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Siamese neural networks for detecting banknote
printing defects

K. Boria, A. Luciani, S. Marchetti and M. Viticoli '

Abstract

The production of banknotes is a complex process, composed of different printing
steps, in which various kinds of defects can be generated that, if not adequately
monitored, can lead to production waste, significantly impacting productivity and
costs. This paper proposes a new approach for identifying defects during
banknote production using one-shot learning methods. These methods rely on a
small number of observations in order to train a Siamese neural network to
reproduce the similarities between pairs of samples. The network can then identify
defects in new banknote images by comparing them to benchmark samples. The
proposed approach allows the correct identification of some specific defects on
banknotes, even with limited training data, laying the foundation for the
development of a solution for recognition and intelligent classification of defects
on banknotes.
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1. Introduction

Similar to other industries, banknote production relies on a comprehensive system
of quality controls. In the Eurosystem, such controls are conducted throughout
the entire production process (raw materials, semi-finished and finished
banknotes) in compliance with the relevant ISO standards and through rigorous
procedures defined by the European Central Bank (ECB) and harmonized among
the various printing works to ensure a high degree of homogeneity of euro
banknotes. With particular reference to quality checks on finished banknotes, the
number and type of printing defects acts as a key discriminating parameter for
the conformity of each production batch. Today, the assessment of defects is
carried out by operators through visual examination of the banknotes. Therefore,
although there is an articulated set of safeguards aimed at ensuring the
application of objective criteria, the experience and sensitivity of the workers play
a decisive role in the evaluation process, which could therefore be affected by
subjectivity factors.

In principle, automating quality control of industrial products helps make
processes more accurate and efficient. Artificial intelligence, and in particular
neural networks in deep learning, are useful in this scenario due to their ability to
represent and describe systems characterized by high complexity and variability.
At the printing stage, the evaluation and identification of potential defects by
neural networks enables a reduction in operational costs by devolving to quality
control specialists the detailed analysis of potential defects found and their
causes.

This paper reports on what has been observed as part of an exploratory study
on the use of neural networks for automated recognition and classification of a
particular type of banknote defects in the context of quality control. Section 2
provides an essential overview of the quality control process for detecting print
defects on banknotes. Section 3 outlines the main technical features of Siamese
neural networks - that is, the class of deep learning models used in the present
study - as well as the set of input images used for training and calibration. The
main aspects of model training and the results achieved using Siamese networks
are reported and discussed in Section 4. Finally, Section 5 outlines possible
directions for methodological and operational research and development.



2. Defects in banknote printing and production
variability

As part of the production process, strict quality controls are carried out on the
produced and semi-finished banknotes, in compliance with the European Central
Bank's (ECB) quality benchmark decisions and the requirements of the Integrated
Quality, Environment and Occupational Health and Safety Management System.

Together, these checks provide important information about potential
process criticalities and final product defects; this information can be profitably
used to intervene in the process itself to reduce production waste in the printing
process and even marginal defects in the finished product.

The verification of many parameters has already been automated through
the introduction of optical measuring systems. However, visual acceptance checks
on finished banknotes are still assigned to highly trained staff, who perform these
tasks manually on a representative sample of each production batch. Defects are
then identified and classified based on ECB documents and reference samples.
Classification is done by defect type and size, as well as by area of the surface
where different defects may be found. The final conformity assessment of the
production batch then depends on the number and classification of defects found
on the representative sample of the batch. This process is based on a set of rules
and comparison with reference samples, similar to what is performed
automatically by deep learning techniques.

For the experimentation described in this paper, a pilot application was
chosen for the detection of defects on the €50 banknotes of the Europa series?
currently in production at the Bank of Italy. In this first phase, the study focused
on a specific type of defect present on the European flag, the so-called bite defect,
which consists of a lack of ink on a homogeneous background, and can vary in
shape, size and position. The choice was determined by the relevance and number
of occurrences referring to this defect type in the production batches examined
at the time of experimentation.

