

IFC-Bank of Italy Workshop on "Data science in central banking: enhancing the access to and sharing of data"

17-19 October 2023

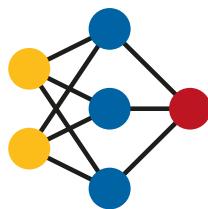
From the ML model to practice: case study on NLP-based decision-making on the eligibility of security prospectuses¹

Janek Blankenburg, Maximilian König, Philipp Rothhaar and
Bernd Rusitschka,
Deutsche Bundesbank

¹ This contribution was prepared for the workshop. The views expressed are those of the authors and do not necessarily reflect the views of the Bank of Italy, the BIS, the IFC or the other central banks and institutions represented at the event.

From the ML Model to Practice

Case Study on NLP-based Decision-Making on the Eligibility of Security Prospectuses



SCAI

Service & Community Center
for Artificial Intelligence

Maximilian König
AI Solution Architect

Bernd Rusitschka
AI Expert in DG
Markets

Janek Blankenburg
AI Application Engineer

Philipp Rothhaar
Expert in DG Markets

In collaboration with further colleagues from DG Markets and Prof. Christian Häning and Serhii Hamotskyi from Anhalt University of Applied Sciences

Agenda

Status quo ante Deciding the Eligibility of Securities' Prospectuses

Training a model Proof of Concept with a fine-tuned model

Integration ... of the model into the business process

Learnings ... from the process

Status Quo Ante

Deciding the Eligibility of Securities' Prospectuses

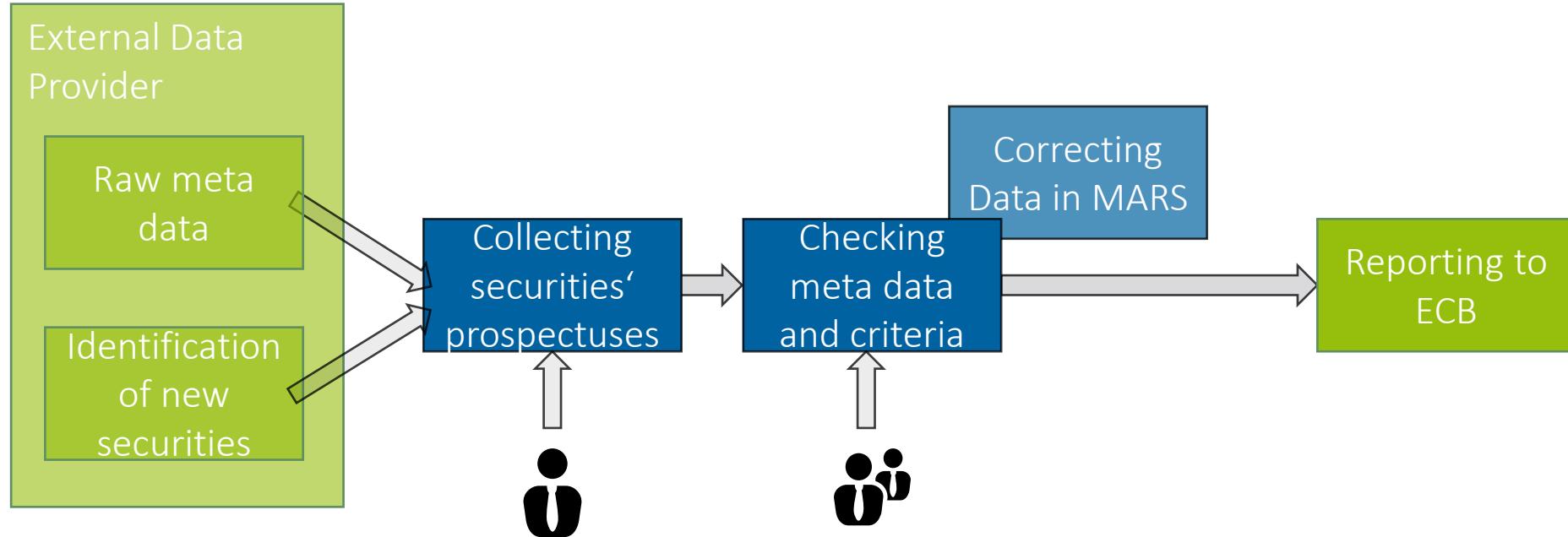
Status Quo Ante

Deciding the Eligibility of Securities Prospectuses

- NCBs report daily new **eligible marketable assets** to ECB, which collects them into **EADB (Eligible Assets Database)**
- Checking a security / asset for eligibility is based on harmonized criteria (Guideline (EU) 2015/510)
- The reporting contains the **eligible assets** as well as related **meta data**
- Several eligibility criteria are established based on a security's prospectus
 - So far this is achieved by manually checking / reading the prospectuses in a four-eyes principle
- At Deutsche Bundesbank (BBk) the (BBk-made) application MARS is used for collecting the securities' data and reporting them to ECB

