

 1/1

IFC-Bank of Italy Workshop on "Data science in central banking: enhancing the access
to and sharing of data"

17-19 October 2023

Error spotting with gradient boosting: a machine
learning-based application for central bank data

quality1

Csaba Burger,
Magyar Nemzeti Bank,

Mihály Berndt,
Clarity Consulting

1 This contribution was prepared for the workshop. The views expressed are those of the authors and do not necessarily reflect

the views of the Bank of Italy, the BIS, the IFC or the other central banks and institutions represented at the event.

 1

Error spotting with gradient boosting

A machine learning-based application for central bank
data quality

Csaba Burger, PhD, CFA, data science advisor at the Central Bank of Hungary (MNB)
Mihály Berndt, data scientist at Clarity Consulting

Abstract

Supervised machine learning methods, in which no error labels are present, are
increasingly popular methods for identifying potential data errors. Such algorithms
rely on the tenet of a ‘ground truth’ in the data, which in other words assumes
correctness in the majority of the cases. Points deviating from the ground truth,
outliers, are flagged as potential errors.

This paper implements an outlier-based error-spotting algorithm using gradient
boosting, and presents a blueprint for the modelling pipeline. It uses a cross sectional
view on the loan-to-value and its related columns of the Credit Registry
(Hitelregiszter) of the Central Bank of Hungary (MNB), and introduces a set of
synthetic error types. The paper shows that gradient boosting is not materially
impacted by the choice of the imputation method, hence, replacement with a
constant, the computationally most efficient, is recommended. Second, the Huber-
loss function is better in capturing data errors. Finally, errors in the target variable are
captured best, while errors in the predictors are hardly found at all. These empirical
results may generalize to other cases, depending on data specificities.

Keywords: data quality, machine learning, gradient boosting, central banking, loss
functions, missing values

JEL classification: C5, C81, E58

Acknowledgements: the authors would like to express their gratitude to Lívia Réka
Ónozó for her insightful comments on a previous version of this paper. However, only
the authors should be held responsible for any errors, omissions or opinions
expressed herein.

2 x

Contents

1. Introduction ... 3

Supervised learning for data error spotting ... 4

The sparsity-aware logic of xgboost.. 5

The machine learning pipeline ... 7

Data and Methodology ... 9

Data ... 9

Modelling pipeline ... 9

Bayesian optimization for hyperparameter-tuning .. 12

Synthetic errors and model evaluation ... 13

Results .. 15

The baseline model ... 15

Hypotheses 1 and 2 .. 18

Testing Hypothesis 3 .. 20

Conclusion .. 22

References .. 23

Appendix ... 25

 3

1. Introduction

Granular central bank data, a relatively recent phenomenon of the last decade, has
unique characteristics. First, it is usually delivered by a manageable number of data
providers, which produce their data using their own scripts. This may introduce data
errors on provider level. Second, such data sets may have several hundred columns,
of which some are used only for a subset of its observations. To illustrate: collateral
value is only relevant for loans with collateral, hence, it is missing for others. Third,
relationships between data columns rely on economic processes, hence, the term
‘outlier’ or ‘error’ may win additional interpretations, should an observation not
correspond to an expected relationship.

Once rule-based data errors are taken care of (format and constraint violations, values
that violate syntactic and semantic constraints, duplicates (Rahm and Do, 2000, Kim
et al., 2003), outlier detection algorithms may be applied. While the use of
unsupervised outlier detection methods is more widespread, supervised learning
algorithms “empower learning methods with application-specific knowledge so as to
obtain application-relevant anomalies” (Aggarwal, 2017: 219). A specific subset of
supervised methods used for data error identification is where there is no ex ante
label for data errors. Particularly the ’attribute-wise learning for scoring outliers’
(ALSO) (Paulheim and Meusel, 2015) has gained the attention of central bankers
(Benatti, 2018), where a target variable of the granular data set is explained with the
help of other variables, predictions are calculated, and the residuals of each
observation serve as the starting point for outlier detection.

This paper is an empirical study of a gradient boosting error detection mechanism
using synthetic errors we introduced to the data. It proposes a modelling pipeline to
uncover potential data errors in a central bank granular data set. By doing so, it
calculates how two evaluation metrics, calculated on the test dataset, change when
certain modelling decisions are made. The metrics were: (1) the share of discovered
errors out of all errors, and (2) the relationship between the share of intentional errors
within outliers, compared to the share of intentional errors in the whole test data set.
The modelling decisions were about the imputation of missing values, the choice of
the xgboost loss function and the location of the error. The data used for illustration
purposes is the Loan-to-value (LTV) relevant mortgage portfolio within the Credit
Registry (Hitelregiszter) of the Central Bank of Hungary.

The findings underscore the fact that with xgboost, the using a constant value plus a
flag, may be a decision as good as a prediction-based imputation to deal with missing
values. Moreover, an xgboost with a Huber loss function seems capture more data
errors than using the squared error loss function. Finally, the algorithm finds non-
trivial errors in the target variable far better than errors in the explanatory values,
hence, it may help in directing human attention towards the location of the actual
error. We believe that our paper offers points to consider in future studies.

The paper is structured as follows. The next two sections contain the
recommendations the literature holds on the xgboost-based outlier detection

4 x

pipeline. The fourth section discusses the data and methodology in detail, while the
fifth presents the outcome of the error simulations. The final section concludes.

Supervised learning for data error spotting

Data error may refer to a set of issues, including rule-violations (e.g. a NOT NULL
constraint), semantic pattern errors (such as a value outside 0 and 100, when it should
be within), duplicates (best captured with record-linkage algorithms), or to outliers
(Abedjan et al., 2016). The latter represents a subset, and have to fulfill two
requirements. First, they are quantitative or qualitative deviations from an expected
true value, and second, they should be confirmed to be errors. Outlier-based machine
learning algorithms can do the former, whereas error-confirmation requires
additional human intervention.

Hawkins (1980) defined outliers as observations which deviate from others “as to
arouse suspicions that it was generated by a different mechanism”. In that sense, it
assumes the existence of a “ground truth”, a relationship between variables which are
expected to represent the baseline mechanism. For data quality purposes the ‘ground
truth’ hypothesis assumes that most of the data on which the model is trained is right.
Since it is hardly possible to limit the error to the test data only, the error will be
present in the train data too. This means that any algorithm only flags outliers if they
break the learned function, which is not necessarily the ground truth.

Supervised learning for outlier detection may not be the first choice. Unknown data
errors are untagged, hence, the target variable cannot be a label stating if an
observation contains an error or not. We often do not know a priori how errors look
like, they may be heterogeneous and stem from a variety of sources (Heidari et al.,
2019). Because of these, unsupervised algorithms (Aggarwal, 2017) are popular.
Among these, distance-based methods identify ‘densely’ located records as normal
observations, and rare instances as errors. Such an approach, however, faces
problems with the increase in the number of dimensions, and may struggle with
extreme values.

To overcome these problems, Paulheim and Meusel (2015) propose a novel way to
use supervised learning for identifying outliers. They assume erroneous observations
do not reflect the true relationship between the variables. They propose a method
called ’attribute-wise learning for scoring outliers’ (ALSO), in which a target variable
is explained with several explanatory features. Subsequently, the residual, the
difference between the prediction and the actual value, is calculated. The authors loop
through all columns as target variable, and use the residual values for each instance
to calculate a final outlier score1 for each observation. Their approach translates the

1 If 𝑖𝑖𝑘𝑘′ is the predicted and 𝑖𝑖𝑘𝑘 the actual value for an observation using the variable k as the target variable,

its final, unweighted outlier score as proposed by Paulheim and Meusel (2015) is calculated as follows:
�∑ (𝑖𝑖𝑘𝑘 − 𝑖𝑖𝑘𝑘′)2𝑛𝑛

𝑘𝑘=1 . One may weigh the difference between 𝑖𝑖𝑘𝑘 and 𝑖𝑖𝑘𝑘′ to reflect the strength of each
relationship using their relative squared error values. With the weights assigned, the weighted

 5

data points into a new residual feature space. Within it, outliers can be considered as
observations that are far away from the origin2.