The variability of the banknotes was another important factor of analysis that
had to be taken into account in the experimental phase. Since banknotes result
from different printing stages, they may exhibit appreciable differences between
them that reflect normal production variability and hence should not be
considered defects. In particular:

1. the position of elements on the banknote surface may vary within fixed
margins of tolerance;

2. the density and colour of inks can vary, resulting in different shades and
intensities;

3. the acquisition phase, either manual or automatic, can introduce additional
image variability.

2 The Europa series is the second series of Euro banknotes, introduced from 2013 to 2019.



In addition to product variability, it was also necessary to account for the
variability of defects to be identified and classified, differing in size, location and
colour intensity.

We initially proceeded with manual acquisition of high-resolution
(~2656x1467 pixels, 24-bit colour, RGB model) images of each banknote, with the
aim to minimize the probability of acquisition defects. In order to reach a sufficient
number of samples to be processed, we also considered images acquired
automatically during the production process, which had a lower resolution
(~675x388 pixels, 24-bit colour, RGB pattern). For both cases, the acquisition of
banknote images required operator intervention, although in the second case the
procedure was significantly faster. Manual acquisition, on the other hand, allowed
for a more careful selection of the defects to be acquired, representative of a
longer production time frame (several weeks) and greater production variability.
At present, the two different acquisition approaches are to be taken into account
when training the network for their effects on the availability, extent and variability
of the image sample.

3. Methodology

The proposed application focuses on the detection of bite-type printing defects
using Siamese neural networks. This section introduces the reader to the technical
aspects of the analysis conducted, which include: i) the type of data representation
of digital images, i.e., ordered sets of matrices called tensors; i) the convolutional
neural networks used for tensor processing, and the limitations of such models in
this specific application of banknote images elaboration; iii) the specialization of
deep learning, known as one-shot learning, and the related class of Siamese
neural networks.

3.1 Data

From a technical point of view, the images belong to the type of data in
"unstructured" format. For the purpose of statistical learning, each image is
mathematically represented by an ordered set of three matrices, or three-rank
tensor, which captures its relevant characteristics. Specifically, the so-called
pixels3, i.e. the elementary graphic components of each image, are mapped into
groups of elements of the matrices. Within a tensor, each element of a matrix
assigns a numerical value to its corresponding pixel; in the case of 24-bit colour,
values vary between 0 and 255 and indicate the intensity of the colour associated
with the matrix according to its placement in the sequence. In the case of the RGB
model, the first matrix represents the so-called Red colour channel (R), the second
matrix represents the Green colour channel (G), and the third represents the Blue

3 Pixels are minimal units of the surface area of a digital image.



colour channel (B)*. As an example, according to such a representation scheme, a
blue pixel in the image is obtained by setting to zero the related matrix values in
the R and G channels, while setting to 255 the matrix value in the R channel. In
the general case, given an image resolution of NxM pixels encoded via the RGB
model, the image will be numerically represented by a three-rank tensor
containing NxMx3 integers, each of which can as mentioned vary between 0 and
255.

3.2 Deep learning and convolutional neural networks

Advanced image processing generally makes use of artificial intelligence
techniques, particularly deep learning, for automatic recognition or classification
of objects represented in an image. Deep learning is a specialization of machine
learning, extending the process of learning a representation-rule mapping inputs
to outputs to sequences of representation-layers (Goodfellow, Bengio & Courville,
2016). The approach is based on the data-driven paradigm, according to which
the information necessary for the understanding of a given phenomenon. The
proper functioning of the related representation model® is learned from a set of
empirical data, called the training set. By design, training of complex machine
learning model requires the specification and formalization of a limited number
of assumptions about the phenomenon being analysed.

Neural networks are models for deep learning equipped with internal
processing components (layers) iteratively delivering a representation of inputs.
Within each layers, information processing is based on units called neurons. In
their simplest formalization, so-called "fully connected", layers are composed of
neurons that receive, process, and transmit all information coming from a
preceding layer to the next.