Status Quo Ante

Process Flow



Manual assessment is time-consuming and repetitive

Training a model

Proof of concept with a fine-tuned model

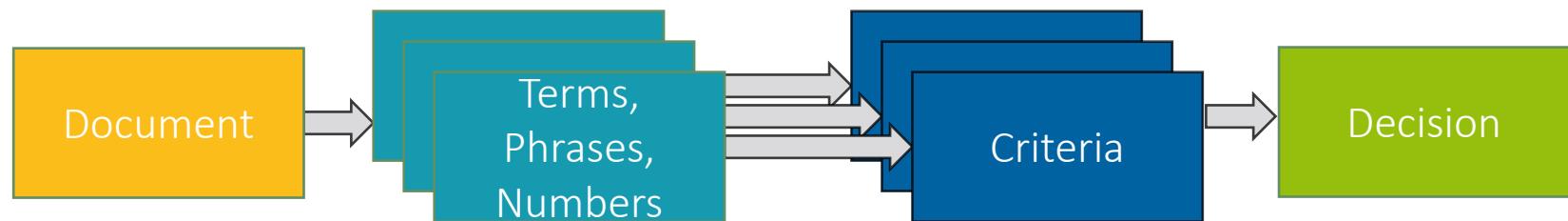
Research Project Automatic Annotation

Proof of Concept using NLP

§ 5
(Status)

Die Schuldverschreibungen begründen nicht besicherte und nicht nachrangige Verbindlichkeiten der Emittentin. Bei Emission handelt es sich bei den Schuldverschreibungen um bevorrechtigte Schuldtitel (**Senior Preferred Schuldverschreibungen**), die nicht den durch § 46f Absatz 5 in Verbindung mit Absatz 6 KWG gesetzlich bestimmten niedrigeren Rang haben.

- Task at hand: Identifying in PDF-Documents a given number of terms, phrases, numbers etc. that form the basis for the decision

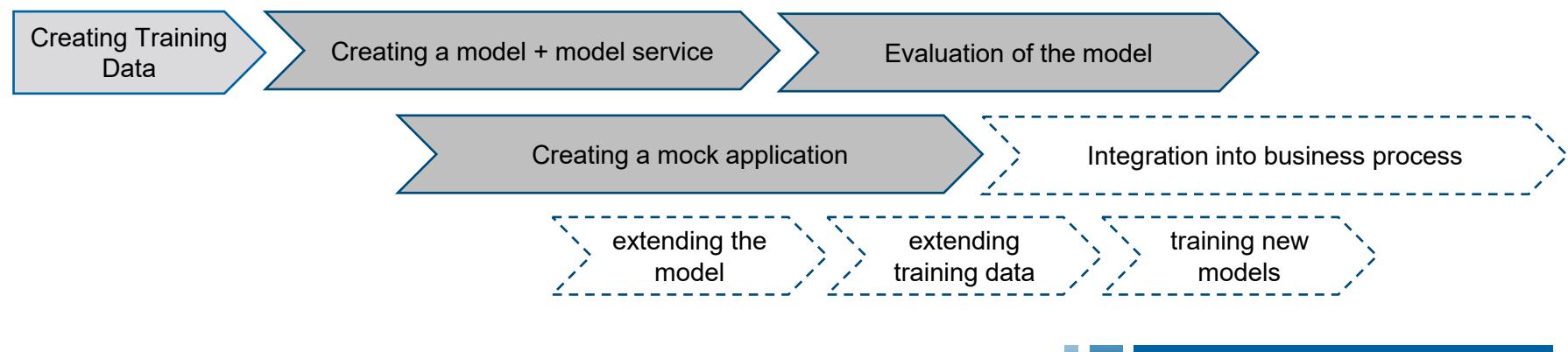


- In ML terms: Multiclass/multilabel Classification Task (≈ 20 categories)

Research Project Automatic Annotation

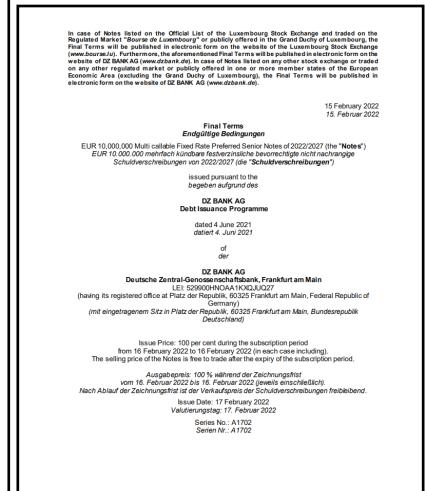
Starting Point

- At the start of the project (early 2022, pre „GPT breakthrough“):
 - No German-language domain specific (i.e. financial) language model available
 - Hence 2-Step modelling process:
 - (1) Fine-tuning a language model for German financial documents
 - (2) Training a multilabel classifier on top of the language model
 - No public dataset available -> creating training data is the first step