Benatti (2018) follows Paulheim and Meusel (2015) in that he also creates a model for
each column using the remaining columns and calculates residuals for each instance.
At the same time, he does not aggregate the obtained residuals into one single outlier
score. Instead, he carries out a clustering of the residual values to identify groups of
observations. According to his logic, observations far away from such clusters may be
flagged as potential data errors.

The work of Benatti (2018) is relevant for further reasons. First, in his paper he looks
for potential data errors in a granular central bank dataset, a similar challenge to ours.
Second, his model was specified with a gradient boosting algorithm (xgboost), which
provides sufficient flexibility to account for categorical and data provider-level
specificities. It is capable of learning highly non-linear relationships and variable
interactions, works well with high dimensional data, and it can deal with missing data
within the modelling phase (Chen and Guestrin, 2016). In short, xgboost is an
excellent tool to learn true, complex relationships within the data.

The sparsity-aware logic of xgboost

The xgboost algorithm entails a sequential development of several decision trees3.
The first tree attempts to predict the target variable with a simple aggregation4, the
second tree predicts the error of the first. Then the predictions of these two trees are
added and a new prediction error is calculated. The following tree is grown on the
error of the previous trees, and its prediction is added to the last one. This process is
repeated several times. The final number of trees can be determined by cross-
validation or Bayesian Optimization, discussed later.

This section presents a simplified overview of the xgboost, based on Chen and
Guestrin (2016). A tree ensemble model uses K additive functions to predict the
output.

residuals in the k-th model are: 𝑜𝑜(𝑖𝑖)≔ �

1
∑ 𝑤𝑤𝑘𝑘
𝑛𝑛
𝑘𝑘=1

∑ 𝑤𝑤𝑘𝑘(𝑖𝑖𝑘𝑘 − 𝑖𝑖𝑘𝑘′)2𝑛𝑛
𝑘𝑘=1 , and the weights are calculated by

𝑤𝑤𝑘𝑘≔ 1−𝑚𝑚𝑚𝑚𝑚𝑚(1, 𝑅𝑅𝑘𝑘), where 𝑅𝑅𝑘𝑘≔ �
∑ �(𝑖𝑖𝑗𝑗)𝑘𝑘−(𝑖𝑖𝑗𝑗

′)𝑘𝑘�
2𝑚𝑚

𝑗𝑗=1

∑ �(𝑖𝑖𝑗𝑗)𝑘𝑘−𝑘𝑘� �
2𝑚𝑚

𝑗𝑗=1
.

2 These are not distance-based outliers, but points which do not fit in the relationships between the
features, which makes its use particularly appropriate for error spotting.

3 In short, these are not the usual decision trees (sometimes called xgboost trees), and their purpose can
be viewed as clustering the residuals by their directions. Residuals are the differences between the
predictions and the actual values, and the direction is determined by whether the prediction is greater
(overestimation) or smaller (underestimation) than the actual value. The algorithm clusters the
observations along the values of the features according to the values of the residuals.

4 The aggregation can be specified to be the mean (L2 case of the loss function), or the median (L1 case).

6 x

𝒚𝒚�𝒊𝒊 = ∑ 𝒇𝒇𝒌𝒌(𝒙𝒙𝒊𝒊), 𝒇𝒇𝒌𝒌 ∈ 𝓕𝓕,𝑲𝑲
𝒌𝒌=𝟏𝟏 (1)

where ℱ is a set of regression trees, but the main difference compared to decision
trees is that each regression tree contains a continuous score on each leaf node. Each
fk is an independent tree structure, the final prediction of a tree is the sum of the
scores of the corresponding leaves. Since the "model includes functions as
parameters, the model is trained in an additive manner". At iteration t the objective
is the following:

𝓛𝓛(𝒕𝒕) = ∑ 𝒍𝒍(𝒚𝒚𝒊𝒊,𝒚𝒚𝒊𝒊�
(𝒕𝒕−𝟏𝟏)𝒏𝒏

𝒊𝒊=𝟏𝟏 + 𝒇𝒇𝒕𝒕(𝒙𝒙𝒊𝒊)) + 𝛀𝛀(𝒇𝒇𝒕𝒕) . (2)

The authors did not use the cost function of the weak learner to fit the residual, but
the second order approximation, which can be viewed as a cost/performance trade-
off, and because of the Taylor's expansion it is a good approximation at the point we
evaluate. The second order extension:

𝓛𝓛�(𝒕𝒕) = ∑ �𝒈𝒈𝒊𝒊𝒇𝒇𝒕𝒕(𝒙𝒙𝒊𝒊) + 𝟏𝟏
𝟐𝟐
𝒉𝒉𝒊𝒊𝒇𝒇𝒕𝒕𝟐𝟐(𝒙𝒙𝒊𝒊)�𝒏𝒏

𝒊𝒊=𝟏𝟏 + 𝛀𝛀(𝒇𝒇𝒕𝒕) , (3)

whereby 𝑔𝑔𝑖𝑖 = 𝜕𝜕𝑦𝑦�(𝑡𝑡−1)𝑙𝑙(𝑦𝑦𝑖𝑖 ,𝑦𝑦�(𝑡𝑡−1)) and ℎ𝑖𝑖 = 𝜕𝜕𝑦𝑦�(𝑡𝑡−1)

2 𝑙𝑙(𝑦𝑦𝑖𝑖 ,𝑦𝑦�(𝑡𝑡−1)) are the first and second
order gradient statistics on the loss function. At iteration t the goal is to achieve the
greatest possible reduction of the loss. The authors measure the quality of a fixed
tree structure q, by the following equation:

𝓛𝓛�(𝒕𝒕)(𝒒𝒒) = 𝟏𝟏
𝟐𝟐
∑ (∑ 𝒈𝒈𝒊𝒊)𝒊𝒊∈𝑰𝑰𝒊𝒊

𝟐𝟐

∑ 𝒉𝒉𝒊𝒊+𝝀𝝀𝒊𝒊∈𝑰𝑰𝒊𝒊

𝑻𝑻
𝒋𝒋=𝟏𝟏 + 𝜸𝜸𝜸𝜸. (4)

In an 𝐿𝐿2 loss regression case the nominator is the sum of the residuals, squared, and
the denominator is the number of residuals. It can be viewed as the algorithm’s
attempt to cluster the residuals by their direction and magnitude. It is impossible to
enumerate all the possible tree structures q. Therefore, a greedy algorithm that starts
from the single leaf containing every node (or possibly a subset controlled by a
hyperparameter subsample) iteratively adds branches to the tree. The loss reduction
after a split is calculated by the following equation:

𝓛𝓛𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝟏𝟏
𝟐𝟐
�
�∑ 𝒈𝒈𝒊𝒊𝒊𝒊∈𝑰𝑰𝑳𝑳 �𝟐𝟐

∑ 𝒉𝒉𝒊𝒊+𝝀𝝀𝒊𝒊∈𝑰𝑰𝑳𝑳
+

�∑ 𝒈𝒈𝒊𝒊𝒊𝒊∈𝑰𝑰𝑹𝑹 �𝟐𝟐

∑ 𝒉𝒉𝒊𝒊+𝝀𝝀𝒊𝒊∈𝑰𝑰𝑹𝑹
− (∑ 𝒈𝒈𝒊𝒊𝒊𝒊∈𝑰𝑰)𝟐𝟐

∑ 𝒉𝒉𝒊𝒊+𝝀𝝀𝒊𝒊∈𝑰𝑰
� − 𝜸𝜸, (5)

where 𝐼𝐼𝐿𝐿 and 𝐼𝐼𝑅𝑅 are the instances of the left and right nodes after a split, and 𝐼𝐼 = 𝐼𝐼𝐿𝐿 ∪
𝐼𝐼𝑅𝑅 . The gain after a split must be positive, otherwise the branch is removed. Hence, 𝜆𝜆
directly controls overfitting and reduce the prediction’s sensitivity to individual
observations, while 𝛾𝛾 post-prunes the regression trees.