In a fully connected neural network, input observation y° € R™ is
sequentially mapped into projection y“'1 € R™+1, the projection of the input
observation produced by the I-th fully connected layer, with (=0....L, derived
through the recursive formula:

yl+1 — gl(wlyl + bl).

gl is a generic (possibly non linear) activation function that applies to the linear

transformation of the vector yl € R™. Parameters’ values, i.e. the elements from
matrix of weights w! € R™+1X™ and from vector of bias terms b! € R™+1,
are defined by the learning process, provided a random initialization, based on
the training set.

The training of a model is also subject to a "calibration” phase, to validate its
performance on an unseen set of observations and to establish optimal values of
the model's hyper-parameters, i.e. its architecture - defined by the type of layers

4 Another frequently used model is the so-called HSV, for which cell values vary between 0 and 360.
The first channel corresponds to the hue (Hue). The second channel identifies the degree of
saturation (Saturation). The third channel refers to the brightness of the colour (Colour Value).

> The proper functioning of the model is expressed by the value of an objective function, which
guides its training process.



that regulate transmission of information; the depth of the neural network, i.e,
the number of hidden layers; the number of neurons per layer and the activation
function - and features of the training optimization routine, including the learning
algorithm.

Image processing applications typically make use of neural networks
containing convolutional layers (Convolutional Neural Networks, CNNs)®. CNNs
are inspired by the biological mechanism of visual perception. They operate a
reduction in the complexity of the input data through targeted extraction of a
synthesis to make processing efficient. Technically, convolutional layers process
the information represented by a tensor according to a procedure based on
recursive filters that slide along surface dimensions, that is, throughout groups of
pixels adjacent to each other, or region. From each region, projections called filter
maps are extracted.

In order to ensure the stability of the information processing system,
convolutional layers alternate with pooling layers that synthesize and aggregate
the contribution of several adjacent regions into a filter map (Boureau et al., 2010).
Typically, pooling layers collect either the average value (average pooling) or the
maximum value (max pooling) of adjacent regions from each region. Pooling
usually results into a lower-dimension tensor whose elements will serve as input
for the next layer.

By construction, the recursive region-based nature of the detection scheme
entails replication of information from same pixel across multiple projections. As
a consequence, each filter map is sensitive to small shifts of an element within the
image area, and thus to small shifts of the pixels that contribute to define it. This
is particularly relevant in the use case considered, since banknotes are
characterized by an established organization of the elements represented on their
surface, although with tolerated variability given by their reciprocal positioning
and colour intensity. The use of CNN for classification in image processing can be
distinguished into approaches based i) on input segmentation and recognition of
different elements (object recognition) or ii) on labelling an input image (image
recognition). Object recognition can either involve image segmentation into
specific areas of the surface identified as potentially relevant, to be passed on to
ad hoc image recognition models for labeling individual features, or incorporate
the two phases within a single neural network (Redmon et al, 2016). CNNs for
recognizing different elements of an image are usually characterized by complex
architectures, which are associated with significant computational costs for the
training and application phases. The literature related to image classification has
over time produced CNNs characterized by high performance on large volumes
of data, partly due to the refined complexity of the architectures (Krizhevsky et al,
2017). In particular, the accuracy of the classification process is enabled by deep
neural networks organized according to hierarchical structures (Simonyan &
Zisserman, 2014; Szegedy et al, 2015 Yan et al, 2015) and granular
parameterization of layers, in which the size of recursive filters approximates the
single pixel (Zeiler & Fergus, 2014).

6 LeCun et al. (1989).



The training process of a CNN consists in the global optimization of the
model, through the progressive adaptation of its parameters’ value. To handle
high dimensionality of the input and the recursive nature of its processing, CNNs
used for image recognition are characterized by a significant number of
parameters to be estimated, and thus require large training sets to converge.
Since acquisition of a large number of training sample is especially costly in our
setup, sound training of CNNs represents a challenging task.