Creating Training Data

Data collection



Number of prospectus: 413
Issuing period: 2021 - 2022
Eligible documents: 369
Ineligible documents: 44
Training set: 272
Test set: 141 + 141

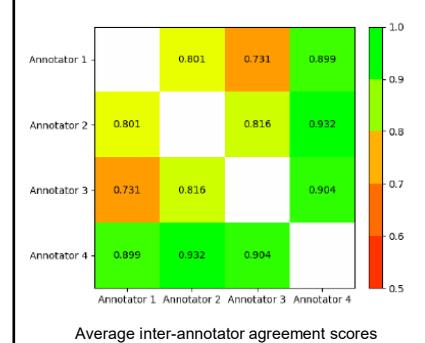
Data annotation

Annotation tool: Konfuzio
Annotation types: ~40
 Disregarding of pages without annotations for training and validation purposes.

Annotation statistics

Target type	Train	Test
coupon fixed	431	375
coupon variable index	56	84
coupon variable margin	38	42
coupon variable operator	37	43
coupon variable tenor	45	75
currency	514	577
early redemption amount	64	52
early redemption	177	108
isin	421	417
principal amount	784	800
redemption at maturity amount	26	42
redemption at maturity	370	347
special termination	96	109
special termination amount	61	63
status non preferred	56	47
status senior non preferred	488	333
type of instrument	431	422

Inter-annotator agreement



Average inter-annotator agreement scores

Test set was used to measure IAA. Therefore, every prospectus in the test set was annotated by a second analyst. 4 analysts served as annotators in total.

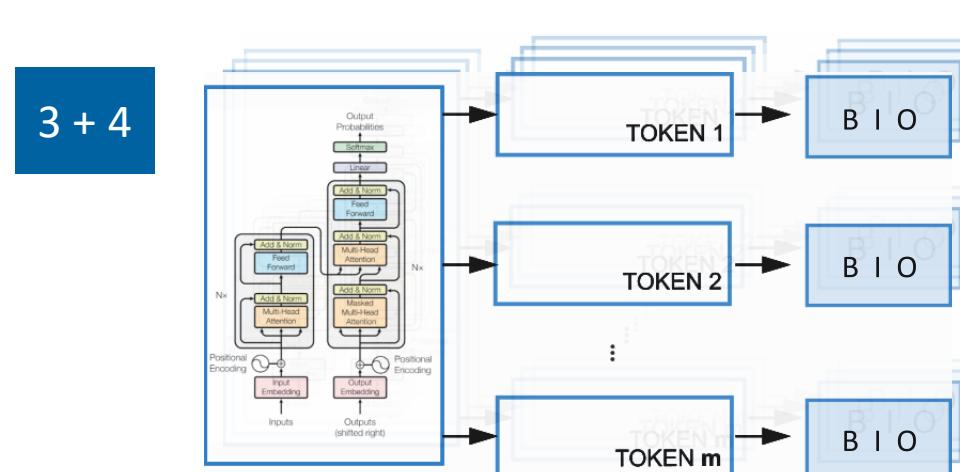
Data preprocessing

1st step: Extraction of JSON-formatted raw data containing the annotations from the annotation tool
2nd step: Conversion and transformation of extracted data into dataset for token classification (BIO encoding)

Endgültige Bedingungen Final Terms									
	Principal amount	Type of instrument	Currency	1	2	3	4	5	6
EUR 10.000.000,- einfach kündbar 0,35%	B	I	O	O	O	O	O	O	O

- Implementation of dataset classes using Hugging Face Datasets framework
- Challenge: overlapping text sequences belonging to different annotation types

1. Conversion PDF -> Text (including OCR)
2. Text processing and clean-up (e.g. extraction of German parts of bilingual docs, analysis of textboxes, ...)
3. *Embedding (Text to vectors) using fine tuned language model*
4. *Labelling with multilabel classifier*
5. Decision based on deterministic rules (derived from EU Guideline)

