon
footprints. Companies are complex systems (Loughran and McDonald, 2023). They
have different ages, sizes, product lines, geographic presences, financing structures, and
company cultures. These aspects may all play a role for companies’ sustainability metrics,
and it is very likely that relationships between and within company-level metrics are non-
linear. Machine learning with its ability to search large non-parametric algorithmic spaces

(Jordan and Mitchell, 2015) seems well positioned for this environment.

Previous work employing machine learning to predict sustainability data already shows
promising results, but is limited in metrical and methodological scope. Nguyen et al.
(2021) and Nguyen et al. (2022) estimate corporate Scope 1-3 emissions using a set of
regression-based supervised learning algorithms and achieve up to 30% improvement com-
pared to parametric approaches. Other estimates of environmental data at the company
level remain rare. Tian (2023) estimates the water efficiency of the companies. The litera-

ture is largely silent on the estimation of social aspects at the company level. Governance



aspects are discussed, especially diversity aspects, with Ranta and Ylinen (2023) using
text-based machine learning to generate diversity indicators from social media posts and
Khan et al. (2023) predicting board diversity from company characteristics. This diversity
of approaches to applying machine learning requires the user to tailor new data sets, code
environments, and machine learning algorithms for each sustainability metric. This is
time-consuming, costly, and challenging in environments where a variety of sustainability
data points are necessary, such as in disclosures by MNEs’ global value chains, in risk

management by banks, or research involving various company-level sustainability aspects.

In addition, even if such estimations are available, regulators normally do not accept their
use by financial institutions or MNEs. The main reason is that only point estimates are
provided and no additional information is available as to how reliable that estimation is
at the firm or portfolio level. Point estimates as they are generated by machine learning
models represent the conditional expectation of the predicted variable. Information about
confidence intervals or coverage intervals is not provided. This is also a challenge when

making causal inferences from these data in research.

We propose an approach that solves these challenges. Essentially, this is achieved through
three characteristics or our approach: First, we restrict the independent variables (fea-
tures) to a large, multidimensional but readily available set of company-level financial
data supplemented by fundamental data such as industry, country, and company age.
Second, the code architecture systematically integrates the search for the best-performing
algorithms in combination with the appropriate data preprocessing before those combi-
nations (pipelines) are optimized and then fed into a final meta-model training. Third,
our approach incorporates considerations about prediction uncertainty. Based on recent
developments in the machine learning literature (e.g. Tibshirani et al. (2019) and Bar-
ber et al. (2023)), we add two prediction intervals to our framework. The first refers to
the probability that on average in all predictions the true value lies within the interval
(marginal coverage). The second refers to the probability that the true value lies within

the interval for a specific set of input values (conditional coverage).
We apply our setting to consider three questions:

Q1: To what extent can we derive corporate sustainability data from corporate financial

data using machine learning?

Q2: How does the prediction performance change for different dimensions, such as time,

region or sector?

()3: What can uncertainty measure reveal about the quality of the point estimates within



our approach?

In order to demonstrate that a lot of information on the sustainability metrics is actually
captured "in the financials” (Q1), we test our approach on the sustainability metrics Scope
1 and Scope 2 emissions, air pollution (NOx emissions), water discharge, and female board
share. Despite the versatility of the approach (i.e. just one dataset for all indicators), the
predictions seem reasonable for these different metrics. The performance of the framework
varies between sustainability indicators and seems to work better for non-truncated data.
In doing so, we contribute to the literature by (i) confirming that financial data contain
sustainability relevant information and (ii) demonstrating that our approach outperforms

existing machine learning-based approaches.

We show that the performance of the models also varies between the time, region, and
sector dimensions (Q2). For the earlier years in the dataset (2005 until about 2015), the
predictions tend to be better than in the following years. When looking at different world
regions, we also observe variations with the predictions for Europe being better than those
in other parts of the world. With respect to the different sectors, the approach performs
differently and is dependent on the sustainability indicator predicted. In agriculture, for
example, the prediction of water discharge is comparatively good, while that of air pollu-
tion is relatively bad. This is vice versa for transportation. These findings indicate that
the literature in the field should not only rely on the global means of model performance

metrics but should make it conditional on the respective use case.

The issue of prediction uncertainty (Q3) is to date not considered in the existing literature
related to the imputation of missing sustainability data. We fill this gap by adapting
recent developments in the technical literature on machine learning. We find that the
conditional coverage provides relatively precise information about the confidence intervals
of the predictions. As such, this metric should be reported. The intervals are dependent
on the coverage needed, that is, the desired confidence a user would like to have her
predictions. Using a 68% coverage versus a 95% coverage as examples, we find that a
higher risk tolerance at 68% would lead to very small intervals, whereas a low risk tolerance
would result in large intervals. This leads us again to deduce that the consideration of
use case-specific parameters is important when using machine learning in general and

specifying confidence intervals in particular.

We conclude by making the case for the use of machine learning to fill data gaps, as it is a
cost-efficient way to generate company-specific sustainability data while maintaining high
standards for data integrity. Our suggested approach should help regulators to accept the
use of estimations as they are more qualified. Additionally, our approach will help MNEs



and financial institutions meet the disclosure requirements on their GVCs and portfolios,
as well as enable them to run more granular analyses including the consideration of risk

tolerances in sustainability data predictions.

The remainder of the paper is structured as follows. The next section outlines the method-
ology, including the introduction of the uncertainty measure. Section III presents the

results along the three questions. Section IV concludes.



II. Methodology

Predicting cardinal sustainability data is a supervised ML regression task. Here, we
suggest a versatile approach to using regression-based machine learning to predict a variety
of company-level sustainability data only from financial data. This approach could help
make machine learning a more widely used tool in sustainability and business research
(Bosma and van Witteloostuijn, 2024) as well as regulation and industry. In addition, we
propose a method to estimate the prediction uncertainty next to the traditional model

performance criteria based on point estimates.

A.  Model Space

To ensure the versatility of our approach, we define a large model space that we search
using a Bayesian approach! to maximize our chance of capturing the "best” model for
a given sustainability metric. We maximize the coverage of the model space by first
training and optimizing a large set of model pipelines (running up to 9,600 trials per
sustainability metric?), then optimizing the best-performing model configurations, and
finally using them in meta-model training, see Figure 1. We evaluate the performance
throughout the process using the Mean Squared Error (MSE) and double 10-fold cross-

validation.

Base Model Training - Pipeline Selection: The first step of base model training consists
of the search for suitable model configurations (pipeline elements per learner) for the
sustainability metric at hand by exploring a variety of data preprocessing techniques
along with different regression learners as input to hyperparameter optimization. In this

step, we run up to 25 optimization trials per model configuration.

Data preprocessing is an essential aspect of the modeling process as it can significantly
influence the performance of predictive models. In the literature on sustainability data
prediction, this step is usually treated separately from the actual model training. Here,
we use data preprocessing as a hyperparameter for optimization in itself. In doing so, we
expand the considerations of the no free lunch (NFL) theorem (Wolpert and Macready,
1997) to preprocessing in our setup. The options for data preprocessing in our setup span
missing indicator flags, imputation methods (mean, median, iterative), outlier removal
strategies (none, winsorization), scaling techniques (standard, robust), transformation

approaches (none, quantile) and feature selection methods (none, Lasso). We introduce

1Unlike grid or random search, Bayesian optimization utilizes past evaluation results to choose the next set of
hyperparameters, efficiently narrowing down to the best possible model settings (Snoek et al., 2012).

2We have devised an early stopping mechanism to boost computational efficiency. For more information, see
Appendix B.



Base Model Training

: Step I: Pipeline Selection i ! Step ll: Optimization
Hyperparameter Space I: DataPreprocessing Hyperparameter Space II: RegressionLearners E'“‘»é For all top 3 pipelines per learner:
. Missing Indicator: Yes | No . Linear Regression : :
Imputation: Mean | Median | Iterative *  Ridge i 150trials
Outlier Removal: None | Winzorize +  CatBoost i toimprove model performance
Scaler: Standard | Robust . Extreme Gradient Boosting : :

Transformation: None | Quantile
Feature Selection: None | Lasso

Find top 3 pipelines per learner with 25 trials

Using the top 3 optimized pipelines per learner, run meta model training with 150 trials

Stacking: Linear Regression | Ridge | Extreme GradientBoosting

Figure 1. Machine Learning Approach
The figure illustrates the process of Base Model Training, including pipeline selection and optimization using
Bayesian hyperparameter tuning, followed by Meta Model Training with a stacked regression approach.
Evaluation uses Mean Squared Error (MSE) and double 10-fold cross-validation. Base model training
involves selecting top pipelines per learner, followed by further optimization. Meta model training uses the
top pipelines in different stacking configurations.

the missing indicator flag (a binary feature) to allow the model to learn from the report-
ing behavior of a company. The imputation methods are relevant for handling missing
data, a common issue in financial datasets, and can affect the model’s bias and variance.
Imputation strategies such as mean and median are simple and widely used, while iter-
ative methods can provide a more sophisticated approach that accounts for correlations
between features (van Buuren, 2007). Outlier removal and scaling enhance the robustness
and stability of the models, particularly in financial applications where outliers can rep-
resent noise (Aggarwal, 2013). Feature engineering and selection further refine the model
by introducing new features that could capture non-linear relationships or selecting the

most relevant features to avoid overfitting (Iguyon and Elisseeff, 2003).