Flexibility of models characterized by complex architectures is known to
expose classification exercises to so-called overfitting. Overfitting consists in the
modeling of irreducible error in the training data, that penalizes the model's ability
to generalize the prediction performance. To mitigate this risk and enhance
convergence of the training process, while addressing the computational
complexity of processing, a number of steps can be taken. Our application, in
particular, makes use of: i) ad hoc methods for parameters initialization, assigning
initial values within optimal ranges (Dominguez, 2020), such as the so-called
Xavier method for defining the parameters of a uniform distribution (Glorot &
Bengio, 2010); ii) optimal calibration of the training algorithm, typically belonging
to the Stochastic Gradient Descent (SGD) category for CNNs (Qian, 1999;
Wijnhoven & De With, 2010); iii) input normalization (via batch normalization) to
smooth the values of the objective function and its gradient derivative (loffe &
Szegedy, 2015); iv) adoption of regularization tools such as dropout (Hinton et al,
2012), i.e, random switch-off of links between neurons during training, and
quadratic regularization of weights in convolutional layers (Yu et al, 2008); v) re-
initialization of the value of parameters when local optima are achieved, to
improve exploration of the solution space (Treadgold & Gedeon, 1996; Guo & L,
2006).

3.3 Convolutional neural networks for the study of banknotes

CNNs can improve banknote image analysis mainly due to two factors: the
flexibility of the models and their ability to process data of digital image without
resorting to intermediate tools to extract characteristic information, or features
(Lee et al, 2017).

In the literature addressing processing of banknote images, applications
typically make use of statistical-mathematical models and machine learning
techniques to recognize denomination (Grijalva et al, 2010; Sharma et al, 2012;
Garcia-Lamont et al, 2013), serial number (Feng et al, 2014; Liu et al, 2010;
Wenhong et al, 2010; Hasanuzzaman et al, 2011), currency (Manikandan &
Sumithra, 2015), wearing (Sun & Li, 2008; Daraee & Mozaffari, 2010; Mousavi et
al, 2015) or for the detection of counterfeit specimens (Darade et al,, 2016; Suresh
et al, 2016). Advanced analytical techniques are also employed for counting,
operational support to visually impaired individuals, and quality monitoring of
circulating banknotes among individuals, merchants and banks themselves.

Recent literature also highlights publications using CNNs for banknote
recognition (Jadhav et al, 2019; Zhang et al, 2019; Jang et al, 2020; Park et al,
2020; Veeramsetty et al, 2020) and counterfeit specimen detection (Kamble et al,
2019; Sawant et al,, 2022), achieving an overall increase in performance. In order
to overcome the challenges associated with the use of CNNs, such as the high



volume of observations requested for training, and the tendency of CNNs to
overfitting given the variability characteristics associated with banknotes, CNNs
have in some cases been developed according to adversarial learning approaches
for generating synthetic images (Ali et al, 2019; Desai et al., 2021; Khemiri et al,
2022) or transfer learning, i.e., approaches that make use of already trained models
and then operate their specialization, or fine-tuning, through a less intensive
training process (Laavanya & Vijayaraghavan, 2019; Linkon et al, 2020; Aseffa et
al, 2022).

Applications referring to banknote production can also be found in literature
(Ke et al, 2016; Pham et al, 2017). In particular, research by Ke and co-authors
focuses on the detection of bite-like defects - the same class of defects used in
this work - by developing a CNN. Architectural details of the network and
information on the training set, however, are not fully exposed by the authors.

The review of methodologies proposed in the literature for image processing
of banknotes through deep learning techniques underscored that, for the
purposes of our application, training a sufficiently deep CNN would have a
number of limitations, given by the aforementioned variability in the arrangement
of graphical elements, defects on the image surface, and the limited availability of
observations for training. To mitigate the relatively limited availability of
observations, a preliminary extension of the training set was considered, by
resorting to data augmentation solutions (Wang & Perez, 2017). Extensions
considered in such preliminary stage included altering existing images through
rotation, resampling, and transposition techniques, as well as generating synthetic
observations obtained by perturbing available images or training a support model
for image generation (Goodfellow et al, 2020).