An advantage of xgboost’s sparsity-aware split finding is that observations with
missing data are classified to the default direction at a split that is determined only

 7

by non-missing data. There are two possible directions at each split for the
candidates. The algorithm tries both directions, and determines the default direction
by evaluating the splits by Equations (4) and (5).

The machine learning pipeline

In this paper, we discuss (1) missing value treatment options, the (2) use of various
loss functions in xgboost, and (3) the identification of the erroneous variable, which
helps in locating the data errors not just row-wise but column-wise too.

To deal with missing values among predictors, one rely on the sparsity-aware method
of xgboost, which puts missing instances in the direction with the greatest loss
reduction. Using this may reduce the bias on the train dataset, but may result in high
prediction errors during the prediction phase, since the underlying ‘ground truth’ is
not learnt by the model.

Alternatively, one may use explicit missing value replacement before modelling.
Emmanuel et al. (2021) describe several estimator functions, stretching from the
simple replacement with a constant, to a learner-function based prediction, using
cases where values are filled. There is no single one best way to deal with missingness,
particularly when it is an issue both during model training and during deployment
(Khosravi et al. 2020). Despite that, Twala et al. (2008) do not find convincing
difference in the performance of a classification tree when comparing a simple
‘missing’ flag with imputation. We also argue that a sufficiently flexible tree-based
algorithm will not require a sophisticated missing value imputation. We argue that
replacement with a constant and the addition of an imputed value flag variable
(1/0) is not inferior to an imputation algorithm. In addition, we recommend
being cautious with the xgboost sparsity-aware model fitting, since it may not
learn the underlying ‘true’ relationships within the data (hypothesis 1).

The second step, referred to as ‘dealing with high-leverage point outliers’ is an
expectation stemming from the data error identification approach. Our estimator
function should not be materially impacted by the data errors we are about to
identify, which may be achieved with a robust estimator function. Begashaw and
Yohannes (2020) provide a solution in a linear regression setting; Sadouk et al. (2020)
propose one for deep learning applications. With gradient boosting we propose
changing the default objective function which is minimized during the model fitting:
we argue for replacing the squared loss function with the Huber loss function. This
latter makes sure that the residual (denoted as r) turns from quadratic (as in the case
of squared loss) to linear above a certain threshold. This threshold is often referred
to as the Huber-slope, denoted as 𝛿𝛿, and its value is determined during the

8 x

hyperparameter-optimization process, discussed later. The simple5 Huber-loss
function is reflected by Equation 6 and by Figure 1.

𝐿𝐿𝛿𝛿(𝑟𝑟) = �
1
2
𝑟𝑟2 for |𝑟𝑟| ≤ 𝛿𝛿

𝛿𝛿(|𝑟𝑟| − 1
2
𝛿𝛿) otherwise

 (6)

Figure 1. Loss values of a quadratic and of several Huber-loss functions

The Huber-function ensures that small deviations are squared, but large residuals
count in a linear manner only. As a result, parameter tuning will not chase outliers
and can learn the underlying (“true”) function. We argue that an xgboost with a
Huber-loss function is better suited to uncover data errors than the squared loss
objective function (Hypothesis 2).

Finally, the outliers of one single model are investigated for being potential data
errors. We argue that errors are better identified when they are in the target
variable as opposed to the explanatory variables (Hypothesis 3). This hypothesis
relies on the assumption that there is a certain degree of (linear or non-linear)
relationship between explanatory variables. If a data error distorts an explanatory
variable ‘A’, the other explanatory column ‘B’, which is not independent from ‘A’, may
take over its role in explaining Y. As a result, A loses its importance in the final xgboost
function, while B’s feature importance increases. Because of that, the algorithm may
not yield outliers on these errors within ‘A’, only if they are in the target. In sum, it
may be a good practice to look for the data error within the target variable and not
in the explanatory variables.

5 The xgboost implementation uses the pseudo Huber-loss function, which is a smooth approximation of

the Huber loss function, meaning continuous derivatives: 𝐿𝐿𝛿𝛿(𝑟𝑟) = 𝛿𝛿2(�1 + �𝑟𝑟 𝛿𝛿⁄ �
2
− 1

 9

Data and Methodology

Data

The Credit Register (Hitelregiszter) of the Central Bank of Hungary (MNB) is a monthly
updated collection of all loan contracts issued in Hungary, containing 22 reporting
tables, 482 attributes and 31 identifiers. These together usually yield between 30-60
million new lines each month. The dataset goes through of around two thousand
logical quality rules. Aggregate time series are checked with the help of ARIMA- and
further filters, whereas static changes are probed on record / cell level. Finally, a cross-
sectional algorithm, the subject of this paper, is applied on the data.

This paper uses the loan-to-value (LTV) column and its related fields of the dataset.
This limits the analysis to mortgages and home equity loans of the residential sector,
issued after 1st October 2021, the date of a recent legal change. The final table is a
combination several Hitreg tables, comprising data on the debtor(s), collateral(s) and
on the loan contract. Altogether we work with 73 thousand lines of one single
reporting date of 30th September 2022, using 274 columns. Metrics and the
distribution of the target variable, and of a subset of the explanatory variables, are
presented in the Appendix.

The target variable was the LTV-value at credit issuance, which is subject to strict legal
limitations, hence its accuracy is of utmost interest. As a consequence, we only kept
the columns which were relevant at the time of issuance (to illustrate: current
outstanding loan amount was removed, since it has little relevance for the LTV at
issuance).

In theory, calculating LTV is straightforward: the loan amount divided by the allocated
collateral value. In practice, however, it is rather complex, since many decisions,
including the choice of the collateral evaluation method and the allocation process
of a collateral to the loan contract, are at the data providers’ discretion. As a result,
the columns at hand are insufficient to calculate LTV directly. The relationship
between LTV and the other columns is complex, which makes xgboost an appropriate
choice.

In short, LTV has highly non-linear relationship with the explanatory variables, and it
does not contain missing values, as it is an enforced condition of a successful data
submission to the central bank. As a result, it may serve as a prime candidate for
hypothesis testing.

Modelling pipeline

Although xgboost predictions are not affected by multicollinearity, it may distort
feature importance. Since we expect certain degree of interpretability, we kept one
out of the pairwise collinear variables only (over 0.90). We also eliminated quasi
constant values, where the frequency ratios of the most frequent and the second most

10 x

frequent values were extremely high (the variance of the feature close to zero), to
avoid overfitting or misleading conclusions.

In a similar manner, we recoded categorical and discrete variables with rare values.
Any category below a threshold of 2.5 percent was recoded into an ‘other’ category,
and upper, rare values of discrete numerical values were summarized (e.g. the number
of residential real estate collaterals above the value of three was recoded into three).
Categorical variables with missing values were given the value of ‘missing’. In most
cases these were ‘missing non at random’ (MNAR) variables, and in such cases, simple
flagging is preferred to imputation.

Next, we converted dates into the number of days elapsed between the start date
and the reporting date.
During encoding (dealing with discrete non-numeric variables), we found that label
encoding6 improves model performance most even for variables that enumerations
cannot be sorted (also known as nominal variables). It may be explained by avoiding
the “curse of dimensionality”: as the number of predictors increases, the difference
between the maximum and minimum distances7 approaches to zero. Boosting
algorithms tend to suffer from the curse of dimensionality as they tend to overfit,
hence label encoding can be recommended.

The next step contained the treatment of missing values for continuous variables
(Figure 2), the focus of the first hypothesis (Table 1). We have not used columns
where the share of missing values exceeded 20 percent at all. Among the rest, the
feature with the most missing values had a missing value share of 13 percent,
followed by several columns with 12 percent. There seems to be some degree of
systematic rule for missingness, since certain feature values are missing for the same
observations (Figure 2). This is to be expected: some variables are not interpreted for
certain loan contracts.