In the space of regression learners, the approach contemplates linear regression, ridge
regression, extreme gradient boosting (XGBoost) and CatBoost. Linear regression and
ridge are fundamental techniques with ridge introducing regularization to manage multi-
collinearity and overfitting (Hoerl and Kennard, 1970). They are relevant in this study
for comparing the training output with methods that are used regularly in econometrics.
However, it is unlikely that these learners form the basis of the "best” performing models
in the realm of machine learning. On the other hand, Gradient Boosting algorithms, in-
cluding XGBoost (Chen and Guestrin, 2016) and CatBoost (Prokhorenkova et al., 2018),
are powerful ensemble methods that have shown high performance on a wide range of pre-

diction tasks, particularly in the presence of non-linear and complex relationships. One



of the two algorithms is expected to perform best in the context of sustainability data

prediction.

Compared to Support Vector Machines (SVMs), K-Nearest Neighbors (KNN), neural
networks, and simpler tree methods, XGBoost and CatBoost bring a blend of depth
and breadth to the modeling process. SVMs, while effective for small to medium-sized
datasets, can be outperformed by tree-ensemble methods in handling large and complex
data sets (Ferndndez-Delgado et al., 2014). KNN suffers from the curse of dimensionality
and is inherently slower in making predictions due to its instance-based nature (Beyer
et al., 1998). Neural networks, although powerful for large-scale and complex non-linear
relationships, require extensive tuning and larger datasets to generalize effectively without
overfitting (LeCun et al., 2015). This could reduce the versatility of our setup. Simpler
tree methods such as CART or C4.5 can provide interpretable models but usually lack the
predictive power of boosted ensembles, which aggregate multiple trees to reduce variance
and bias (Breiman, 1996). Therefore, for our regression tasks using financial data, where
the data can be noisy and feature relationships complex, XGBoost and CatBoost are
likely to be good fits.

Base Model Training - Optimization: The second step involves optimizing the top three
model configurations per learner and target variable, selected according to their initial
performance in Step I. Each model configuration undergoes 150 Bayesian hyperparameter
optimization trials. With this step, we substantially expand the optimization efforts to

ensure that the model performance is close to "best”.

Meta Model Training: Finally, meta-model training is applied using the three best-
performing models per learner. The approach employs stacking, which combines the
predictions of multiple models by training a meta-learner, often leading to performance

improvements (Wolpert, 1992).

B.  Model Performance Metrics

We evaluate the performance of the top three models from both base and meta-training
using performance assessment metrics as summarized in Table I. We evaluate the point

estimates using these metrics.

Global assessments encompass a set of quantitative measures designed to evaluate the
predictive performance of global models. The metrics in this category include the ac-
curacy distribution, which examines the variability in prediction accuracy through the
distribution of relative errors between predicted and actual values. The mean absolute

error (MAE) and the mean squared error (MSE) quantify the average prediction error and



Metric Measure/Value Description

Global Assessment

Accuracy distribution  Distribution Refers to the distribution of relative errors
between predictions and actual values.

Mean Absolute Scale The average of the absolute errors between

Error(MAE) the predicted and actual values, representing
average prediction error.

Mean Squared Numeric value The average of the squared errors, emphasiz-

Error(MSE) ing larger errors more than MAE. Also used
in the model training as loss function.

R? (R-squared) Numeric value Measures the proportion of the variance in

the dependent variable that is predictable
from the independent variables.

Local Assessment

Quintile allocation Percentages Percentage of correctly allocated predictions
to actual quintiles (or allocation of n quintiles
deviations).

Context MSE Evaluation of the model for sectorally, tem-

porally, or spatially local performance.

This table reports a summary of the performance metrics used to assess the point estimates of trained models.
Global and local in this context do refer to full or partial results of the model, not to geographic coverage.

Table I. Performance Assessment Metrics for Machine Learning Models

the average of squared errors, respectively, with MSE placing greater emphasis on larger
errors. We use MSE as the metric in our loss function and thus as our main measure
of model performance. The R-squared (R?) measures the proportion of variance in the
dependent variable that can be predicted from the independent variables, offering insight

into the explanatory power of the model.

Local assessments show how the models perform in their operational contexts. This
category includes quintile allocation, which evaluates the model’s ability to accurately
rank predictions within specific quintile brackets. This could be useful when seeking
best-in-class investment strategies (Edmans et al., 2022) or when reducing exposure to
highly emitting companies in portfolios (Rink et al., 2024). The context examines the
performance of the model in sector, space, and time. This should ensure transparency
about performance differences prevalent in other sustainability data sets (Dobrick et al.,
2023).



C. Prediction Uncertainty

Estimating sustainability data from corporate financial data is a task that is inherently
characterized by significant uncertainty. Point estimates generated by classical statistical
or machine learning models represent the conditional expectation of the target variable -
in our case the conditional mean - but do not provide information about the uncertainty or
variability in the possible range of prediction values. However, quantifying this uncertainty
is crucial to make reliable statements about the accuracy of the estimation and associated
risks, to possibly exclude certain ranges from use (measure not estimate), or to opt for
more conservative or optimistic values instead of the point estimates of the conditional

expectation.

A key challenge in accurately and consistently assessing the uncertainty of and between
different models is the construction of valid prediction intervals. Our selection of ap-
proaches and methods for generating prediction intervals is, therefore, guided by the goal

of achieving (sufficiently) good marginal coverage and conditional coverage.

Marginal coverage refers to the probability that, on average across all predictions, the
actual target value lies within the prediction interval. This property ensures that the
prediction intervals are correct on average across the entire distribution of input data. It
is particularly useful for making consistent statements about uncertainty across different
models and is relevant in scenarios where models are applied for multiple predictions.
Marginal coverage does not guarantee accurate coverage for every individual prediction,

but ensures that the average coverage meets the desired level.

Conditional coverage refers to the probability that the true target value lies within the
predicted interval for a specific set of input values. This property is stronger than marginal
coverage and is crucial when individual-level uncertainty quantification is needed, such as
in company-specific predictions. Achieving conditional coverage requires that the predic-
tion intervals are accurately calibrated for each possible input, capturing the uncertainty
for that particular instance. However, this is generally more challenging to achieve, espe-

cially in the presence of complex data structures or heteroskedasticity.

In our data-driven approach, where financial data are used as predictors of sustainability-
related information, additional challenges arise due to the (completely) unknown rela-
tionship between these variables (absence of theory). This uncertainty with respect to
the underlying distribution suggests a preference for methods that do not rely on strong

assumptions about the distribution.

In the literature on uncertainty quantification, there are various approaches to quantify-
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ing the uncertainties of model prediction (Soize, 2017; Abdar et al., 2021). A common
method involves using scalar uncertainty measures, such as the standard deviation (error),
which provides a general measure of the spread of predictions. However, these methods
offer only a global perspective on the underlying uncertainty and typically fail to ade-
quately account for the variability of uncertainty across different areas of the distribution.
Moreover, theoretical guarantees regarding marginal coverage and conditional coverage
are only available under strong assumptions about the distribution and are typically not

empirically validated (Palmer et al., 2022).

Quantile regression (Koenker and Bassett, 1978) offers an alternative approach that al-
lows the calculation of prediction intervals using the estimation of quantiles of the target
variable. This method is particularly useful when asymmetric uncertainties in predictions
cannot be ruled out. A central advantage of quantile regression is that it asymptotically
ensures both marginal coverage and conditional coverage for sufficiently large (approach-

ing infinite) sample sizes (Chernozhukov et al., 2009; Romano et al., 2019).

Recently, conformalized prediction has been developed (Vovk et al., 2005; Lei and Wasser-
man, 2014; Lei et al., 2018). The underlying methods provide theoretical guarantees for
marginal coverage in finite samples without making strong assumptions about the distri-

bution.?

We employ a conformalized version of the quantile regression (Romano et al., 2019). This
approach retains the favorable properties of quantile regression concerning the adaptivity
of the prediction intervals and (asymptotically) conditional coverage, while also providing
theoretical guarantees for marginal coverage in finite samples under the assumption of i.i.d.
data. As with our systematic approach to identifying the optimal model for predicting
the conditional mean, this approach to uncertainty quantification aims to be sufficiently

close to optimal to allow meaningful conclusions.