3.4 One-shot learning and Siamese neural networks

Preliminary analysis suggested that data augmentation, in our case, is subject to
the trade-off between the instability of the training process due to limited
volumes of observations, and potential bias associated with synthetic data
augmentation. In particular, data augmentation tends to expose the neural
network to two types of issues. On one hand, additional images that over-
represent the occurrence of printing defects with certain characteristics make the
model exposed to overfitting those materialization of the defects only: this would
undermine the model's ability to detect bite defects exhibiting different
characteristics from those observed for training. On the other hand, the
generation of novel synthetic defects could introduce relevant forms of
algorithmic bias, in case these were unobservable in reality but relevant to steer
the model’s reasoning.

To curb such limitations, we resorted to CNN architectures following the one-
shot learning approach (Fei et al, 2006).

One-shot learning represents a specialization of statistical learning, aimed to
emulate the ability of the human mind to associate entities unknown to the
subject with known ones, based on similarity criteria. The approach thus aims to
reproduce the ability of natural intelligence to make visual comparisons based on
the knowledge of a ground truth conferred by experience. Given an image of a



generic entity - such as an object, a human face, or a landscape - and a range of
possible categories of membership, the assignment of the image to one of these
categories occurs from the simultaneous identification of points of commonality
and points of difference with representative images of each class.

In its most rigorous formulation, one-shot learning requires that the training
set consists of a number of prototypical observations equal to the number of
categories of interest. However, the literature generally refers to one-shot learning
in its more extended meaning’ referred to as k-shot, in which a (limited) number
of examples per class are considered, then differentiating it from zero-shot
learning (Palatucci et al, 2009) whereby no example image per class is available
during training?®.

For one-shot learning, we make use of so-called Siamese neural networks
(Koch et al, 2015). Siamese neural networks exhibit two parallel sub-architectures
(i.e., branches) identical to each other in terms of structure and parameter values
(such as in green in Figure 1). Each branch of a Siamese network processes the
respective element of the pair of observations that constitutes its input: a
"verification" observation, that needs potential attribution to a given class, and a
"support” observation, representing the class. The network maps the pair of
observations toward "signals", synthetic and separable representations of the
input. The intuition is as follows: two observations belonging to the same category
are projected by the parallel architectures onto signals that are similar to each
other; conversely, observations belonging to different categories will be
characterized by orthogonal signals. The verification and support signals,
respectively. Y597 ySi9S € R™ are combined and processed by a
"comparison" layer (Figure 1, in orange), which quantifies their similarity by the

!
representation yL € R™/, obtained from the transformation:
p . o . . .

yL — gSlm(WSLmSlm(ySlg'v,ySlg‘S) + bSlm)
where gSim and Sim are an activation function and a similarity function,
respectively, w5 € R™.' *™ is the matrix of weights and b5'™ € R™.’ is the
vector of bias terms. In the general case L' < (L + 1), that is an additional
sequence of representation layers could be attached from the comparison layer.
In the simplest case, considered by our application, L' =L+ 1, ie, the
representation obtained from the output of the comparison layer is definitely
the output of the Siamese network, such that, in our binary case study, n;» = 1

. !

and gs”" is the sigmoid function that projects yL+1 = yL in the interval [0,1].
In the training phase, let N be a pairs of images in the training set; each pair is
labeled as containing images - one as verification and one as support - belonging

to the same class (c; = 1) or to distinct classes (c; = 0). The values

7 One-shot learning should be distinguished from "one-shot transfer" which has to be intended as
a specialization of transfer learning.

8 In the literature, there are numerous examples of the application of neural networks based on
zero-shot learning, as well as in the area of natural language processing. Among the most
frequent applications are classification exercises under conditions of extreme class imbalance
(Ochal et al, 2021), as well as face recognition tasks, which are required to guarantee a certain
level of performance under conditions of high variability, for example in facial expression,
brightness or background.



y1L+1, ...,y,f,+1 produced by the Siamese network therefore correspond to the

probabilities that the N verification images belong to the same class as their
respective support images. Training the model thus consists of minimizing the
following loss function:

1

FPOM) = =5 D cilog(yF*) + (1 — clog (1 — y#*Y)
i=1,..,N

where ¢; takes as said value 1 when the verification and supporting observations

belong to the same class, 0 otherwise, and /! = Prob(c; = 1),i = 1, ..., N.