Three approaches were assessed to fill missing fields. First, missing values were
recoded into an arbitrary outlier value (e.g. collateral market value of zero HUF). The
model may learn that this special value is not necessarily linked to an economic
meaning.

6 Label encoding converts a categorical variable to a numerical value. While at first it may sound surprising,

this kind of treatment works well with the tree-based xgboost-method, since it can learn any
difference between 1 and 2, and this is not necessarily the same difference as between 2 and 3. In
addition, label encoding does not increase dimensionality, as opposed to the one-hot-encoding
technique.

7 Maximum and minimum distances are distances calculated between the furthest and nearest observations
respectively.

 11

Figure 2. Missing values among the continuous variables. Please see the Appendix for further details

Table 1. Missing value treatment options for Hypothesis 1

Missing value
treatment Description Assumption

Replacement
with a constant

The constant (zero) is
infrequent or nonexistent

in the original data

Xgboost is capable of learning that it is a special
value.

If the ratio of missing values exceeds 5 percent, an
indicator column is added to show the manually

filled rows8.

Imputation with
MissRanger

All complete predictors
are used (but not the

target)
There are existing relationships between predictors

Xgboost
sparsity-aware

algorithm

The dataset with missing
values is fed directly to the

xgboost optimization.

This approach puts instances with missing values in
the class with the greatest loss reduction when
growing a new branch on a tree. This approach

delivers a good model on the train data but may not
capture the ‘ground truth’.

In the second approach, we imputed missing values using the MissRanger package
of R (Stekhoven et al. 2012). This is a sophisticated and parallelized, random forest-
based algorithm, which uses both categorical and continuous data, and optimizes the
imputation process without the need of a test data set. We chose to use all complete
predictors to impute the missing values for incomplete predictors. The target variable
was not used for the imputation to prevent data leakage. The third method was not
to replace missing values at all: we left blank cells blank and let the xgboost deal with
them, as discussed earlier.

8 The presence or absence of the additional flag column is not material: it changes little on model

performance or variable interpretation.

12 x

Bayesian optimization for hyperparameter-tuning

The last step was the design of the xgboost function. One choice is about the loss
function, subject to our second hypothesis and discussed above. The Huber slope
parameter, which makes the loss function quadratic up to it, and linear above, is
determined with a Bayesian optimization procedure (Snoek et al., 2012), along with
all other hyperparameters. This is an efficient method that fits a Gaussian process to
the results, looks for hyperparameters which obtain the best evaluation metric (RMSE
or the mean pseudo-Huber error) on the test data.

The objective function is the evaluation metric based on the hyperparameter setups,
is unknown. The algorithm samples hyperparameter sets, observes the evaluation
metric and updates the prior form of the function. There is a predefined similarity
measure (Kernel) between observations, whereby similar hyperparameters
correspond to similar evaluation metrics. The next samples are determined by the
acquisition function, which is based on the previously queried observations, the
Kernel function and other hyperparameters, that is related to the exploitation-
exploration trade-off, which corresponds to the expected value of the evaluation
metric and the variance, based on the previously explored areas and the updated
posterior function.

The Bayesian Optimization framework is cited from Shahriari et al. (2016) and Garrido-
Merchán et al. (2023). To retrieve the optimum hyperparameters 𝒙𝒙∗ of the unknown
objective function, we solve the following:

𝒙𝒙∗ = 𝒂𝒂𝒂𝒂𝒂𝒂 𝒎𝒎𝒎𝒎𝒎𝒎
𝒙𝒙∈𝓧𝓧

𝒇𝒇(𝒙𝒙). (7)

The Bayesian Optimization framework in our case can be defined by the following
tuple:

𝓐𝓐 = (𝓖𝓖𝓖𝓖,𝜶𝜶(⋅),𝒑𝒑(𝒇𝒇(𝒙𝒙)|𝓓𝓓)), (8)

where 𝑓𝑓(𝑥𝑥) is the optimized function, 𝒢𝒢𝒢𝒢 is a Gaussian Process, 𝛼𝛼(⋅) is an acquisition
function, and 𝑝𝑝(𝑓𝑓(𝑥𝑥)|𝐷𝐷) is a predictive distribution (Garrido-Merchán et al, 2023). The
task is to provide a predictive distribution for test observations {𝑥𝑥𝑖𝑖∗}𝑖𝑖=1𝑀𝑀 with a given
dataset 𝒟𝒟𝑛𝑛 = {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑁𝑁 . A GP is fully defined by the following:

�
𝒚𝒚
𝒇𝒇∗� ∼ 𝓝𝓝��𝟎𝟎𝟎𝟎� , �𝚱𝚱

�𝑿𝑿,𝑿𝑿 𝚱𝚱𝑿𝑿,𝑿𝑿∗

𝚱𝚱𝑿𝑿∗,𝑿𝑿 𝚱𝚱𝑿𝑿∗,𝑿𝑿∗
��, (9)

where 𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝑥𝑥𝑖𝑖) + 𝜀𝜀𝑖𝑖 are the noisy observations of the optimized function 𝑓𝑓(𝑥𝑥) with
𝜀𝜀𝑖𝑖 ∼ 𝒩𝒩(0,𝜎𝜎𝜀𝜀2), the train and test observations are arranged in matrices 𝑿𝑿 and 𝑿𝑿∗, 𝒇𝒇
and 𝒇𝒇∗ are the unobserved true function outputs for all the inputs, 𝚱𝚱𝑿𝑿,𝑿𝑿 is N-by-N
matrix containing the similarities between the observations calculated by the Radial

Basis Function 𝜅𝜅(𝒙𝒙𝒊𝒊,𝒙𝒙𝒊𝒊′|𝝉𝝉) = 𝜎𝜎2exp �− 1
2
�𝑥𝑥−𝑥𝑥

′

ℓ
�
2
�, where the hyperparameters of the

Kernel denoted by 𝝉𝝉, and 𝚱𝚱�𝑿𝑿,𝑿𝑿 = 𝚱𝚱𝑿𝑿,𝑿𝑿 + 𝜎𝜎𝜀𝜀2𝚰𝚰. Since the observations and the true

 13

function values at the test points are jointly distributed as a multivariate Normal, the
predictive posterior distribution 𝑝𝑝(𝑓𝑓(𝑥𝑥∗)|𝒟𝒟) are given by:

𝝁𝝁𝒏𝒏(𝒙𝒙∗) = 𝚱𝚱𝑿𝑿∗,𝑿𝑿𝚱𝚱�𝑿𝑿,𝑿𝑿
−𝟏𝟏 𝒚𝒚, (10)

𝝈𝝈𝒏𝒏𝟐𝟐(𝒙𝒙∗) = 𝚱𝚱𝑿𝑿∗,𝑿𝑿∗ − 𝚱𝚱𝑿𝑿∗,𝑿𝑿𝚱𝚱�𝑿𝑿,𝑿𝑿
−𝟏𝟏 𝚱𝚱𝑿𝑿,𝑿𝑿∗ (11)

The predictive distributions are the estimates of unknown functions areas, and the
next samples are determined by the acquisition function. It deals with the exploration-
exploitation trade-off, in the sense of the search space and the promising areas
(Shahriari et al, 2016). In our analysis we used the upper confidence bound as an
acquisition function:

𝜶𝜶𝑼𝑼𝑼𝑼𝑼𝑼(𝒙𝒙∗;𝓓𝓓𝒏𝒏) ∶= 𝝁𝝁𝒏𝒏(𝒙𝒙∗) + 𝜷𝜷𝒏𝒏𝝈𝝈𝒏𝒏(𝒙𝒙∗). (12)

The approach, preferably parallelized, vastly reduces computation time compared to
a brute force-based grid search. The permitted bounds for the hyperparameter-
optimization, defined after a set of initial experiments, are reflected by Table 2.