Specifically, our approach involves generating symmetric prediction intervals with a target
coverage rate of 7 € {68%,95%} to assess prediction uncertainty. Given the size of
the datasets, we employ a split method in which the test data set is divided into a
calibration set and a (uncertainty) test set. The training of the models using an adapted
loss function is performed on the training set. The calibration set is then used to compute
conformal scores, which are subsequently employed to construct prediction intervals that
achieve the desired coverage levels. The test set is used to evaluate the coverage and

analyze prediction uncertainty. This approach is intended to balance the trade-off between

30ur approach builds on work that assumes exchangeability, which is satisfied under the assumption of i.i.d.
data. For conformalized prediction approaches beyond exchangeability, see Tibshirani et al. (2019) and Barber
et al. (2023).
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statistical efficiency and computational efficiency. We implement this approach in four

steps:

1. Quantile Regression: We train the best base models for each learner as well as the
meta models on the training data set using the loss function
Lo (Y0:y) = (Y= Ja) 01{y > Ja} + (o —y) (1 =) 1 {y < Ja}, with a € {(1 -
7)/2,(1 + 7)/2}. y is the target variable and § the (quantile) prediction of the

target variable.

2. Quantile Prediction: We then use the trained models to predict the conditional
quantiles g, (x) for each observation in the calibration data set. x is a vector of the

predictor variables for each observation.

3. Conformal Scores: Based on these quantile predictions, we determine conformal
scores, c(z,y) = max{ya_r/2(x) — ¥,y — Ya+r2(x)} for each observation in the

calibration data set.

4. Rectifying Quantiles: Defining 7 = Quantile (M, {c1, ..., cncal}> we can derive

Necal

conditional prediction intervals
I(x) = [§rjo(@) = 7, G1—rjo(z) + 7]
for each observation.

D. Data

Our data set comprises a comprehensive collection of company-year observations for listed
equities obtained from the London Stock Exchange Group (LSEG) Data and Analytics
database. This data set is global in scope, encompassing data from 95 countries, which
provides a diverse and extensive foundation for modeling and analysis. To maintain
the integrity and reliability of the results, only reported sustainability data are included
in this study, thereby avoiding the potential biases introduced by the LSEG Data and
Analytics’ estimation models or unaudited data. This conservative approach ensures that

the analysis is based solely on real and verifiable metrics.

As shown in Figure 2, the data set includes key sustainability indicators such as Scope
1 and Scope 2 emissions, air pollution, water discharge, and female board share (our
"target variables”). Data availability has recently increased substantially, enabling ML

applications in the field.

Table II provides a detailed summary of the data, highlighting the breadth and depth of
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The figure illustrates the availability of reported sustainability data by listed companies over time.

Figure 2. Reported Sustainability Data over Time

the data set. The data set time period runs from 2005 to 2022.

e Scope 1 and Scope 2 Emissions: The dataset contains nearly 50,000 observations
each for these emissions categories, covering 83 sectors across 83 countries, with data
available for more than 8,000 companies. We select these indicators to benchmark

against other studies and due to the relevance of climate change to business.

o Air Pollution and Water Discharge: These variables have fewer observations, reflect-
ing the more limited availability of environmental data. However, they still provide
significant coverage, with data on more than 3,000 companies from more than 60
countries. These indicators are included to reflect emerging topics in business and

finance research such as biodiversity, blue economy, and livable cities.

o Female Board Share: This social governance indicator is well-represented, with over
100,000 observations across 95 countries and 86 sectors, providing the richest data

set in our analysis. It should demonstrate that our approach is applicable beyond
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environmental sustainability data.

The data set includes 212-256 predictor variables, depending on the specific sustainability
metric, with data completeness ranging from 57% to 65%. This breadth of variables offers

a comprehensive view of company characteristics and operational contexts.

Dataset Scope 1 Emissions Scope 2 Emissions Air Pollution Water Discharge Female Board Share

General Information

Number of observations 47685 47320 20980 18426 108834
Number of sectors 83 83 76 74 86
Number of countries 83 83 63 63 95
Number of companies 8391 8335 3389 3098 14406
Start year 2005 2005 2005 2005 2005
End year 2022 2022 2022 2022 2022
Number of predictor variables 240 240 213 211 255
Data completeness (in %) 63.86 63.77 65.72 65.62 57.92
Target Variable Information

Mean 3786965 1051686 19914 187082423 16.00
Standard deviation 26440465 48614503 179304 1318742226 14.00
Minimum 0.00 0.00 0.00 0.00 0.00
Maximum 4421000000 7386660000 14042000 26877900000 100.00
Target Variable Information

Log (1+value) Mean 10.75 11.07 6.31 14.98 2.17
Log (1+value) Std 3.55 2.72 3.28 3.60 1.40
Log (1+value) Min 0.00 0.00 0.00 0.00 0.00
Log (1+value) Max 22.21 22.72 16.46 24.01 4.62

This table presents summary statistics for the dataset, including Scope 1 and Scope 2 emissions, air pollution,
water discharge, and female board share. The table details general information such as the number of observations,
sectors, countries, companies, the time period (2005-2022), and data completeness rates. It also includes target
variable information, such as means, standard deviations, and the range (minimum to maximum) of the absolute
and log-transformed values.

Table II. Summary Statistics

The features selected for this study focus on fundamental and financial data, excluding
direct sustainability-related metrics (e.g., energy use) to challenge the model’s ability
to infer sustainability data solely from financial and fundamental data. The feature set
includes the following. A complete list of the variables including summary statistics is

presented in Appendix E.

« Financial data (e.g., income statement, balance sheet, cash flow metrics), capturing
idiosyncratic company characteristics such as size, age, innovative capacity, and

asset intensity.
e Fundamental data

— Industry indicators to account for general emission intensity trends within

specific sectors.

— Spatial variables that reflect policy and socio-economic operating conditions.
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— Company age that reflects the general development stage of a company.
o Temporal effects captured by the inclusion of year variables.

Data preprocessing steps included retrieving data via the LSEG Data and Analytics API,
filtering out non-listed equity observations, and excluding entries without date variables or
those with quarterly reporting. The target variables were logarithmically transformed to
improve predictive performance and for highly correlated features (correlation >= 99%)
only one feature is retained to mitigate multicollinearity. Furthermore, features with very
low data availability (missingness >= 99%) were excluded, as imputation was not feasible

in these cases.

This rigorous data selection and processing framework prior to the pipeline preprocessing
steps ensures that the resulting model is robust and reliable, providing information on

how financial metrics can be used to predict sustainability data.

ITII. Results

A. It’s in the Financials, Stupid!

Our analysis reveals that sustainability data can be predicted from corporate financial
data with a high degree of accuracy. Complex and non-parametric machine learning
models significantly outperform linear models in predicting sustainability data from fi-
nancial data, see Table III. This indicates that the underlying structure of sustainability

data is quite complex and cannot be adequately captured by simple linear relationships.

Specifically, our best-performing models achieve mean squared errors (MSE) in the range
of 0.6-1.9 and mean absolute errors (MAE) between 0.3 and 0.7. These results are substan-
tially better compared to a benchmark study on corporate carbon emissions by Nguyen
et al. (2022), which reported MAE values around 1.1 and 0.8 for Scope 1 and Scope 2
emissions where we achieve 0.6 and 0.5 respectively. Moreover, our models demonstrate
high explanatory power. The best performing models consistently explain more than 90%
of the variance in the sustainability data sample. This high level of performance under-
scores the potential of advanced machine learning techniques in enhancing the predictive
accuracy of sustainability metrics based on financial data. Hence, it’s in the financials,

stupid!