4. Siamese networks for bite-type defect detection

4.1 Model architecture and training

In the developing of a Siamese network for the detection of bite defects on the
European flag graphical element, we resorted to an essential architecture
consisting of a pair of twin networks as depicted in Figure 1. Each network is
characterized by three convolutional layers (Conv2D) followed by three collection
layers (MaxPooling2D), on which a sequence of fully connected layers (Dense) is
grafted for signal vectors generation. These are combined according to the
absolute distance metric and used to derive the output value yL+1,

corresponding to the probability that the pair belongs to the same category®.

9 Additional variants were considered during the experimental phase. For brevity and little

contribution in terms of relevance to the final considerations, the results are not reported.



Conceptual representation of the Siamese network architecture used in this work.
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To facilitate comparison between results, the architecture of the networks is
unchanged in the main blocks, while the number of processing units, i.e. nodes of
each layer, depends on the resolution considered. Specifically, after of the manual
acquisition of the banknotes high-resolution images (~2656x1467 pixels, 24-bit
color, RGB model), the following four sets of images were generated by re-
sampling, each of which was used in separate sessions for training and testing of
the Siamese network in order to compare the performance obtained in the four
cases:

—  Whole HR: whole banknote, high resolution (896x528 pixels);
—  Whole MR: whole banknote, medium resolution (448x264 pixels);
—  Whole LR: whole banknote, low resolution (299x176 pixels);

- Flag: cropping of the banknote's flag™ in high resolution (224x352 pixels).

The training of the Siamese networks is done as mentioned through the
Stochastic Gradient Descent (SGD) algorithm, starting from a set of parameters
initialized according to the Xavier method. In order to promote optimal
convergence of the process, batch normalization and dropout are also used, as
well as re-initialization of the value of the parameters when a local optimum is
reached, or the training set is overfitted (Figure 2). Hyper-parameters such as
Leaky Relu activation functions (Maas et al,, 2013) are also defined using a set of
calibration images excluded from the training process.

© SeeJang et al. (2020).



Siamese neural network training process representation for the four different
input resolution considered: Whole HR, Whole MR, Whole LR and Flag. The
green (blue) curves represent the value of the loss function during the iterations
of the SGD optimization routine in the training (validation) set images. The
dashed lines indicate the re-initialization of the training process, corresponding

to a local optimum convergence. Figure
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The high performance of machine learning algorithms often has to contend
with reduced interpretability of the learned internal mechanisms, as well as of the
explainability of the underlying logic. Useful techniques to support the
understanding, and thus the control of the proper logic of a complex analytical
model, pertain to the field of so-called eXplainable Artificial Intelligence (Molnar,
2020). In the case of Siamese networks, the graphical representation of signals
allows visual comparison between the synthesis of the supporting and verification
images for a qualitative assessment of the similarity of the vectors extracted from
each twin network. However, the logic underlying the signal extraction process is
concealed by the large number of parameters used for recursive projection of the
information content of the input images, consistent with the poor interpretability
of deep learning models (Zhang et al, 2019).

Unlike other types of neural networks, in CNNs the transmission of input
images from one convolutional layer to another allows intermediate tensors to be
extracted, which can in turn be represented as images, called attention masks. In
the literature, the use of attention masks is typically used during model training,
and is aimed at exogenous control of the process by the analyst (Xu et al, 2015).
Intuitively, the weight tensor of the I-th convolutional layer w' is combined

13



element by element with an arbitrary mask a to emphasize or not emphasize
specific areas of the image, and transformed as seen above according to the
activation function gl. The resulting tensor, wl'a, is thus characterized by
elements such that higher values will correspond to greater network attention to
a particular area of the image and vice versa.