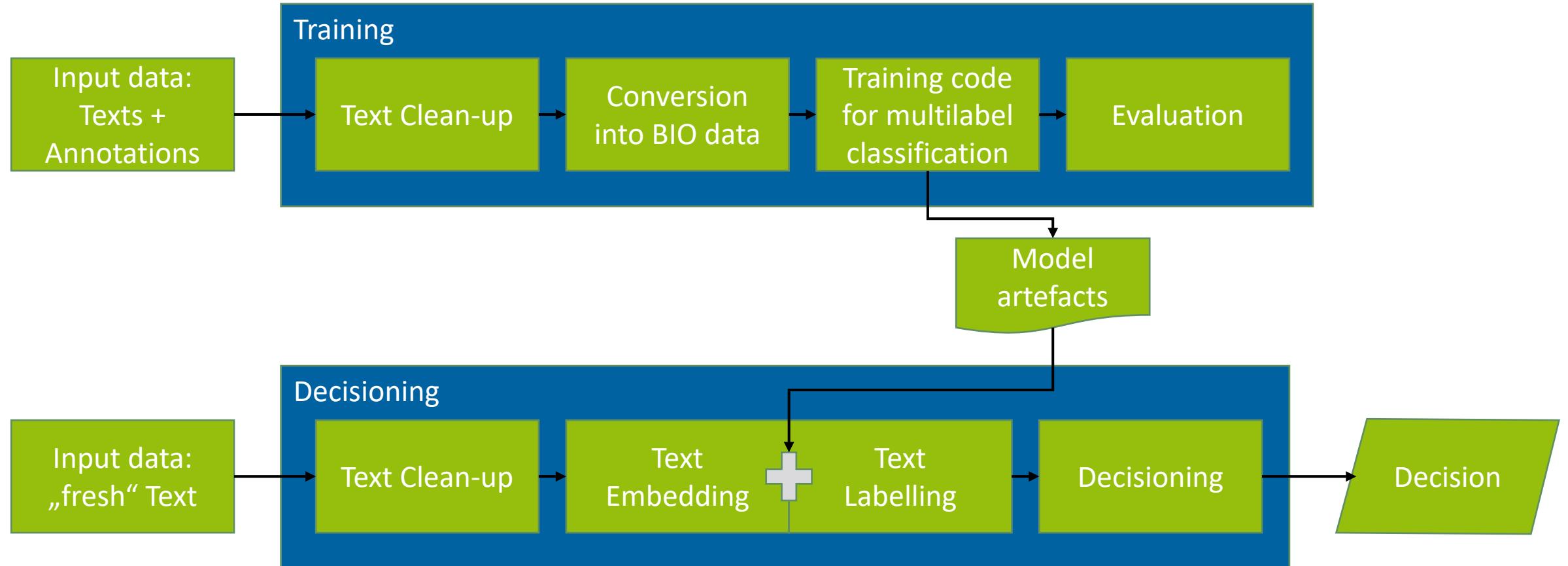


Integration

of the model into the business process

Operating the Model

Model Training and Decisioning



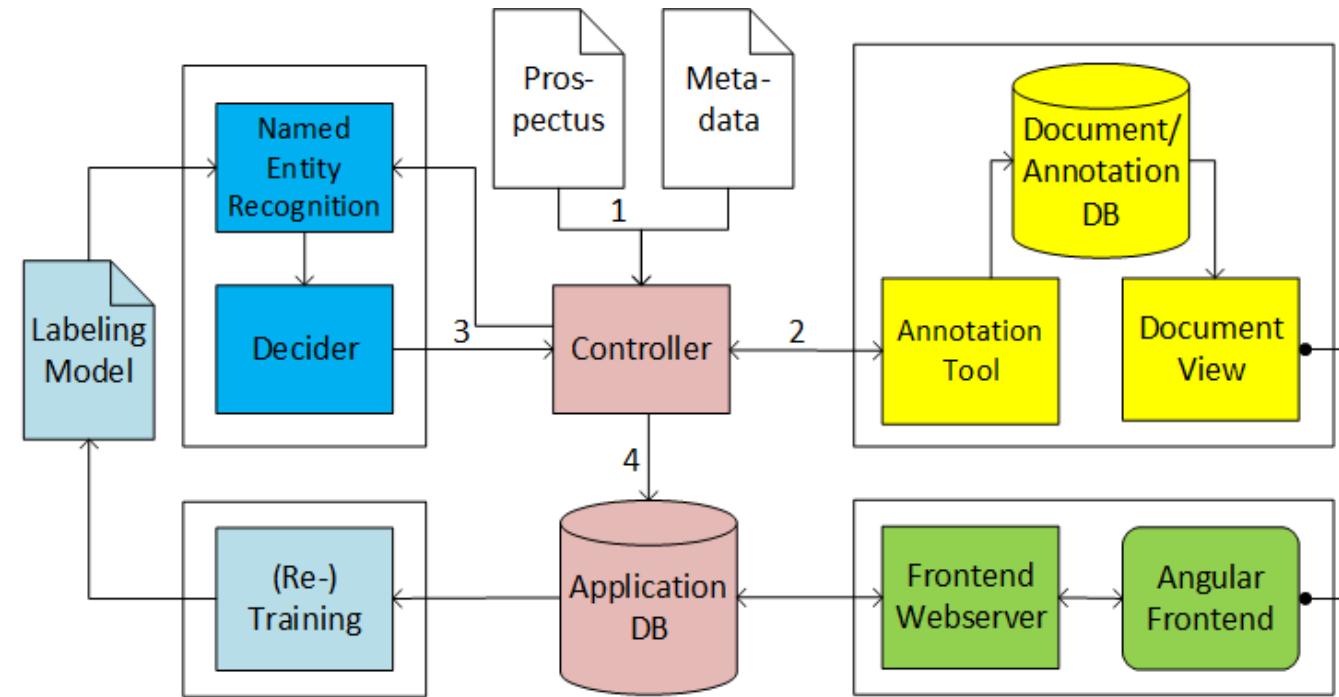
Integration into Business Process Process Needs