Table 2. Permitted hyperparameter ranges

Hyperparameter Descipriton Bounds
Eta (learning rate) Step size used in update 0.01 - 0.1
Max depth Maximum depth of a tree. 4 - 8

Gamma Minimum loss reduction required to make a further
partition on a leaf node of the tree. 0-8

Alpha L1 regularization term on weights. 10-20
Lambda L2 regularization term on weights. 1-12
Huber-slope* Defines the range for the loss function piecewise. 10-30

* with Huber loss function only. The maximum number of trees was set to 280

Synthetic errors and model evaluation

We introduced three types of synthetic errors to the data (Table 3). Synthetic errors
are often used to test data quality-algorithms (Abedjan et al. 2016). We added the
following errors to 5 percent of randomly selected cases (both in train and in test
datasets):

- LTV divided by 100 (an LTV of 50 percent is to be submitted as ‘50’, but is
often submitted as 0,5)

- LTV set to 80 (as if a dummy value was submitted, which also happens in
reality). This error type was applied to observations with a true LTV of 60 or
less to have a sufficiently sizeable error.

14 x

- LTV multiplied by a sample drawn from uniformly distributed ranges of U(0.3,
0.5) and U(1.2, 1.4)9 random variables. The two ranges are not symmetrical to
limit the number of errors above 100 (percent) of LTV.

In a separate experiment, errors were introduced to one of the predictors. We chose
to alter the second most important predictor in terms of gain in the feature
importance matrix (described later), the allocated collateral value. Data providers have
more discretion during the allocation process than it is the case with loan amount
(the most important feature) - this latter is explicitly written in a loan contract.
Therefore, variations, errors and outliers are more probable in the case of the
allocated collateral value. The errors we introduced were:

- Values were multiplied by a random value sampled from the uniformly
distributed ranges U(0.3, 0.5) or U(1.2, 1.4). This in essence means a
multiplication by a value in any of the mentioned bounds.

- Values were set to 10 mln HUF (approx. 25 thousand EUR). This error type
was applied to observations with a true allocated collateral value of 40 mln
HUF or more to have a sufficiently sizeable error. Such an error would occur
when dummy value is reported to the central bank.

Table 3. Data errors used for algorithm evaluation

Error location Error description Error rationale
Response variable values divided by 100 An LTV of 50 percent is expected

to be submitted as ‘50’, it is often
submitted as 0,5

Response variable values set to 80 as if a dummy value was submitted
Response variable Values were multiplied by a

random value. This random value
was drawn for each observation
from a uniform distribution of
between U(0.4, 0.6) and U(1.2, 1.4).

A random error

Predictor (allocated
collateral value)

Values set to 10 mln HUF The use of a dummy value or an
internal cap on allocation

Predictor (allocated
collateral value)

Values were multiplied by a
random value. This random value
was drawn for each observation
from a uniform distribution of
between U(0.4, 0.6) and U(1.2, 1.4).

A random error

The outlier detection approaches were evaluated with two metrics (Table 4). First, we
look at the share of discovered errors out of all errors. An error was considered as
discovered when its absolute residual was above a pre-defined threshold of 20 (since
the target variable is expected to be between 0 and 80 (a legal limitation), an absolute
threshold does not materially distort the results). Ceteris paribus, the more errors we
identify, the better the model is. At the same time, we need an additional metric: the
share of intentional errors within outliers, compared to the share of intentional errors

9 We used the usual abbreviation of the uniform distribution (denoted by U).

 15

in the whole test data set (referred to as ‘lift’). Error density should be considerably
higher in the outlier set than in the data.

We tested two outlier definitions. First was based on a pre-defined (unstandardized10)
residual value, above which all observations were treated as outliers. The second
definition relied on the top pre-defined share of observations, in our case, 5 percent,
which were classified as outliers, when ranked according to the absolute value of its
residuals. One argument for this second definition could be the limited time available
to follow up outlier-issues with the data providers.

Table 4. Error detection evaluation metrics

Metric Metric description Outlier definition
Share of known errors
discovered

Synthetic errors in the outlier
set as a proportion of all
synthetic errors

Definition 1: Outlier set
defined as the observations
with an absolute residual of a
pre-defined value or higher
Definition 2: A pre-defined
share of observations with the
greatest residual values

Lift

Frequency of synthetic errors in
the outlier set, divided by the
frequency of synthetic errors in
the entire data

Results

The baseline model

We prepared a baseline xgboost model, imputed missing values using a constant,
and a squared loss function (and with no synthetic errors). Although the model’s
residual plot still reflects a systematic pattern (Figure 3) - it overestimates low
observations and underestimates high ones - it performs well. The RMSE is 5.6
percent, and the share of outliers is 1.4 percent, using the cutoff value on standardized
residuals of 3. A sample of our flagged outliers were identified as data errors by
domain experts. The algorithm also found intuitive errors (e.g. LTV between 0 and 1
instead of 0 and 100).

10 We decided on using the unstandardized value for better interpretability, given the fact that LTV is

expected to move between 0 and 100. In more heterogeneous cases or if the ALSO-algorithm is to
be carried out in its full extent, one may standardize the residuals.

16 x

Figure 3. Residual plot of the baseline model with marginal distributions (graph contains a random
sample of data points only)

The two most important features in the model are loan amount and allocated
collateral value at loan origination (Table 5). Since LTV at loan origination is related
to the division of these two values, it is promising to see these features on the top of
the list. The reason why we say LTV is only related to these two features is that banks
are permitted to apply certain rules (caps, modifications) in using these values during
LTV-calculation both to the nominator and to the denominator.

Table 5. Feature importance in the baseline model (top 10)

Feature Gain Cover Frequency
Loan amount (in HUF) 0,32 0,13 0,07
Allocated collateral

value (at loan
origination)

0,25 0,07 0,09

Full collateral market
value at loan origination

0,12 0,06 0,06

Collateral value 0,05 0,03 0,04
Monthly repayment

amount
0,04 0,07 0,06

Effective interest rate 0,03 0,02 0,03
Financed real estate

type11
0,02 0,03 0,02

11 The categorical variable converted to a numerical value using label encoding. While at first it may sound

surprising, this kind of treatment works well with the tree-based xgboost-method, and does not
increase dimensionality, as opposed to the one-hot-encoding technique.

 17

Days past since collateral
value determination12

0,02 0,02 0,03

Rate driver13 0,02 0,00 0,01
Expected loss 0,01 0,04 0,04

Figure 4 and Figure 5 depict the individual feature contributions for a randomly
selected 10 thousand observations for the two most importance features (by gain).
The individual feature contribution is a weight the given value of the predictor has on
the target. Since xgboost develops a complex set of trees, including predictor
interactions (see section 4.2), the same predictor value may have varying impacts on
the prediction. Each point on the plot gives the impact the actual feature set of the
observation on the target.

These plots reflect the division between the ‘Loan amount’ (which is related to the
nominator) and the ‘Allocated collateral value’ (which is related to the denominator).
Note, however, the strange curve of the ‘Allocated collaretal value’ around zero. This
reflects the impact of the missing value treatment. The cases where this value was
missing were given decisively heterogeneous and broad individual contribution
values by the model. We assume that here the algorithm learned the underlying
function along other variables. Beyond zero, the individual contribution plot for this
predictor is reminiscent of a hyperbole.

Figure 4. Individual feature contribution of’Loan amount’ (with an illustrative LOESS-function)

12 The maximum amount, in case of multiple collaterals.
13 The categorical variable converted to a numerical value using label encoding. While at first it may sound

surprising, this kind of treatment works well with the tree-based xgboost-method, and does not
increase dimensionality, as opposed to the one-hot-encoding technique.