For the purposes of our application, attention mechanisms are divided into
hard and soft. Hard attention actually corresponds to random or deterministic
exclusion of part of the surface (cropping). In this case a takes binary values: 0 or
1. Hard attention mechanisms can be used to exogenously direct the learning
process or to maximize the exploration of the tensor surface and define optimal
attention trajectories by the model (Ba et al, 2014). In its simplest form, soft
attention instead resorts to an activation function that compresses the values of
the weights into a given range (Xu et al, 2015), such as in the range [0,1] in the
case of the softmax function. Built-in soft attention mechanisms are used to
ensure overall control of the learning process’ (Gregor et al, 2015; Kosiorek et al,
2017).

This application considers an alternative use of soft attention masks
according to a simplified approach geared toward model explicability. Attention
masks are locally activated, after the training, to extract partial images along the
twin CNNs, representing the logic adopted by the model along the processing
steps. Specifically, for each convolutional layer the corresponding weight tensor
is projected into the unit interval [0,1] according to the softmax activation
function, which highlights the relative weight of each element. The weights thus
transformed are then combined with the input of the convolutional layer. This
corresponds to superimposing a soft attention mask on the banknote image. The
intuition is as follows: the I-th layer uses weights whose relative values in the
softmask are close to 1 at regions considered relevant for signal extraction, and
close to 0 vice versa (see Figure 4).

4.2 Results

Having completed the learning phase, the Siamese network classifies each new
image using the support image sets whose membership in one of the two
categories of bite and no-bite is known by construction. Assignment of a new
image to one of the two classes is then made from a comparison of the image
and the two support sets.

The selection of the support images to be used for comparison is a critical
step in the use of Siamese networks because classification is done from pairs of
observations. The choice on the method for the support image selection certainly
has an impact on the overall performance of the network; to analyze this impact,
a hold-out image set, i.e, a portion of the images in the verification set, was
selected, and initially separated from the training set, and finally used for the sole

" Specifically, at a given output, such as the classification of an element on the image surface, the

model is asked to identify the reference region by operating a bias in the value of the
corresponding parameters.



evaluation of the support image selection method to ensure the quality of the
analysis. The following approaches are then considered:

1. RND-1: Each verification image is compared with one randomly selected
support image per class;

2. SSIM-0: Each verification image is compared with a specific single support
image per class: the support selected image is the one with the maximum
similarity with the verification image among those available in that particular class,
according to the Structure Similarity Index Measure (SSIM)"?;

3. SSIM-1: Each verification image is compared with the second most similar of
the available support images candidates for each class. In the SSIM-1 approach,
the exclusion of the most similar support image is intended to reduce the impact
of not pertinent but similar features that might be misleading for the classification
exercise;

4. SSIM-k: Each verification image is compared with k suppor images per class,
selected according to similarity (k=10 in the following analysis).

Table 1 shows the results obtained using the four different resolutions
described above, and using the four different selection methods for the support
images. The test set contains 46 images, including 14 with bite defect of different
severity'3. The performance on the test set is measured from the Recall rate™, i.e.,
the rate of images with correctly classified bite defect, and the F1-score, the
harmonic mean of the Recall and Precision score, defined as the rate of banknotes
correctly classified as not defective. In our application, false positives, i.e., images
of banknotes incorrectly identified as defective, and defect under-reporting, or
false negatives, are considered equally costly.

SSIM is a widely used measure for image comparison and image quality assessment, introduced
by Wang et al. (2004). It is derived from the composition of three comparison runs related to
image brightness, contrast and texture.

The classification is based on the documentation provided by the European Central Bank.

Given the number of banknotes classified as defective by the network (all positives), Recall is
defined by the proportion of banknotes correctly classified (true positives): Recall = (true
positives)/(all positives).
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Results for the binary image classification exercise in the test set, for the high

(HR), medium (MR) and low (LR) resolution whole banknote cases, and for
the European flag crop case. Performance below the threshold value 0.5 is
indicated by "-".

Table 1

Recall F1-Score

- ) \-1 ~ ~ ) \-1 ~

1 1 1 1 1 1 1 1

a = = = = = = =

= - - - - - - -

o wv wv wv wv wv wv wv

wv wv wv wv wv wv wv

Whole HR - .75 .62 - - .67 .55 -
Whole MR 1 87 87 5 .84 82 93 67

Whole LR - .62 .62 - - .55 .62 -

Flag - - .5 .98 - - - -

We observe that, for the verification set considered, the use of the medium-
resolution whole image (Whole MR) allows for greater accuracy in classifying
observations into bite and no-bite. In particular, the SSIM-1 selection method
appears to perform better in assigning the banknote to the correct category.