- Given a document the experts needs:
 - a. the decision of the model,
 - b. the criteria causing that decision and
 - c. (optimally) the relevant passages in the document (or relevant meta data) to
- check the validity of the ML decision.
- If the model makes a mistake, the expert needs to **overwrite that decision** and
- (optimally) collect the data for future model improvements (retraining)
- If retraining is undertaken, we need both valid as well as invalid model decisions.

Integration into Business Process

Overview of Application Architecture

- Containerized application with communication via REST
- Integration into the actual business application (MARS) open as of yet

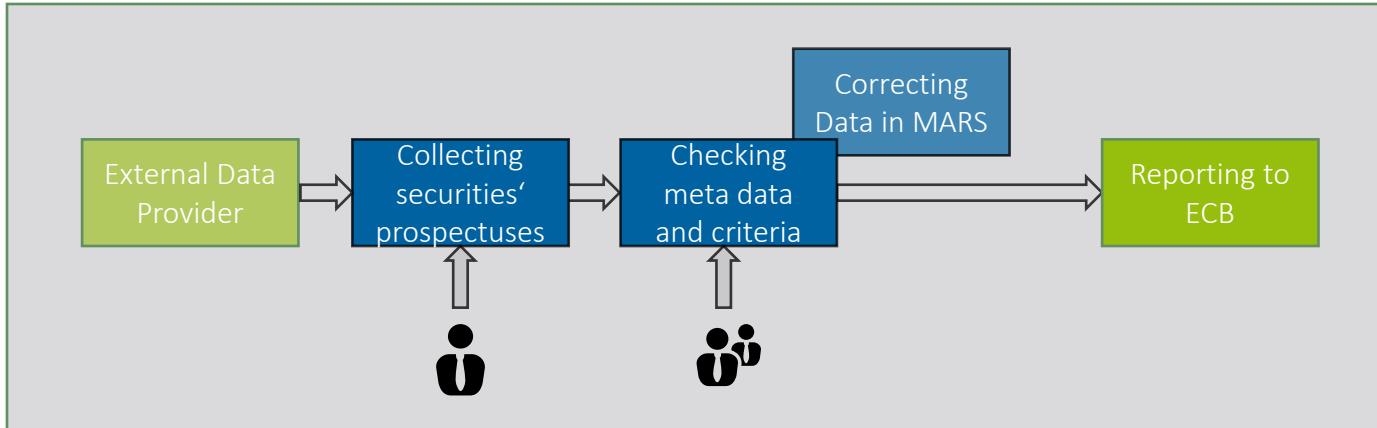
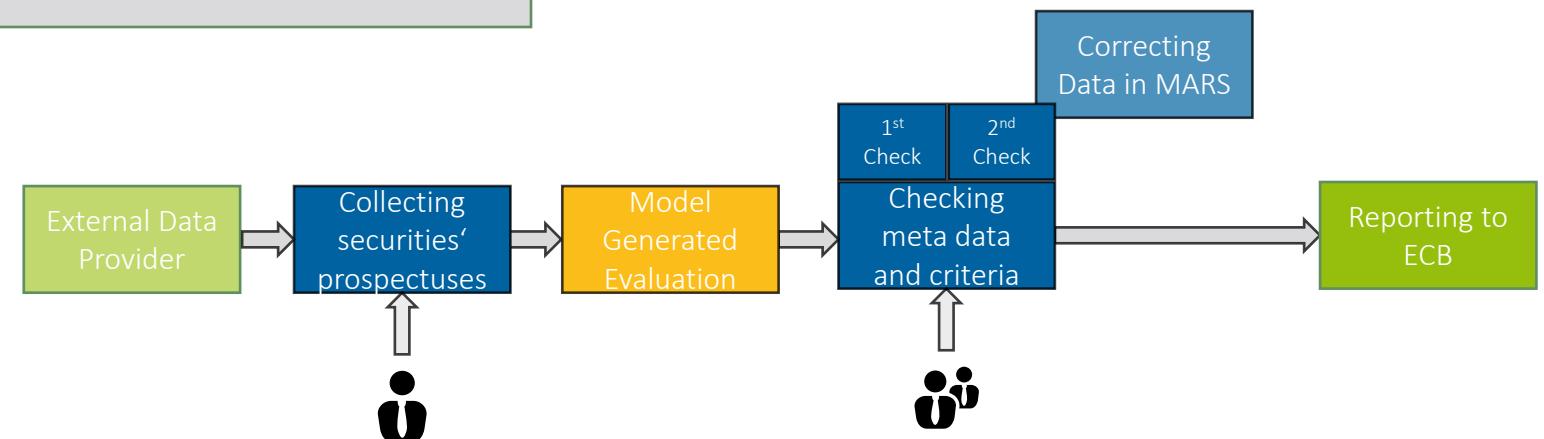