18 x

Figure 5. Individual feature contribution of’Allocated collateral value’ (with an illustrative LOESS-
function)

Hypotheses 1 and 2

We classified all observations with an absolute residual of 20 or higher as outliers,
and calculated the evaluation metrics. The 80-dummy and the div_100 error types
were discovered with a lift value of 10-12, with the exception the ‘none’ (no explicit
missing value replacement) and Huber-loss combinations (Table 6). In this latter case,
the share of outliers was similar, but the models’ RMSE and MAE values and the total
share of outliers were higher, and therefore lift values were lower. This poor
performance of the ‘none’ – ‘Huber-loss’ combinations were consistent across all
three error-types.

Table 6. Evaluation metrics when using an absolute outlier threshold of 20; with a synthetic error in

the target variable

Error
type

Missing value
replacement

Loss
function

Outliers as %
of total

Share of
discovered errors Lift RMSE MAE

80 estimator Huber 6,8% 88,9% 13,00 12,10 6,82

80 none Huber 13,3% 88,0% 6,60 17,90 9,73

80 constant Huber 6,8% 87,2% 12,80 11,60 6,54

80 constant squared loss 6,9% 85,3% 12,40 11,30 7,00

80 none squared loss 6,5% 83,1% 12,80 10,90 6,69

80 estimator squared loss 5,6% 80,1% 14,30 10,20 6,14

div100 none Huber 8,1% 82,3% 10,20 13,30 6,97

div100 estimator Huber 6,4% 81,3% 12,60 12,40 6,32

div100 constant Huber 6,6% 81,1% 12,40 12,30 6,34

div100 estimator squared loss 5,9% 79,1% 13,50 11,50 6,26

div100 constant squared loss 6,2% 78,4% 12,60 11,50 6,37

div100 none squared loss 6,2% 78,1% 12,60 11,30 6,22

 19

rv none squared loss 5,3% 64,2% 12,20 9,30 5,40

rv none Huber 11,2% 64,2% 5,76 22,10 9,59

rv constant Huber 5,4% 59,0% 10,90 9,24 5,36

rv estimator Huber 5,1% 58,8% 11,60 9,11 5,29

rv constant squared loss 4,4% 52,0% 12,00 8,25 4,86

rv estimator squared loss 3,6% 48,4% 13,30 7,62 4,49

There is no visible tradeoff between discovered error shares and lift values. Moreover,
models with imputed missing values do not outperform models with a constant-
replacement. Further, the Huber objective function performs better than the squared
loss functions do in terms of the first metric, the share of discovered intentional errors.
However, the share of outliers as of all observations is not necessarily larger with the
Huber loss function, if a missing value imputation was used.

Figure 5 illustrates model performance14 over the various error types in the response
variable when gradually decreasing the absolute outlier threshold value from 25 to 5.
The x-axis shows the share of non-errors in the outlier set, in other words, the false
positive rate, while the y-axis represents the share of known, outlier errors as a
percentage of all synthetic errors. Figure 6 reinforces model stability and the
messages of our research.

Figure 6. False- and true-positive rates when moving the outlier threshold from 25 to 5 (synthetic
errors in the target variable)

14 The difference Figure 6 and a ROC-curve is that in our case, we do not have a direct probability value,

only a cutoff outlier value.

20 x

Table 7 contains model metrics when a relative outlier threshold of 5 percent of all
observations is used. In a similar vein, Table 7 confirms that the estimation of missing
values as imputation in our case delivers better outlier recognition performance than
using a constant.

Regarding our initial Hypotheses: the Huber-loss often delivers better results than the
squared loss, and an imputation is most often better than no imputations. These are
indications in favor of Hypotheses 1 and 2, but every dataset should be tested for it.

Table 7. Error detection metrics when using a relative outlier threshold of 5 percent (synthetic error

in the target)

Error
type

Missing value
replacement

Loss
function

Outliers as
% of total

Share of
discovered

errors
Lift RMSE MAE

80 estimator Huber 5,0% 76,5% 15,30 12,10 6,82

80 constant Huber 5,0% 75,7% 15,10 11,60 6,54

80 estimator squared loss 5,0% 75,0% 15,00 10,20 6,14

80 none squared loss 5,0% 73,1% 14,60 10,90 6,69

80 constant squared loss 5,0% 72,3% 14,50 11,30 7,00

80 none Huber 5,0% 54,7% 10,90 17,90 9,73

div100 estimator squared loss 5,0% 74,5% 14,90 11,50 6,26

div100 estimator Huber 5,0% 73,9% 14,80 12,40 6,32

div100 constant Huber 5,0% 73,5% 14,70 12,30 6,34

div100 constant squared loss 5,0% 72,3% 14,50 11,50 6,37

div100 none squared loss 5,0% 71,8% 14,40 11,30 6,22

div100 none Huber 5,0% 70,7% 14,10 13,30 6,97

rv none squared loss 5,0% 62,6% 12,50 9,30 5,40

rv estimator squared loss 5,0% 58,9% 11,80 7,62 4,49

rv estimator Huber 5,0% 58,4% 11,70 9,11 5,29

rv constant squared loss 5,0% 56,8% 11,40 8,25 4,86

rv constant Huber 5,0% 56,5% 11,30 9,24 5,36

rv none Huber 5,0% 31,6% 6,33 22,10 9,59

Testing Hypothesis 3

The outcome of the same experiments (recall that we use slightly different errors) is
summarized by Table 8.

 21

Table 8. Error detection metrics with an absolute outlier threshold of 20 (synthetic error in the
second most important predictor)

Error
type

Missing value
replacement

Loss
function

Outliers as %
of total

Share of
discovered

errors
Lift RMSE MAE

10 none Huber 3,5% 3,0% 0,87 7,91 4,73

10 estimator Huber 3,0% 2,1% 0,70 7,47 4,36

10 none rmse 1,5% 1,6% 1,05 5,83 3,43

10 constant Huber 2,3% 1,3% 0,57 6,98 4,21

10 constant rmse 1,3% 1,1% 0,83 5,55 3,25

10 estimator rmse 1,1% 0,9% 0,83 5,27 3,18

rv none rmse 2,0% 10,7% 5,41 6,30 3,69

rv estimator Huber 4,5% 7,9% 1,75 9,18 6,11

rv none Huber 2,5% 5,8% 2,31 7,10 4,29

rv constant Huber 3,0% 4,3% 1,43 7,72 4,75

rv constant rmse 1,5% 2,1% 1,41 5,84 3,46

rv estimator rmse 1,3% 1,9% 1,51 5,54 3,37

Table 8 shows dismal error recognition metrics with disappointingly low values: the
models are not better than randomly selecting observations from the data. The
metrics send a similar message with relative outlier threshold (not shown).

To understand the reason for that, we compare the feature importance matrix for the
baseline model and for the model with synthetic errors in the predictor ‘Allocated
collateral value’. While the feature importance matrix can only signal changes and is
not a mathematical proof, it indicates change directions. Table 9 shows that the
importance of this predictor decreases slightly for all three aspects (gain, cover and
frequency). At the same time, the third predictor, exhibits higher importance values,
among other changes. These moves point out the reason why the algorithm is less
capable to identify errors in the predictors. Our intuition is that xgboost can
approximate the underlying function despite the added noise to ‘Allocated collateral
value’, because it finds a structure using other variables.