The performance of the prediction varies between the different sustainability metrics.
The performance of the female board share is weaker in relative terms compared to en-

vironmental variables. This indicates that performance cannot always be improved in
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Base Learner Meta Learner

Target Variable Metric Linear Regression Ridge CatBoost XGBoost Linear Regression Ridge XGBoost
MAE 1.261 1.240 0.648 0.662 0.610  0.609 0.589
Scope 1 Emissions (tCO2e) MSE 3.401  3.252 1.579 1.617 1.622  1.622 1.589
R2 0.713  0.726 0.867 0.864 0.863 0.863 0.866
MAE 1.252  1.118 0.513 0.627 0.556  0.556 0.527
Scope 2 Emissions (tCO2e) MSE 3.400  2.959 1.163 1.269 1.275  1.275 1.204
R2 0.540  0.599 0.842 0.828 0.827 0.827 0.837
MAE 1.501  1.444 0.695 0.905 0.672  0.672 0.650
Air Pollution (tNOx) MSE 4.598 4.320 1.923 2.262 1.907  1.907 1.909
R2 0.564  0.590 0.818 0.786 0.819 0.819 0.819
MAE 1.782  1.782 0.278 0.623 0.275 0.275 0.273
Water Discharge (cbm) MSE 7.528  7.522 1.055 1.526 1.063 1.063 1.053
R2 0.443  0.443 0.922 0.887 0.921 0.921 0.922
MAE 0.876  0.876 0.473 0.501 0.448  0.448 0.428
Female Board Share (pct)  MSE 1.253  1.249 0.598 0.638 0.595 0.595 0.592
R2 0.347  0.349 0.688 0.667 0.690 0.690 0.691

This table reports the performance metrics of the machine learning models Linear Regression, Ridge, Cat-
Boost, and XGBoost, used to predict sustainability data. The models are evaluated based on their Mean
Absolute Error (MAE), Mean Squared Error (MSE), and R-squared (R2) values in five target variables
Scope 1 Emissions, Scope 2 Emissions, Air Pollution, Water Discharge, and Female Board Share. Target
variable is in log + 1 format.

Table III. Global Model Performance

predicting sustainability data from financial data by increasing the sample size. It also
highlights the difficulty that some models seem to have in dealing with truncated data
(by definition, the female board share is scaled between 0% and 100%).

The relative errors in the predictions remain non-negligible. To show the applicability of
the predicted data to different use cases, we dissect the results at the local level in the

next step.

B.  Model Performance Varies

In subsequent analyses, we show the results for the best-performing model for each of the
sustainability metrics. These are base XGBoost models for Scope 1 and 2 emissions, a
meta Ridge model for air pollution, and meta XGBoost models for water discharge and

female board share.
Quintile Analysis

First, we evaluate the performance of our models using a quintile-based approach. Specif-
ically, we divide the data set into quintiles with roughly the same number of observations
based on the size of the target variable*. This allows us to assess how well our models

perform across different ranges of sustainability metrics.

The quintile-based approach shows that the models generally perform the worst in the

4Note that female board share has nearly 30% of observations equaling zero. Therefore, in this case, we
manually adjusted the binning. As a result, more observations are in Quintile 1 in this case.

16



smallest quintile, which includes the lowest values of the target variables; see Table IV.
This pattern is consistent in the five target variables analyzed. A key factor contributing
to this performance disparity is the inherent difficulty in predicting values close to zero,

which is only necessary in the smallest quintile.

Target Variable Metric Q1 Q2 Q3 Q4 Q5

MAE 1.112 0.571 0.476 0.466 0.618

MSE 3.922 0903 0.718 0.757 1.593

MAE 1.004 0.377 0.404 0.335 0.446

MSE 3.517 0.413 0.500 0.405 0.982

MAE  1.137 0.464 0.451 0.698 0.612

MSE 4.074 0.780 0.803 2.015 1.861

MAE 0532 0.222 0.205 0.185 0.221

MSE 3.146 0.467 0.482 0.362 0.804

MAE 0.692 0.301 0.315 0.344 0.401

MSE 1.376 0.254 0.293 0.331 0.448

This table presents the performance metrics of the best-performing machine learning model across different
quintiles of the target variables. The dataset is divided into quintiles based on the size of each sustainability
metric Scope 1 Emissions, Scope 2 Emissions, Air Pollution, Water Discharge, and Female Board Share.
Performance is measured using Mean Absolute Error (MAE) and Mean Squared Error (MSE) for each
quintile, labeled Q1 through Q5, where Quintile 1 (Q1) represents the smallest values of the target variable,
while Quintile 5 (Q5) represents the largest values. All input values are in log + 1 format.

Scope 1 Emissions (tCO2e)
Scope 2 Emissions (tCO2e)
Air Pollution (tNOx)
Water Discharge (cbm)

Female Board Share (pct)

Table IV. Performance of Best Models by Quintiles

The performance variation between the four remaining quintiles is relatively modest,
with some target variables showing a slight decrease in performance in the fifth (largest)
quintile. We do not observe any particular quintile consistently performing the best or
second worst across all metrics, and the deviations in performance are generally small.
This suggests that the models maintain a stable performance level in most of the predicted

data distributions.

Finally, we categorically examine the degree of deviation between the predicted and actual
quintiles. We find that our predictions fall into the right quintile 60.3% (female board
share) to 88.8% (Scope 1 emissions) of the time, see Figure 3. In most cases of deviation,
the predicted quintile deviates by only one quintile from the actual value. This underscores
the overall robustness and performance of our models for categorizing companies based

on our continuous predictions.

In practical terms, for an MNE, these findings indicate that the models are reliable for
identifying high-impact areas within GVCs. This can be particularly useful for companies
seeking to prioritize their strategic focus and allocate resources effectively to areas with

the greatest impact on sustainability.

Next, we analyze the performance of the model in the temporal, spatial, and sectoral
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The pie charts display the proportion of observations of absolute deviating quintiles for the key vari-
ables: Scope 1 and Scope 2 emissions, air pollution, water discharge, and female board share.

Figure 3. Number of Deviating Quintiles

dimensions to assess how our models perform under different conditions.
Temporal Dimension

Our analysis indicates that the models perform best during the period up to 2015, with a
slight decrease in performance in subsequent years; see Figure 4. This decline is relatively
minor for all target variables except air pollution. We attribute it to the increased vari-
ability in the data set over time, that is, more companies reporting their sustainability
data. Although more data should generally help in training machine learning models,
higher heterogeneity among reporting companies (business models, sizes, technology mix,
etc.) make it more difficult for the algorithm to predict with the same performance level,

especially if the heterogeneity grows faster than the data availability.

When applying machine learning models to real-world scenarios, it is essential to consider
these temporal variations. Users should ensure that the specific use case is well understood
so that the models can be appropriately adapted. Particularly when focusing on current
data, it might be necessary to apply variations or modifications to the models trained on
older data. One potential approach is to incorporate a discount factor in the loss function

that adjusts for temporal discrepancies.
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This figure illustrates the model performance over time (2005-2022) for five different
variables: Scope 1 emissions, Scope 2 emissions, air pollution, water discharge, and
female board share. The ordinate represents the MSE, showing how prediction per-
formance has evolved for each variable across the years.

Figure 4. Temporal Model Performance

Spatial Dimension

In the spatial analysis, we observe some variation in model performance between different
geographic regions; see Figure 5. In particular, our models tend to perform better in Eu-
rope (and Oceania) than in other parts of the world. This discrepancy could be partially
attributed to stricter and more comprehensive reporting regimes in Europe, resulting in a
larger and more reliable dataset (Krueger et al., 2024), that is, reporting is more homoge-
neous due to mandatory guidelines that improve model performance in these regions (or
reduce heterogeneity). However, despite these differences, the models still perform well
in all regions. For MNEs looking to optimize global supply chains, our approaches are

applicable, although some caution is advised.
Sectoral Dimension

Regarding the sectoral dimension, we find minor variations in model performance across
different industries, with some outliers; see Figure 6. For most industries, the models
perform reliably, suggesting that they are well suited for applications that involve ana-
lyzing portfolios spanning multiple sectors and industries, such as those of banks or asset
managers. However, if a particular sector is of special importance to an economic actor,

it may be beneficial to use a weighted loss function tailored to sectoral importance.

In summary, while there is some variation in the model performance across the temporal,

spatial, and sectoral dimensions, the models generally perform well in all three areas.
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This figure shows the model performance across different global regions, as measured by the MSE for
the five target variables: Scope 1 emissions, Scope 2 emissions, air pollution, water discharge, and
female board share. Each region is represented along the ordinate, while the MSE values are plotted

Figure 5. Spatial Model Performance
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This figure displays the MSE of model predictions across industries for the five target variables: Scope 1 emissions,
Scope 2 emissions, air pollution, water discharge, and female board share. Each dot represents the MSE for a
particular variable within a specific industry.

Figure 6. Sectoral Model Performance

However, the variation underscores the importance of understanding the specific use case

and tailoring the models accordingly to ensure optimal performance for the task at hand.

C. Beware The Prediction Uncertainty

The analysis of prediction uncertainty across the target variables reveals heterogeneous

patterns.
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whereas for larger coverage requirements, it becomes significant. Our conformalized quan-
tile regression approach demonstrates empirically valid coverage (with an absolute differ-
ence between empirical and target coverage < 0.68% for all variables and coverage rates).
The prediction uncertainty remains largely symmetrical, balancing under- or overestima-
tion of prediction uncertainty compared to other standard uncertainty measures. In this
section, we show the results for Scope 1 Emissions; see Appendix D for the results for the

other target variables.