Implications of Using ML in the Process

- Using an ML model can reduce processing time by replacing manual reading with reviewing found passages
- An ML model will always have a chance for error, but the **accuracy can reach the Inter Annotator Agreement (IAA)** at the least
- Current legal environment requires a „**human in the loop**“
 - If model accuracy is (acceptably) high, the four eyes principle (as well as the review by two experts) could be replaced by a simple review
(2 pairs of human eyes ⇒ „AI eyes“ + 1 pair of human eyes)
- Using an ML model will require:
 - continuous monitoring** of model performance
 - continuous improvement** of model mistakes and training data

Evolving the „4 Eyes Principle“

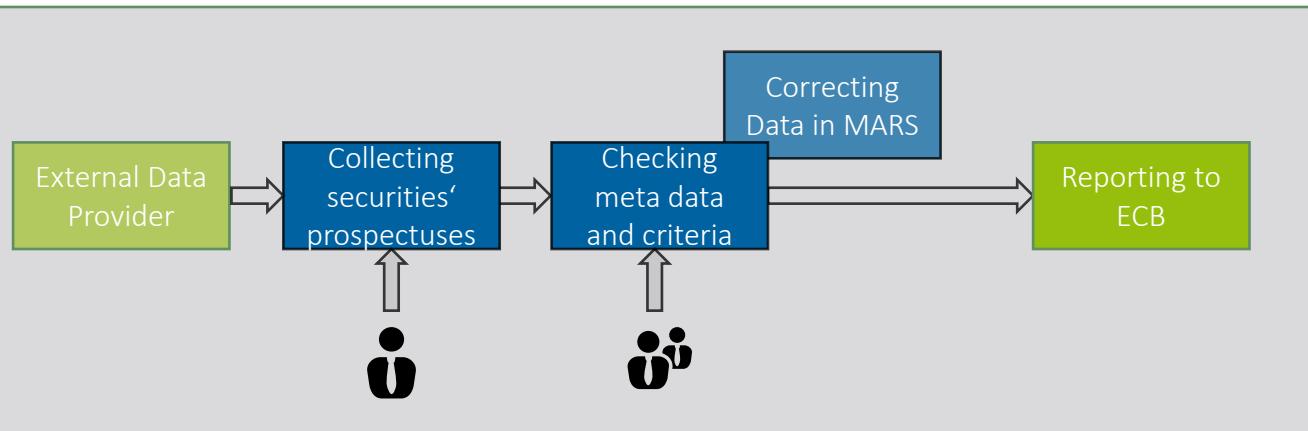
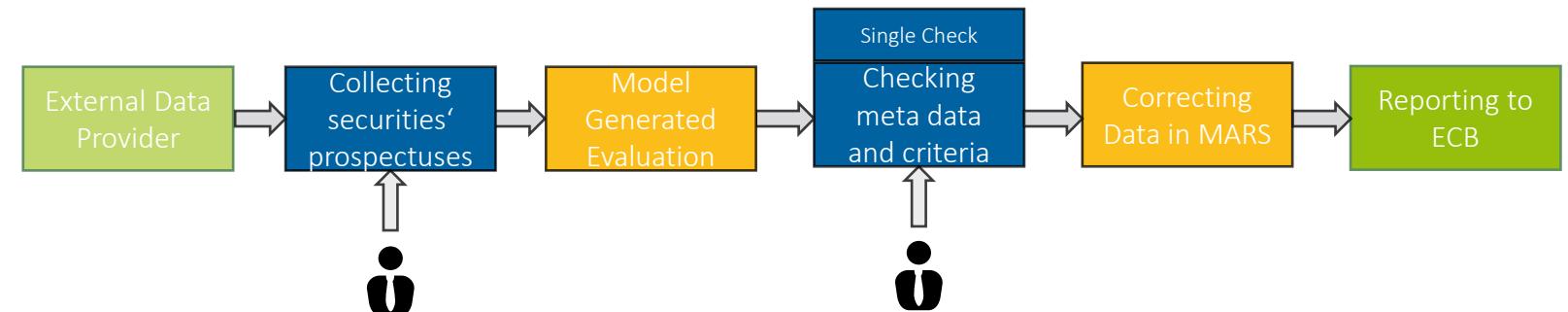
New Process Flow – Proof of Concept