22 x

Table 9. Feature importance of the baseline model and the model with random variable synthetic
errors in the second predictor

Baseline model Peer model with synthetic errors in the predictor

Feature Gain Cover Frequency Feature Gain Cover Frequency

Loan amount (in HUF) 0,32 0,13 0,07 Loan amount (in HUF) 0,32 0,15 0,07

Allocated collateral value
(at loan origination)

0,25 0,07 0,09 Allocated collateral value (at
loan origination)

0,23 0,08 0,09

Full collateral market value
at loan origination

0,12 0,06 0,06 Full collateral market value at loan
origination

0,13 0,07 0,07

Collateral value 0,05 0,03 0,04 Collateral value 0,05 0,03 0,04

Monthly repayment amount 0,04 0,07 0,06 Monthly repayment amount 0,03 0,06 0,05

Effective interest rate 0,03 0,02 0,03 Effective interest rate 0,03 0,03 0,03

Financed real estate type* 0,02 0,03 0,02 Financed real estate type* 0,02 0,04 0,02

Days past since collateral
value determination**

0,02 0,02 0,03 Expected loss 0,02 0,03 0,04

Rate driver* 0,02 0,00 0,01 Days past since collateral value
determination**

0,02 0,03 0,04

Expected loss 0,01 0,04 0,04 Original maturity (in days) 0,01 0,04 0,04

* the categorical variable converted to a numerical value using label encoding. While at first it may sound
surprising, this kind of treatment works well with the tree-based xgboost-method, and does not increase
dimensionality, as opposed to the one-hot-encoding technique.
** The maximum amount, in case of multiple collaterals

Conclusion

In this paper, we analyzed technical aspects of a supervised, gradient boosting-based
machine learning method, described by Paulheim and Meusel (2015) and Benatti
(2018), to identify potential data errors in a central banking dataset. The algorithm
relies on the assumption that most of the data points are correct and there are
‘ground truth’ relationships between the features. Data points deviating from such a
relationship, outliers, are flagged as a potential errors, which are to be investigated
further. While the results we found may be specific to the data used, the paper
provides a detailed overview of the aspects one may consider during a similar
modelling pipeline.

We used the Credit Registry (Hitelregiszter) dataset collected by the Central Bank of
Hungary (MNB), which is a collection of datasets provided by supervised entities
(banks) to the central bank. More specifically, we looked at the loan-to-value (LTV)
part of the data for one business date, carrying out a cross-sectional analysis. In order
to test three technical hypotheses relevant during model development, we
introduced three types of synthetic errors to the data.

First, we tested the treatment of missing values in the data (when the data is missing
both during model training and prediction). We found that an imputation method
most often proposed by the literature is not necessarily superior to using a constant
value as a placeholder for ‘missing’ label. This is explained by the flexible nature of
the xgboost algorithm. Moreover, one should be careful when using the sparsity-

 23

aware splitting method native to the xgboost algorithm, because it may worsen
model performance, particularly when used in combination with the Huber loss
function.

Second, we compared two loss functions for xgboost. We found that the Huber loss
function captures more errors than the traditional, squared loss function. Squared
loss-function can be more sensitive to outliers, and when using it, xgboost is more
likely to ‘learn’ data errors as true relationships than it would be the case with the
Huber-function.

Finally, we showed that the algorithm captures errors in the target variable, as
opposed to errors in the predictors. The reason for that lies in the flexibility of the
xgboost and high dimensionality of our dataset. During model training with errors in
the predictors, the 'role’ of the erroneous predictor is taken over by others, strongly
diminishing error identification performance.

Potential future research questions could be directed towards expanding the cross-
sectional nature of our investigation by looking at pattern development over time.
Another potential research idea relates to providing better – and automated -
answers why an outlier seems to be an error. While individual feature contributions
seem to be interpretable options, they are still a far cry from being able to formulate
an actionable question to the data provider.

References

Aggarwal C. C. (2017) Outlier Analysis. Springer, Second Edition. DOI 10.1007/978-
3-319-47578-3

Benatti, N. (2018) A machine learning approach to outlier detection and imputation
of missing data. Paper presented at the Ninth IFC Conference on “Are post-crisis
statistical initiatives completed?” Basel, 30-31 August 2018. Available at:
https://www.bis.org/ifc/publ/ifcb49_48.pdf

Chen, T., Guestrin, C. (2016) XGBoost: A Scalable Tree Boosting System. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD '16). Association for Computing Machinery, New York, NY, USA, 785–
794. https://doi.org/10.1145/2939672.2939785

Daniel J. Stekhoven, Peter Bühlmann, MissForest—non-parametric missing value
imputation for mixed-type data, Bioinformatics, Volume 28, Issue 1, 1 January 2012,
Pages 112–118, https://doi.org/10.1093/bioinformatics/btr597

Garrido-Merchán, E. C., Piris, G. G., Vaca, M. C. (2023) Bayesian Optimization of ESG
Financial Investments. https://arxiv.org/pdf/2303.01485.pdf

https://www.bis.org/ifc/publ/ifcb49_48.pdf
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1093/bioinformatics/btr597
https://arxiv.org/pdf/2303.01485.pdf

24 x

Khosravi, P., Vergari A., Choi, J., Liang, Y., Van den Broeck, G. (2020) Handling Missing
Data in Decision Trees: A Probabilistic Approach. Paper presented at the conference
’The Art of Learning with Missing Values Workshop at ICML, Vienna, Austria, 2020’,
available at: http://starai.cs.ucla.edu/papers/KhosraviArtemiss20.pdf

Kim, W., Choi, BJ., Hong, EK. et al. A Taxonomy of Dirty Data. Data Mining and
Knowledge Discovery 7, 81–99 (2003). https://doi.org/10.1023/A:1021564703268

Paulheim, H., Meusel, R. (2015) A decomposition of the outlier detection problem into
a set of supervised learning problems. Mach Learn 100, 509–531 (2015).
https://doi.org/10.1007/s10994-015-5507-y

Rahm, E., & Do, H. H. (2000). Data cleaning: Problems and current approaches. IEEE
Data Eng. Bull., 23(4), 3-13.

Sadouk, L., Gadi, T., Essoufi, E.H. (2020). Robust Loss Function for Deep Learning
Regression with Outliers. In: Bhateja, V., Satapathy, S., Satori, H. (eds) Embedded
Systems and Artificial Intelligence. Advances in Intelligent Systems and Computing,
vol 1076. Springer, Singapore. https://doi.org/10.1007/978-981-15-0947-6_34

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., De Freites, N. (2016) Taking the
Human Out of the Loop: A Review of Bayesian Optimization. In: Proceedings of the
IEEE, vol. 104, no. 1, pp. 148-175, Jan. 2016, doi: 10.1109/JPROC.2015.2494218.

Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of
machine learning algorithms. Advances in neural information processing systems, 25.

Twala, B. E. T. H.; Jones, M. C. and Hand, D. J. (2008). Good methods for coping with
missing data in decision trees. Pattern Recognition Letters, 29(7) pp. 950–956.

http://starai.cs.ucla.edu/papers/KhosraviArtemiss20.pdf
https://doi.org/10.1023/A:1021564703268
https://doi.org/10.1007/s10994-015-5507-y
https://doi.org/10.1007/978-981-15-0947-6_34

Appendix

Table 10. Selected summary statistics of the target and the most important explanatory variables by feature importance gain

n = 72 996
Number of

missing values Mean Standard
deviation Median

Median absolute
deviation from the

median
Skewness Kurtosis

LTV - 47 22 48 28 -0.13 -1.16

Loan amount - 14 076 346 13 538 794 10 000 000 7 413 000 8 294
Allocated collateral value (at
loan origination) 9 732 26 976 614 25 248 320 20 300 000 15 122 520 6 150

Expected loss 2 803 11 527 849 30 627 914 7 835 219 8 584 562 29 1 145

Debt-to-income percentage 549 30 18 30 13 100 18 497

Monthly repayment amount 544 175 902 139 058 143 876 83 582 9 324

Effective interest rate 5 929 4 3 4 5 0.46 -0.43
Full collateral market value at
loan origination 8 933 34 025 618 60 486 728 27 000 000 18 532 500 121 19 042

Collateral value 8 933 25 340 908 48 613 488 20 000 000 15 715 560 120 18 711

Original maturity in days - 5 967 2 681 7 297 2 731 -0.18 -1.05
Days past since collateral value
determination** 8 930 204 644 28 22 5 36

Elapsed days since loan
origination 0 204,15 150,86 192 127,5 7,82 170,33

APR 64 5,49 2,61 5,49 2,95 2,18 81,03

Birth year of the main debtor 0 1982,11 10,45 1983 10,38 -1,33 6,08

Loan cost percentage 64 6,47 2,85 6,1 2,33 2,26 56,92

Mortgage rate 3842 5,63 2,46 5,2 2,14 1,07 1,1

26 x

Figure 7. Density functions for the target variable (LTV) and for the most important explanatory features (by feature importance gain) Note: amounts are in HUF

3rd IFC and Bank of Italy Workshop on “Data Science in Central Banking: Enhancing the
access to and sharing of data”

E R R O R S P O T T I N G W I T H G R A D I E N T B O O S T I N G

Dr. Csaba Burger, CFA (MNB)
Mihály Berndt (Clarity Consulting)

The views expressed are those of the authors and do not necessarily reflect the official view of the Central Bank
of Hungary (Magyar Nemzeti Bank).