Figure 7 illustrates the prediction uncertainty in four settings, including conformalized
quantile regression using linear regression and XGBoost and with coverage rates of 68%
and 95%. The figure demonstrates that, while prediction uncertainty always exists, it is
relatively low for the 68% coverage rate. This suggests that users who are not highly
risk-averse can use the point estimates without encountering (on average) significant
uncertainty. However, at the 95% coverage rate, uncertainty increases substantially, indi-
cating a wider range of possible outcomes, which may be of concern to users who require

greater confidence in their predictions.

In addition, the choice of the learner to estimate the uncertainty affects the results. Linear
regression models tend to produce on average narrower prediction intervals with relatively
constant interval lengths across the distribution of the target variable. In contrast, XG-
Boost exhibits a more adaptive behavior, with wider prediction intervals towards the
extremes of the target variable values. For lower actual values, the uncertainty intervals
become larger, particularly skewing toward values above the actuals. Similarly, for the
largest values, the intervals widen, though skewed downward, toward lower-than-actual

values.

Figure 8 further examines the distribution of the prediction intervals, confirming their
general symmetries. In this figure, we use predictions of the conditional mean from the
(best performing) XGBoost meta-leaner. Linear regression models show tighter distribu-

tions of interval lengths, while XGBoost produces more widely spread intervals.

This figure also presents alternative uncertainty measures for comparison. In addition
to the conformalized quantile-based measure, a more naive approach is shown using sim-
ple one- and two-standard deviations (o) from the conditional mean, which are typically
used for coverage levels 68% and 95%. This naive approach results in significantly larger
intervals compared to the conformalized quantile-based method in most settings. In ad-
dition, an alternative method has been employed that uses (standard) quantile regression
(v). This method underestimates the uncertainty compared to our conformalized ap-

proach most of the time. This leads us to conclude that the conformalized quantile-based
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This figure displays the prediction uncertainty for Scope 1 Emissions. The settings are for the learners linear
regression and XGBoost and the target coverage rate of 68% and 95%. For better readability, the actual vs.
predicted plots display only 2% of the total observations, randomly selected.

Figure 7. Prediction Uncertainty in Different Settings for Scope 1 Emissions

method is well suited to test prediction uncertainty.

The results of the uncertainty measures for other target variables than Scope 1 emissions
show consistent results for environmental variables; however, for the variable representing
the female board share (see Appendix D), which is truncated between zero and one, the

uncertainty distributions differ, reflecting the specific characteristics of the data.

IV. Conclusion

This study demonstrates that ML can serve as an effective tool for generating company-
level sustainability data using only financial data. The findings of this research have

several important implications for policymakers, MNEs, and the financial industry.
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This figure displays the deviation from the predicted conditional mean for Scope 1 Emissions in different settings.
The settings are for uncertainty estimates based on linear regression and XGBoost and for targeted coverage rates
of 68% and 95%. In all settings, the conditional mean is predicted by the best-performing XGB meta-model.
The black dotted lines represent the prediction intervals using one and two standard deviations (o), respectively.
The green dashed lines represent the mean lower (upper) quantile prediction from standard quantile regression,
v; (vy). Finally, the blue and orange bars show the distribution of quantile predictions for the lower and upper
quantile from conformalized quantile regression. The mean of lower (upper) predictions is represented by the blue
and orange dotted lines, i (pb).

Figure 8. Deviation from Conditional Mean for Scope 1 Emissions

First, policymakers should reconsider the prevailing trend of relying solely on sustainability-
related raw data within industry and the financial systems. Although the use of raw data
has its merits, particularly in ensuring accuracy, there are instances where the transaction
costs associated with obtaining such data are prohibitively high. In these cases, the use of
machine learning-generated data offers a viable alternative to using generalized metrics,
such as industry averages. This approach can improve the granularity and relevance of

sustainability data for decision making.

Second, the study highlights the potential variations and uncertainties inherent in any
prediction model, particularly those related to sustainability data. To address this, there

is a need for increased transparency requirements for both data providers and companies
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when using machine learning or other modeling techniques to generate sustainability data.
This transparency is crucial to ensure that the uncertainties associated with these models
are well understood and that any biases in the underlying data are clearly communicated.
Policymakers could enhance transparency standards, similar to the current efforts for ESG
ratings in the European Union (General Secretariat of the Council, 2024), and extend

these standards throughout the industry to ensure consistency and reliability.

Third, our research emphasizes the importance of considering the specific use case when
applying machine learning models. The performance of these models can vary significantly
depending on temporal, spatial, or sectoral factors, which must be taken into account
to ensure the accuracy and relevance of the generated data. Adjustments to the loss
function can improve the suitability of the model for specific applications, but these
considerations should be made transparent to users, illustrating the methodology behind

the data generation process.

It is important to acknowledge the limitations of our research. In particular, questions
remain regarding the generalizability of our models. The models developed in this study
are trained primarily on data from MNEs, which may not be directly applicable to govern-
ment organizations, non-profit entities, or small and medium-sized enterprises (SMEs).
These other parts of the economy may require different data sets, and it remains uncertain
whether sufficient data is available to support the development of ML models in these
contexts. Future research should explore these gaps, potentially identifying alternative

approaches to address the limitations in data availability for these use cases.

In conclusion, this study illustrates that machine learning has a significant role to play in
making sustainability data more accessible and cost-effective. By improving the availabil-
ity and quality of sustainability data through ML, companies and policymakers can make
better informed decisions, ultimately advancing sustainability initiatives throughout the

global economy.
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A. Additional Results

In this annex, we provide supplementary graphical representations of our model perfor-

mance results.

A.  Model Performance: Reported vs. Predicted Values

Figure 9 presents a comparison between reported and predicted values within our test data
set for both baseline and meta-models in the five sustainability metrics. This comparison
reaffirms that more complex models, such as XGBoost and CatBoost, as well as the
meta-models, consistently outperform linear models like OLS and Ridge by a significant

margin.

This figure displays the plots of the reported vs predicted variables for the five target variables vertically (Scope
1 emissions, Scope 2 emissions, air pollution, water discharge, and female board share) and the best performing
model per learner horizontally (linear regression, ridge, CATBoost, XGBoost, meta-linear, meta-ridge, meta-
XGBoost).

Figure 9. Plots reported vs predicted for best model per target variable and learner
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B.  Model Performance by Company Size

Figure 10 illustrates the variation in model performance relative to company size, repre-
sented by deciles of company size and the corresponding mean squared error (MSE) per
decile. The results indicate that model performance is notably poorer in the lowest decile,
which includes the smallest companies. Despite this, the performance remains superior
compared to previous studies even in this decile. Following the initial decile, there is a

sharp improvement in model performance, which then levels off with only minor variations

around deciles 7 to 9.

4.0 4 —— Scope 1 Emissions (tCO2e)
Scope 2 Emissions (tCO2e)

—— Air Pollution (tNOx)

—— Water Discharge (cbm)

—— Female Board Share (pct)

3.5 A

Mean Squared Error (MSE)

Decile of Total Assets

This figure displays the MSE of model predictions for company-size deciles for the the five target variables: Scope
1 emissions, Scope 2 emissions, air pollution, water discharge, and female board share.

Figure 10. Model Performance by Company Size

C.  Quintile Analysis of Sustainability Metrics

Figure 11 presents the quintile results, also discussed in the main body of the paper,
showing the percentage of matches for each sustainability metric within their respective
quintile brackets. The primary finding is that the variation in model fit across quintiles
is generally minimal for most sustainability metrics, with the exception of the female
board share metric, where substantial variation is observed among the quintiles. This
suggests that the predictive accuracy for the female board share is more sensitive to the

distribution of data between different quintiles compared to other sustainability metrics.

31



Percentage of Matches

Scope 1 Emissions (tCO2e)

Scope 2 Emissions (tCO2e)

Air Pollution (tNOx)

Water Discharge (cbm)

Female Board Share (pct)
-

5

3
Quintile

This figure displays the percentage of correctly allocated observations (predicted vs actual) per quintile for the
five target variables: Scope 1 emissions, Scope 2 emissions, air pollution, water discharge, and female board share.

Figure 11. Percentage of Quintile Matches
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D. Prediction Uncertainty for Remaining Target Variables

Scope 2 Emissions
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This figure displays conformalized prediction uncertainty for Scope 2 Emissions. The settings are for the learners
linear regression and XGBoost and the coverage of 68% and 95%. For better readability, the figure shows 2% of

total observations which are randomly selected.

Figure 12.