External Interface
Human Interaction
Automatic Process

Evolving the „4 Eyes Principle“

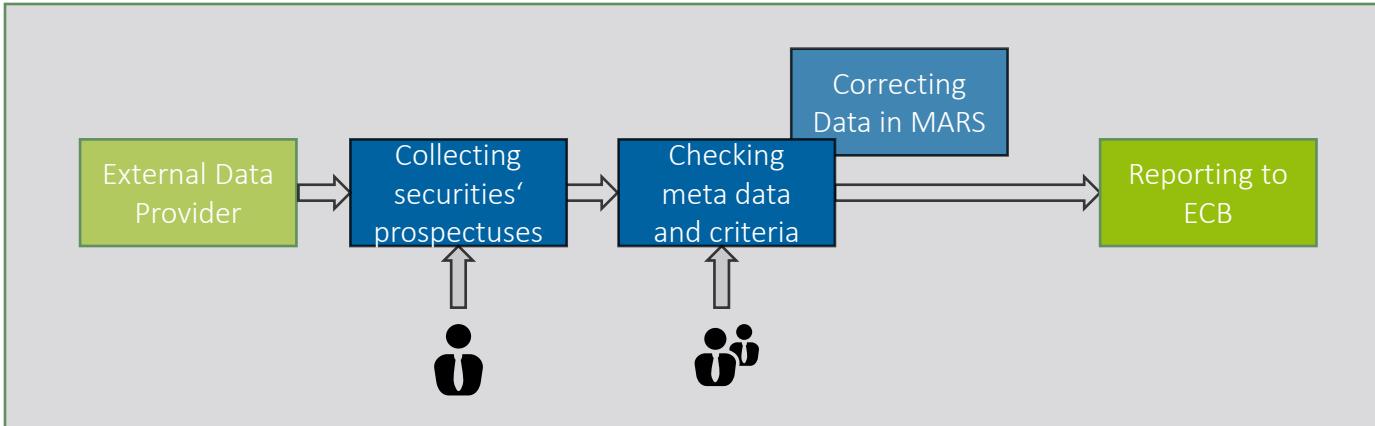
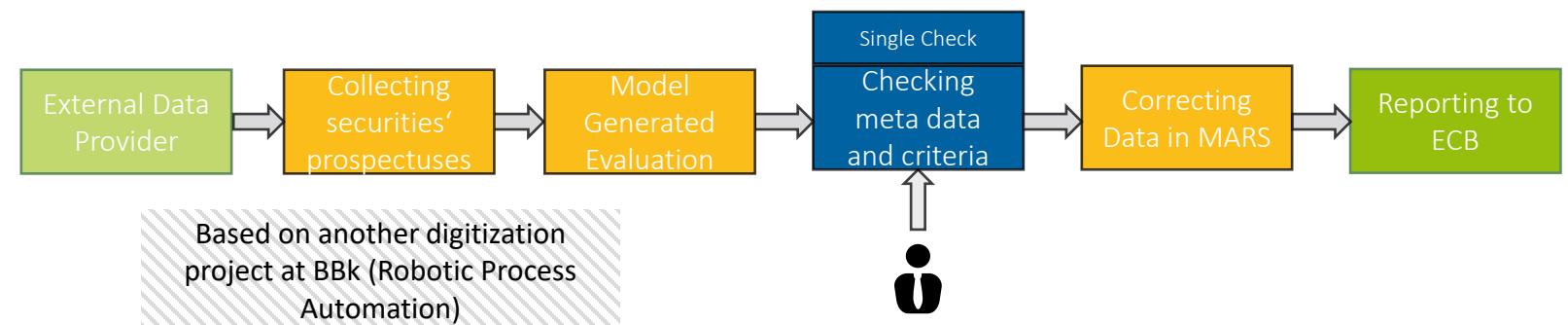
New Process Flow – 1st Evolution