Rome, 18th October 2023

2 |

MOTIVATION, BACKGROUND, SUMMARY OF RESULTS

• MNB’s commitment to high data quality

• Machine learning is suitable for large data volumes

• The role of ML in data quality checks is not yet standardized

Background

Results

• Un-labelled supervised learning can uncover relationships within the data

• State-of-the-art modelling techniques (XGBoost, Bayesian optimization)

• We present a few recommendations to flag potential data errors

3 |

Unlabelled
supervised
methods we use

METHODS WE EMPLOY

Aggregated time series

Granular time series

Cross-sectional - granular

1

3

2

Residual plot in a model explaining a selected target variable

4 |

DATA

• First ranking mortgages with a start date after 1st Oct 2021

• Approx. 73 thousand lines

• 274 columns  69 columns (high correlations, missing value
share >= 20 percent)

MNB LTV report Missing values

LTV =
Loan amount

Allocated collateral value

Just a theory

Illustration

5 |

XGBOOST GROWS DECISION TREES IN A SEQUENTIAL MANNER

ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1
2

∑𝑖𝑖∈𝐼𝐼𝐿𝐿 𝑔𝑔𝑖𝑖
2

∑𝑖𝑖∈𝐼𝐼𝐿𝐿 ℎ𝑖𝑖 + 𝜆𝜆 +
∑𝑖𝑖∈𝐼𝐼𝑅𝑅 𝑔𝑔𝑖𝑖

2

∑𝑖𝑖∈𝐼𝐼𝑅𝑅 ℎ𝑖𝑖 + 𝜆𝜆 −
∑𝑖𝑖∈𝐼𝐼 𝑔𝑔𝑖𝑖 2

∑𝑖𝑖∈𝐼𝐼 ℎ𝑖𝑖 + 𝜆𝜆 − 𝛾𝛾.Loss reduction
calculation

Similarity scores based on:
• residual direction

• residual magnitude

1. Visit only non-missing entries
2. Determine the best split and default direction for missing value based on the Similarity

score above

Many hyperparameters to optimize

Sparsity-aware
split finding

6 |

BAYESIAN OPTIMIZATION TO FIND THE BEST HYPERPARAMETER CONFIGURATION

GP: model of the objective function behaviour
• Train and test points are jointly distributed as

multivariate normal

• Kernel encodes similarities between data points
(shape of the prior)

Condition on data

Infer posterior

How to determine new samples?
• Acquisition Function

• Exploration-explotation trade-off

7 |

. ..

MODELLING PIPELINE AND DESIGN QUESTIONS

Treatment of missing
values

Determining the
loss function

Interpreting the
results

Treatment of
rare values

Bayesian
optimization

We assume:

• If: explanatory column ‘B’, is not
independent from ‘A’

• and data error distorts an
explanatory variable ‘A’

• Then B takes over from A

Ways to deal with missing values:

• Estimator (missRanger)

• Constant (unusual dummy)

• Xgboost’s sparsity-aware split
finding

Question 1 Question 2 Question 3
Loss function choice:
• Mitigate the impact of existing

errors on finding the ground truth

8 |

SYNTHETIC ERRORS
INSPIRATION FROM EXISTING ERRORS

Location Description

Response variable Values divided by 100.

Response variable Values set to 80.

Response variable Values were multiplied by a random value, drawn for each observation from U(0.4, 0.6) and U(1.2,
1.4)

Predictor (2nd
most important) Values set to 10 mln HUF

Predictor (2nd
most important)

Values were multiplied by a random value, drawn for each observation from U(0.4, 0.6) and U(1.2,
1.4)

Errors in 5% of all observations, both in train and test sets

9 |

BASELINE MODEL PERFORMANCE
WITHOUT SYNTHETIC ERRORS

• RMSE = 5.6 percent, MAE = 3.2 percent
• the share of outliers is 1.4 percent only

(cutoff of standardized residuals of 3)
• The algorithm found intuitive errors (LTV

as a fraction between 0 and 1)

• missing values using a constant
• squared loss function
• no synthetic errors

The baseline model

Model performance

10 |

THE BASELINE MODEL – INDIVIDUAL FEATURE CONTRIBUTIONS (IFC)

IFC for Loan amount
+ a LOESS function

IFC for allocated collateral value
+ a LOESS function

LTV =
Loan amount

Allocated collateral value

11 |

METRICS TO ASSESS MODEL PERFORMANCE

Did we find every synthetic error? Am I any better off by looking at outliers
than going through the raw data?

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷. 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠. =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐴𝐴𝐴𝐴𝐴𝐴 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Formula

Rationale

Share of discovered errors Lift value

One metric is insufficient

12 |

HYPOTHESIS 1 (MISSING VALUE REPLACEMENT) AND
HYPOTHESIS 2 (LOSS FUNCTION)

Error type
80

Error type
div 100

Error type
random value multiplication

13 |

HYPOTHESIS 3 – ERROR IN ALLOCATED COLLATERAL VALUE

Error type
Missing value
replacement

Loss function
Outliers as % of

total
Share of discovered

errors
Lift

10 none Huber 3,5% 3,0% 0,87
10 estimator Huber 3,0% 2,1% 0,70
10 none rmse 1,5% 1,6% 1,05
10 constant Huber 2,3% 1,3% 0,57
10 constant rmse 1,3% 1,1% 0,83
10 estimator rmse 1,1% 0,9% 0,83
rv none rmse 2,0% 10,7% 5,41
rv estimator Huber 4,5% 7,9% 1,75
rv none Huber 2,5% 5,8% 2,31
rv constant Huber 3,0% 4,3% 1,43
rv constant rmse 1,5% 2,1% 1,41
rv estimator rmse 1,3% 1,9% 1,51

Vs. 70-80 % when
error in target

Vs. 10-12 when
error in target

14 |

ABOVE NINE EXPLANATORY FEATURES AND AN ERROR SHARE OF
AROUND 10 PERCENT EFFICIENCY STARTS TO DROP

• Loss function: RMSE
• Error type: div 100
• Missing value replacement: constant

15 |

WHY YOUR COLLEAGUES WILL NOT LOVE YOU
ML-BASED DATA QUALITY TESTS CREATE MORE WORK FOR OTHERS

Employee time

Data
quality

Traditional
investigations

ML

Processing

Analysis

Discussion with
data providers

Rules-based &
aggregate analysis

ML-based methods

Required human labour

Rules-based &
aggregate time-series

Granular data
analysis

Data quality explodes
but only if you work with it

x 3

x 0,6

x 3

Automation

New
discussions
with data
providers

16 |

SUMMARY

• A supervised learning algorithm to flag potential data errors

• The method successfully identifies synthetic errors

• It provides hints to their location

• We also analysed various steps during the preprocessing phase (missing
values and loss function) which may improve performance

Findings recap

• Our results helps the data providers

• The ’last mile problem’ is still there: error flags do not provide interpretation

• Our results help modellers: model predictions may be used instead of actual
values

Implications

17 |

Thank you for your attention!

	Paper
	Presentation
	ADP664F.tmp
	Error spotting with gradient boosting: a machine learning-based application for central bank data quality0F
	Csaba Burger, Magyar Nemzeti Bank,
	Mihály Berndt, Clarity Consulting