Conformalized Prediction Uncertainty in Different Settings for Scope 2 Emissions
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This figure displays the deviation for the conditional mean for Scope 2 Emissions in different settings. The settings
are for uncertainty estimates based on linear regression and XGBoost and for targeted coverage rates of 68% and
95%. In all settings, the conditional mean is predicted by the best-performing XGB meta-model. The black
dotted lines represent the prediction intervals using one and two standard deviations (o), respectively. The green
dashed lines represent the mean lower (upper) quantile prediction from standard quantile regression, v; (vy).
Finally, the blue and orange bars show the distribution of quantile predictions for the lower and upper quantile
from conformalized quantile regression. The mean of lower (upper) predictions is represented by the blue and
orange dotted lines, iy (fu)-

Figure 13. Deviation from Conditional Mean for Scope 2 Emissions
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Linear Regression

141 _—- 45-degree line s
G A
& Outside Interval 2
12
EO 10
Q0 s ®
E
© E $
2
SR
g
o - S
] ¢
Q 4
Q o
O 4 6 10 It 14
Actual Value
0f | @ e Median: 0.80
g — Min: 0.
g2 — Max: 0.82
3 0.
£ 100
0795 0.800 0810 0815
Prediction Intervall Length
--- 45-degree line L
150 © Within interval - L
4 outside Interval E o
'--‘1m . d
125 -
= i
B N 10.0 il
0 s | 1 i
[=2] s s L
2
£
Q T s0
T
© 2
g 00
Q 23
O 25 50 75 100 125 15.0
Actual Value
wl | as Median: 5.79
N --- Mean:5.79
2 300 —— Min: 5.76,
g — Max:5.82
gaoo
100 J
)
576 577 578 579 5.80 581 582

Prediction Intervall Length

Predicted Value

Frequency

Predicted Value

XGBoost

~=- 45-degree line
@ Within Interval
4 Outside Interval

o
[
®
$
¢
¢

e

4

3
M.
0

6
Actual Value

..... Median: 0.80
--- Mean: 0.88
— Min: 0.63

— Max: 3.47

20
Prediction Intervall Length

--- 45-degree line
@ Within Interval
@ Outside Interval

1000

g

g
g

g

°

75
Actual Value

10.0

----- Median: 8.00
-=- Mean: 8.44
— Min: 7.13

— Max: 13.16

7

8 9

10
prediction Intervall Length

1 12 13

This figure displays conformalized prediction uncertainty for NOx Emissions. The settings are for the learners
linear regression and XGBoost and the coverage of 68% and 95%. For better readability, the figure shows 2% of
total observations which are randomly selected.

Figure 14.

Conformalized Prediction Uncertainty in Different Settings for NOx Emissions
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This figure displays the deviation for the conditional mean for NOx Emissions in different settings. The settings
are for uncertainty estimates based on linear regression and XGBoost and for targeted coverage rates of 68%
and 95%. In all settings, the conditional mean is predicted by the best-performing XGB meta-model. The black
dotted lines represent the prediction intervals using one and two standard deviations (o), respectively. The green
dashed lines represent the mean lower (upper) quantile prediction from standard quantile regression, v; (vy).
Finally, the blue and orange bars show the distribution of quantile predictions for the lower and upper quantile
from conformalized quantile regression. The mean of lower (upper) predictions is represented by the blue and
orange dotted lines, p; ().

Figure 15. Deviation from Conditional Mean for NOx Emissions
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Water Discharge
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This figure displays conformalized prediction uncertainty for Water Discharge. The settings are for the learners
linear regression and XGBoost and the coverage of 68% and 95%. For better readability, the figure shows 2% of
total observations which are randomly selected.

Figure 16.
Conformalized Prediction Uncertainty in Different Settings for Water Discharge
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This figure displays the deviation for the conditional mean for Water Discharge in different settings. The settings
are for uncertainty estimates based on linear regression and XGBoost and for targeted coverage rates of 68%
and 95%. In all settings, the conditional mean is predicted by the best-performing XGB meta-model. The black
dotted lines represent the prediction intervals using one and two standard deviations (o), respectively. The green
dashed lines represent the mean lower (upper) quantile prediction from standard quantile regression, v; (vy).
Finally, the blue and orange bars show the distribution of quantile predictions for the lower and upper quantile
from conformalized quantile regression. The mean of lower (upper) predictions is represented by the blue and
orange dotted lines, iy (fu)-

Figure 17. Deviation from Conditional Mean for Water Discharge
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This figure displays conformalized prediction uncertainty for Female Board Share. The settings are for the learners
linear regression and XGBoost and the coverage of 68% and 95%. For better readability, the figure shows 2% of
total observations which are randomly selected.

Figure 18.
Conformalized Prediction Uncertainty in Different Settings for Female Board Share
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This figure displays the deviation for the conditional mean for Female Board Share in different settings. The
settings are for uncertainty estimates based on linear regression and XGBoost and for targeted coverage rates
of 68% and 95%. In all settings, the conditional mean is predicted by the best-performing XGB meta-model.
The black dotted lines represent the prediction intervals using one and two standard deviations (o), respectively.
The green dashed lines represent the mean lower (upper) quantile prediction from standard quantile regression,
v; (vy). Finally, the blue and orange bars show the distribution of quantile predictions for the lower and upper
quantile from conformalized quantile regression. The mean of lower (upper) predictions is represented by the blue
and orange dotted lines, p; (pw).

Figure 19. Deviation from Conditional Mean for Female Board Share
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B. Early Stopping

In our efforts to improve computational efficiency during model training, we implemented
an early stopping mechanism. This mechanism is designed to reduce unnecessary compu-
tations during the hyperparameter tuning process, specifically within the ten-fold cross-

validation phase of each trial.Figure 20 visually represents the early stopping process.
The early stopping approach is structured as follows:

1. Initialization of Trials: During the hyperparameter tuning process, each trial under-
goes a tenfold cross-validation to evaluate the model’s performance under different

parameter settings.

2. Minimum Trial Requirement: To ensure that the model has sufficient opportunity
to learn and stabilize, the early stopping mechanism is only considered after the

first three folds of the cross-validation process have been completed.

3. Performance Comparison: After the third fold, the mechanism compares the mean
squared error (MSE) obtained in the current fold with the median MSEs of previ-

ously evaluated models or earlier trials of the same model configuration.

4. Activation of Early Stopping: If the MSE of the current trial exceeds the average
MSEs of the previous trials, the early stopping mechanism is triggered. When ac-
tivated, this mechanism halts the remaining cross-validation folds for the current
trial and proceeds directly to the next model configuration. This avoids further
computation on a model configuration that is unlikely to outperform existing con-

figurations.

Hyperparameter tuning (¢; trails)

Bayesian :
optimization !

Trained
Pipeline

Pipeline
Configuration

10-fold-cross-validation (mMSE) :‘

| Stopping criteria |
i For each fold n > 3, stop if trail-mMSE is larger than median of mMSE of |
i (i) other pipelines or (ii) earlier trails :

This figure displays the early stopping mechanism that is applied throughout the code.

Figure 20. Early Stopping Approach
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C. Computational Efficiency vs. Comprehensiveness Trade-off

in Model Development

In this section, we elaborate on the trade-offs we encountered between computational

efficiency and the comprehensiveness of our approach in model development.

Our approach to model configuration deliberately incorporates a trade-off between com-
putational demands and the comprehensiveness of the analysis. By treating preprocessing
steps as additional hyperparameters and employing a wide range of models and configu-
rations, we place a significant burden on computational resources. This strategy, while
resource-intensive, is aimed at enhancing the replicability of our results and ensuring that
our methods are broadly applicable, independent of specific institutional contexts in which

the data are generated.

The versatility offered by this approach can be valuable to the research community, as it

allows for more generalized and adaptable modeling techniques.

However, this versatility comes at the cost of computational efficiency. Despite imple-
menting early stopping mechanisms to reduce unnecessary calculations, the overall process
remains resource-demanding. In the following, we provide an overview of the computa-

tional resources required for our approach:
« CPU: 2 x AMD EPYC Milan 7713 - 64-Core
« GPU: NVIDIA RTX Ada A6000
o Time Consumption: 19.01 days (assuming serial execution)
« Electricity Consumption: 87.94 kWh (estimation)
o Early Stopping Effect: active in 37.86% of 59,250 trials

The above specifications highlight the scale of computational resources needed to execute
our models effectively. The use of powerful CPUs and GPUs is essential to manage the
large datasets and numerous trials involved in our comprehensive approach to discovering
best performing models. Even with these resources, the time required to complete the
model runs is considerable, emphasizing the trade-off between the depth of analysis and

computational efficiency.