External Interface
Human Interaction
Automatic Process

Evolving the „4 Eyes Principle“

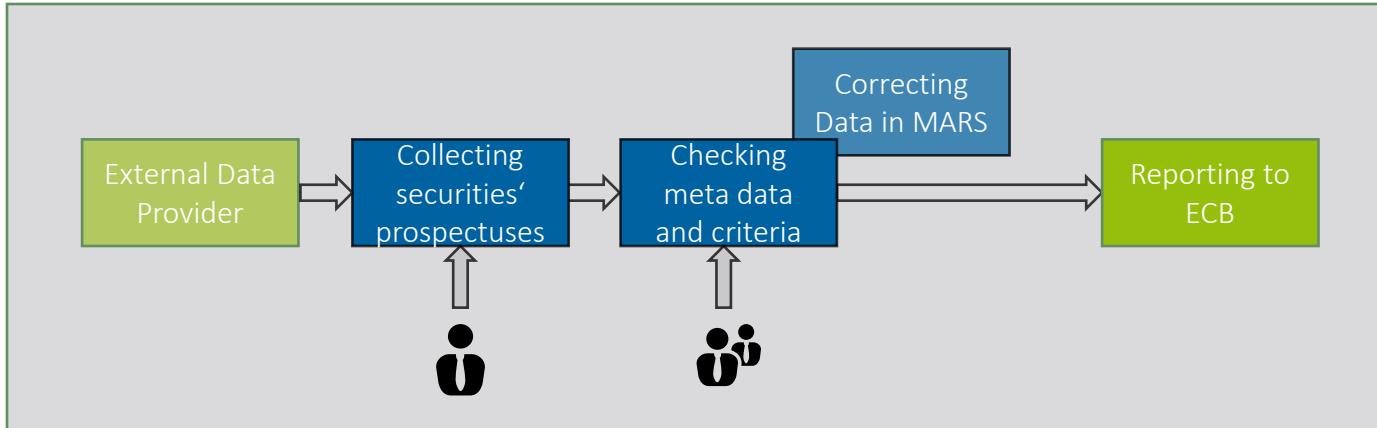
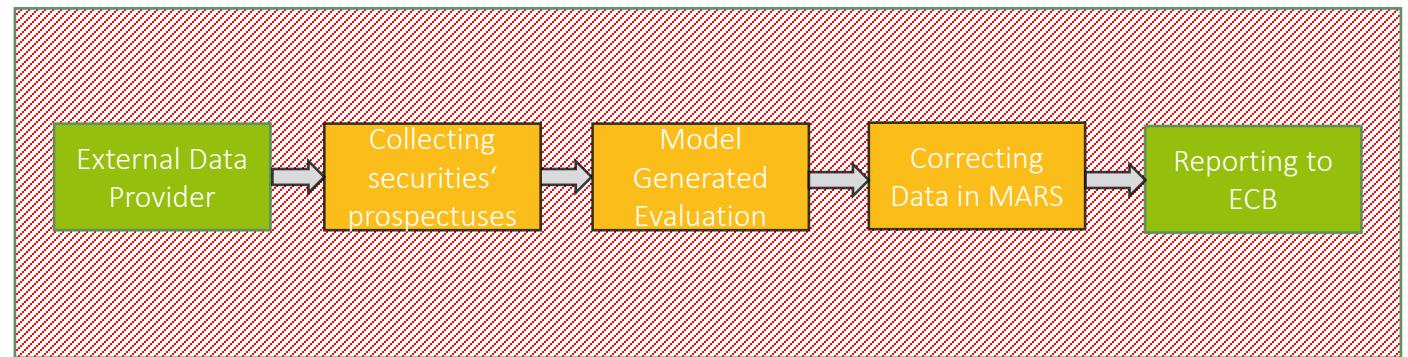
New Process Flow – 2nd Evolution



External Interface
Human Interaction
Automatic Process

Evolving the „4 Eyes Principle“

Currently not Possible: Fully Automated Process – No Human in the Loop



External Interface
Human Interaction
Automatic Process

Learnings

from the Process

Learnings from the Project

- Creating training data is highly costly

- Understanding the business process is key
 - if only part of the process is automated, **the benefit may not outweigh the complexity**

- Building the necessary environment is highly complex
 - The codebase of the proof of concept easily reaches **10'000 lines of code**

- **Integration into production is hard**, in particular if it necessitates new components, e.g.
 - Application for creating and storing text annotations
 - ML model monitoring and model archives (MLOps)
 - GPUs for model training

Questions?

SCAI

Service and Community Center for Artificial Intelligence
scai@bundesbank.de