The introduction of early stopping mechanisms plays a crucial role in mitigating some of
the computational burdens. As detailed in Annex B, early stopping is activated in approx-

imately 30.02% of the 59,250 trials, significantly reducing the time and energy required to
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train the models. This not only improves efficiency but also ensures that computational

resources are allocated more effectively towards promising model configurations.
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D. Insights and Recommendations for Future Researchers

In this annex, we provide guidance for future researchers who aim to replicate or build on
our findings with reduced computational effort. By analyzing the performance of various
model configurations and the factors contributing to the best results, we draw several

conclusions that can inform more efficient model development in similar studies.

Table V summarizes the configurations of the best-performing models for each target vari-
able based on the mean squared error (MSE) in the test data set. These best performing
models reflect the combination of preprocessing steps and learner choices that yielded the

most accurate predictions.

Target Variable Missing Indicator Imputation Outlier Removal Scaler Transformation Feature Selection
No Yes Mean Median Iterative None Winzorize Standard Robust None Quantile None Lasso

Scope 1 Emissions (tCO2e) 6 6 4 6 2 11 1 6 6 5 7 12 0

Scope 2 Emissions (tCO2e) 2 10 5 7 0 5 7 4 8 5 7 12 0

Air Pollution (tNOx) 4 7 5 6 0 8 3 1 10 8 3 11 0

Water Discharge (cbm) 3 9 8 2 2 10 2 4 8 7 5 12 0

Female Board Share (pct) 4 8 5 6 1 4 8 3 9 10 2 12 0

This table summarizes the best performing model setups along the dimensions missing indicator, imputation,
outlier removal, scaler, transformation and feature selection for the five target variables: Scope 1 emissions, Scope
2 emissions, air pollution, water discharge, and female board share.

Table V. Summary of Winning Model Configurations

The analysis of the best performing models reveals several insights that can guide future

research.

o Meta Learners and Complex Models: As stated in the main body of the paper, more
complex models, such as meta learners, tend to outperform simpler linear models.
Researchers should consider including these advanced techniques in their pipelines

to achieve better performance.

o Pipeline Options: The study shows that there is no universal best configuration
across all preprocessing steps. This suggests that researchers working with different
data sets or under different use cases may need to experiment with the full range of
pipeline options, rather than relying on a predetermined set of configurations. For
example, there is no clear trend favoring a particular missing indicator or scaling

method across all target variables.

o Imputation and Transformation Methods: While there are slight trends in the per-
formance of certain imputation and transformation methods, these trends are not
strong enough to recommend a specific approach universally. Researchers should
evaluate the effectiveness of these methods on a case-by-case basis, as different

variables may respond differently to the same preprocessing techniques.
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o Feature Selection: The analysis indicates that, in our case, model configurations
without feature selection generally performed better. This finding suggests that in-
cluding more features, rather than reducing them, can enhance model performance.
Future researchers should be cautious about overly aggressive feature selection, par-
ticularly when working with rich datasets, as it might lead to the loss of valuable

information.

In addition to these findings on pipeline buliding, researchers might want to implement
early stopping mechanisms, as discussed in Annex B, to reduce computational burden

while ensuring that only the most promising configurations are fully explored.
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E. Summary Statistics Predictors

Table VI. Summary statistics of predictor variables
The table presents summary statistics for the predictor variables. These statistics include the count of observations, the mean, standard deviation,

minimum, maximum, and percentiles (25%, 50%, 75%) for each variable. The units for each variable are indicated in the ”Unit” column, with

common abbreviations such as B for billions, M for millions, and K for thousands.

9¥

count mean std min  25%  50% 75% max  Unit
Accounts Payable - Long Term 18316 38.90 467.62 -7.88 0.01 0.11 0.93 18479.00 B
Avg. Payables Payment Days 80527 303.08 23949.38 -32528.25 35.47 56.43 93.25 5769517.74  Unit
Brands, Patents, Trademarks, Marketing (Gross) 27924 8.91 112.41 -0.02 0.01 0.08 0.49 5118.16 B
Capital Expenditures (Total) 101362 79.14 1009.41 -4.17 0.05 0.34 2.94 75161.53 B
Cash & Cash Equivalents 94014 155.92 1722.84 -7.43 0.10 0.66 6.18 110763.21 B
Cash & Cash Equivalents (Total) 103303 223.49 2980.01 -743  0.11 0.79 8.87 202104.93 B
Cash & Short-Term Investments 98451 222.83 2579.73 -0.01 0.15 0.95 9.98 124652.84 B
Computer Software (Net) 32490 11.22 113.29 -527.61  0.01  0.07 0.59 5744.00 B
Long Term Debt Issued (Cash Flow) 59479 193.77 2415.98 -111.28 0.08 0.85 8.18 145183.14 B
Long & Short Term Debt Issued (Cash Flow) 19552  1839.72  48455.29 -24.76 0.10 0.95 5.65 178787777 B
Short Term Debt Issued (Cash Flow) 11008 471.55 4511.91 -12.11 0.02 0.51 17.66 192778.56 B
Long Term Debt (Total) 96939 342.28 3355.23 -1302.34 0.23 1.95 15.46 183775.07 B
Total Debt 99726 556.41 4952.84 -0.12 0.35 2.78 24.86 205362.30 B
Depreciation & Amortization 13845 30.52 442.09 -6.14 0.03 0.18 1.05 14863.00 B
EBIT 104120 108.47 1348.85 -30329.63 0.08 0.66 5.65 60569.45 B
Part-Time Employees 3661 7.23 23.04 0.00 0.03 0.35 3.59 44455 K
Equity Earnings/Loss (Pre-Tax, Nonrecurring) 41519 12.19 157.91 -2483.34 -0.00 0.01 0.24 7087.00 B
Short-Term Financial Assets 18291 203.63 2887.98 -738.25 0.01 0.17 1.93 92441.70 B
Net Financing Income/Expense 92886 -6.24 128.64  -10670.09 -0.24 -0.02 0.00 4740.00 B
Goodwill (Gross) 22899 46.16 313.86 -0.40 0.14 0.75 4.26 6958.30 B
Impairment - Financial Investments 14263 6.74 82.03 -459.28 0.00 0.01 0.15 2242.53 B
Impairment - Fixed Assets 50314 4.92 83.93 -1709.81 0.00 0.03 0.39 11072.70 B

Continued on next page
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count mean std min  25%  50% 75% max  Unit
Income Taxes 101788 28.05 340.50 -1855.99  0.01 0.12 1.23 16990.40 B
Intangible Assets (Accum. Amort. & Impair.) 34239 49.82 424.81 -52.59  0.04  0.26 1.55 18254.57 B
Intangible Assets (Gross) 34632 122.90 907.03 -60.63 0.17 1.08 6.80 37612.29 B
Intangible Assets (Net Cash Flow) 4464 18.25 193.18 -136.28  0.00  0.01 0.11 5615.31 B
Long-Term Investments 66338 105.56 1678.63 -1246.24 0.03 0.52 8.03 126930.42 B
Total Investments 85989 618.23 6893.10 -230.94 0.09 1.27 25.76 442925.68 B
Lending & Long-Term Deposits 7493 714.66 6413.50 -42.61 0.73 10.50 53.20 24243195 B
Short-Term Loans & Receivables (Net) 40189  267.76  2113.23 -5.18  0.33 1.68  11.65 97072.45 B
Total Loans & Receivables 102232 1126.53 21694.84 -38.63 0.20 1.44 18.53 2531993.14 B
Net Cash Flow - Financing 103774 11.49 961.89  -27753.00 -0.97 -0.05 0.16 121530.63 B
Net Cash Flow - Investing 103526  -115.48 1569.11 -132477.05 -4.01 -0.40 -0.04 25880.94 B
Net Cash Flow - Operating 103874 128.39 1942.81 -80142.33 0.07 0.60 5.42 125791.99 B
Net Financial Income/Expense (Other) 17440 -1.20 29.88 -1517.46  -0.06  -0.01 -0.00 299.66 B
Net Income (After Tax) 51281 101.89 1246.50 -40408.49 0.11 0.86 6.74 4434486 B
Nonrecurring Income/Expense 86092 -1.47 174.77 -10939.90 -0.24 -0.01 0.00 29391.89 B
Total Operating Expenses 99953 760.55  6541.08 -1143.05  0.68  4.23  31.37 22797094 B
Total Other Assets 100956 122.21 1323.71 -41897.01 0.04 0.42 5.69 69247.18 B
Total Other Current Assets 30798 29.04 260.52 -14527.45 0.03 0.30 4.92 13300.06 B
Total Other Current Liabilities 89942 102.06 1122.25  -12625.25  0.04  0.40 4.97 150865.89 B
Total Other Noncurrent Liabilities 42108 115.75 2088.40 -1290.92 0.09 0.68 7.05 14541499 B
Payables & Accrued Expenses 100432 131.24 1145.48 -0.69 0.14 0.94 8.45 7745792 B
Plant, Machinery & Equipment (Gross) 73124 525.67 6823.00 -105.61 0.15 1.20 11.25 305445.00 B
PPE (Accum. Depreciation & Impairment) 88596 399.03  4681.38  -10168.69  0.16 1.27 11.25 22754345 B
PPE (Gross) 92792 855.02 8895.91 -4920.35 0.46 3.59 33.30 37747199 B
PPE (Net) 100907  437.36  4442.67 -991.57  0.20 1.84 17.45 207052.67 B
Other PPE (Gross) 65438 120.92 1761.60 -3128.77  0.03  0.31 3.70 169436.18 B
Total Provisions 89472 79.50 778.60 -166.19 0.06 0.49 4.88 44491.12 B
Long-Term Receivables & Loans 40536 100.80 1385.81 -31.92 0.01 0.14 1.48 46311.56 B
R&D Expense 32492 40.82 630.29 -136.86 0.04 0.20 1.99 22401.73 B
R&D Costs (Gross) 10642 75.39 592.23 -0.00 0.02 0.09 0.73 10374.45 B

Continued on next page
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count mean std min  25%  50% 75% max  Unit
Short-Term Debt & Notes Payable 54238 267.85 2309.18 -168.57  0.06 1.15 20.76 104779.30 B
Total Short-Term Investments 52532 131.21 1936.84 -3.40 0.03 0.33 3.48 95270.26 B
Total Assets 103976  2732.62  30953.65 0.00 2.06 12.61 137.79 1808429.76 B
Total Book Capital 103954 1154.24 10028.24 -66.81 1.29 7.70 73.41 442390.86 B
Total Current Assets 89457 505.03 4941.26 -57.13 0.50 3.03 26.51 283116.65 B
Total Current Liabilities 44789 516.29 3918.81 0.00 0.80 4.49  40.21 298411.51 B
Total Fixed Assets (Net) 82720 737.86 6722.46  -17420.67  0.59 3.86 31.22 283593.15 B
Total Liabilities 103952  2045.66 26076.03 -20.44  0.99 6.76 75.56 1700262.11 B
Total Shareholders’ Equity 99822 689.10 7064.58  -11055.62 0.75 417 3421 304899.93 B
Working Capital Change (Cash Flow) 98107 -26.13 623.51 -31484.37 -0.38 -0.01 0.08 35264.41 B
Avg. Receivables Collection Period (Days) 43635 95.47 919.42 -17463.43  41.87 63.48 90.74 152776.77  Unit
Full-Time Employees 79275 323.43 52542.63 0.00 1.68 6.93 23.05 10785002.89 K
R&D as % of Revenues 43026 287.33 8230.36 -34.17  0.68 2.58 7.06 598611.42  Unit
Turnover 62282 2.12 108.80  -17573.65 0.00 0.02 0.23 19941.57 B
Date of Incorporation 105929 1.98 0.03 1.81 1.97 1.99 2.00 2.02 K
Year 109085 2.01 0.01 2.00 2.01 2.02 2.02 2.02 K
Parent Shareholders’ Equity (Total) 4123 482.85 1871.17 -63.52 6.26 55.35 326.36 3744142 B
Business Financing Revenue (Other) 4278 45.33 542.50 -8261.00 0.00 0.04 1.33 11075.05 B
Inventories (Finished Goods) 22867 48.84 497.25 -4.83  0.03 0.22 1.57 17537.84 B
Long-Term Loans 9204 62.72 938.79 -0.00 0.01 0.19 1.91 28704.25 B
Short-Term Loans 10735 33.42 370.27 -0.00 0.01 0.22 1.96 21022.04 B
Total Noncurrent Liabilities 41426 202.81 2583.53 -99.82 0.10  0.85 6.30 13127739 B
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Research Questions

1. To what extent can we derive corporate sustainability data from corporate
financial data only using ML?

2. How does the prediction performance change for different dimensions?

3. How certain are the point estimates of the prediction models?



Methodology & Data
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Figure 2: Target Variables



r Point Estimates

Base Model Training

Step I: Pipeline Selection Step Il: Optimization
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Meta Model Training
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Figure 3: Point Estimate Training Approach using MSE
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Uncertainty Quantification

1. Quantile Regression:

Lo (VoY) = (Y = Vo) ol {y > Vot + (Ja —Y) (1 — ) 1{y < Ju}
2. Quantile Prediction:

Vo (X)
3. Conformal Scores:

c(x,y) = max{¥; o(X) =y, ¥ = 1 2(X)}

4. Rectifying Quantiles for Intervals:
I(X) = [)77'/2()() - ?7 )7177'/2()() + ?], where
= Quantile (W, {c1, ...,cncm}>



Dataset

Dataset Scope 1 Emissions  Scope 2 Emissions  Air Pollution Water Discharge Female Board Share

General Information

Number of observations 47685 47320 20980 18426 108834
Number of sectors 83 83 76 74 86
Number of countries 83 83 63 63 95
Number of companies 8391 8335 3389 3098 14406
Start year 2005 2005 2005 2005 2005
End year 2022 2022 2022 2022 2022
Number of predictor variables 240 240 213 211 255
Data completeness (in %) 63.86 63.77 65.72 65.62 57.92

Target Variable Information

Log (1+value) Mean 10.75 11.07 6.31 14.98 217
Log (1+value) Std 3.55 2.72 328 3.60 1.40
Log (1+value) Min 0.00 0.00 0.00 0.00 0.00
Log (1+value) Max 2221 22.72 16.46 24.01 4.62

Table 1: Summary Statistics



Results & Discussion




It's in the financials, stupid!

Base Learner Meta Learner
Target Variable Metric  Linear Regression Ridge CatBoost XGBoost Linear Regression Ridge XGBoost
MAE 1261 1.240 0.648 0.662 0.610 0.609 0.589
Scope 1 Emissions (tCO2e) MSE 3.401 3.252 1579 1617 1622 1622 1.589
R2 0.713 0.726 0.867 0.864 0.863 0.863 0.866
MAE 1252 1118 0.513 0.627 0.556 0.556 0.527
Scope 2 Emissions (tCO2e) MSE 3.400 2959 1.163 1.269 1275 1275 1.204
R2 0.540 0.599 0.842 0.828 0.827 0.827 0.837
MAE 1501 1.444 0.695 0.905 0.672 0.672 0.650
Air Pollution (tNOx) MSE 4598 4.320 1.923 2.262 1.907 1.907 1.909
R2 0.564 0.590 0.818 0.786 0.819 0.819 0.819
MAE 1.782 1.782 0.278 0.623 0.275 0.275 0.273
Water Discharge (cbm) MSE 7.528 7.522 1.055 1.526 1.063 1.063 1.053
R2 0.443  0.443 0.922 0.887 0.921 0921 0.922
MAE 0.876 0.876 0.473 0.501 0.448 0.448 0.428
Female Board Share (pct) MSE 1253 1.249 0.598 0.638 0.595 0.595 0.592
R2 0.347 0.349 0.688 0.667 0.690 0.690 0.691

Table 2: Global Model Performance
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Temporal Variation
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Spatial Variation
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Sectoral Variation
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Beware of Prediction Uncertainty!

Linear Regression XGBoost

Coverage 68%

Coverage 95%

Figure 8: Prediction Uncertainty in Different Settings for Scope 1 Emissions -
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Figure 9: Deviation from Conditional Mean for Scope 1 Emissions



Conclusion

Efficiency

- It's actually in the financials, stupid!
- Beware of prediciton variation and uncertainty!

- Policy makers may take a more open stance in ML in sustainable finance, but

the exact area of application matters

- Future research: local models & little reported sustainability metrics
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Takeaways For Policy Makers

1. Machine learning can support financial institutions and companies in
assessing sustainability risks and impacts with a high degree of predictive
performance. As such, these institutions should be allowed to use ML to
predict sustainability data as a supplement to the available reported data,
especially if the costs of accessing the raw data are high.

2. Users of ML-predicted sustainability data should be required to increase
transparency on the quality of the predictions, not only at the global level,
but also in the dimensions time, space, and sector.

3. Prediction uncertainty should be considered by users of ML-predicted
sustainability data and the respective assumptions / risk appetite should be
made transparent.
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Early Stopping
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Figure 10: Early Stopping Approach



- CPU: 2 x AMD EPYC Milan 7713 - 64-Core

- GPU: NVIDIA RTX Ada A6000

- Time Consumption: 19.01 days (assuming serial execution)
- Electricity Consumption: 87.94 kWh (estimation)

- Early Stopping Effect: active in 37.86% of 59,250 trials



Boosting, Bagging, Stacking
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Figure 11: Approach to Boosting, Bagging, and Stacking by Ismail, El Mrabet, and Reza 2022
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