Siamese networks are characterized by their ability to identify critical features
during the projection of the input into the signal, thus the assignment of the
verification image to its correct class, under conditions of high variability. When
this variability is quite excessive, as in the case of high resolution images (Whole
HR) the granularity in terms of pixels becomes misleading to separate signals
obtained from the verification and the support images. This can also be seen from
the visual inspection of the signals extracted from the Siamese network, shown in
the top left panel of Figure 3, where it can be seen that signals are more similar
to each other when compared with the medium-resolution case (top right).
Similarly, by excessively reducing the image resolution, the absolute size of the
bite defect, the relative size of the field corresponding to the flag, and the overall
variability turn out to be attenuated to a point that the Siamese network cannot
learn a reliable criterion for their recognition (bottom left). In the case of cropped
images containing the flag element only, the combination of the reduction in
overall (second-level) variability and the increased relative weight of the region of
pixels corresponding to the defect, which is characterized by high (first-level)
variability, make a one-shot learning approach inappropriate. Indeed, the



performance measured in quantitative terms, and the graphical inspection of the
obtained signals (bottom right) reflect this inadequacy.

Comparison of signals for verification and support images. The images show the

signals obtained for pairs of images of type Whole HR, Whole MR, Whole LR, and

Flag. Support images were selected using the SSIM-1 method. For each box, the
verification signal is obtained from an image with a bite defect, to be compared

with the bite and no-bite type support images, respectively. Figure 3

Supp. Bite Verific.

Supp. No Bite

Verific.

Supp. Bite

Supp. No Bite

WHOLE HR WHOLE MR

Verific

Supp. Bite

Supp. No Bite

LI

WHOLE LR FLAG

Verific
—————.
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[ —

Supp. No Bite
S|

Figure 4 illustrates an example of the attention mechanism operated by the
convolutional components of a Siamese networks, obtained for the same bite
defect image, and in the four cases Whole HR, MR, LR, and Flag crop. In the
different images, brighter shades correspond to a greater attention, or
concentration, conferred by the neural network in the three convolutional layers
inside the CNN. It can be seen that, in the absence of indications given to the
network during its construction, both the architecture for the analysis of high-
resolution images and that for medium-resolution images are able to
independently identify the area of the critical surface for our purposes of bite
defect detection, and subsequent assignment to one class or the other. This
virtuous process does not seem to be triggered, except approximately, in the case
of the Siamese network calibrated from the low-resolution training set. Similarly,
the same behaviour is produced in the cropped flag case: the Siamese network
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seems to "focus" on the entire image area, thus making the process of
synthesizing the input information overly susceptible to minor variations.

Graphical representation of the attention mechanism operated by the three
blocks of the convolutional component of the Siamese networks for a training
image with bite defect, in the formats Whole HR, Whole MR, Whole LR, and Flag. Figure 4

5. Conclusions and possible extensions

This paper reports the main results obtained from the exploratory study on the
use of neural networks for the autonomous recognition and classification of
banknote defects in the context of quality control. The complexity of the problem,
mainly due to the high degree of natural product variability and the variability of
defect types and locations, imposed a very stringent approach in the selection of
experimental scenarios. We restricted the analysis to a specific type of defects



(bites), located on a predetermined portion (Flag) of a single denomination of
banknotes (€50 of the second series).

The results support the relevance of these tools for identifying print defects.
In particular, the case of medium-resolution whole banknote (Whole MR) allows
balancing the needs related to image acquisition, computational efficiency, and
quality of model performance. Further work needs to be carried out in order to
attest their actual potential as an alternative, or cooperative, use along with
current  non-automated qualitative  techniques.  Further study and
experimentation activities must extend the analysis to categories of defects other
than bite, making use of useful techniques to adapt a previously trained model to
a new task (so-called transfer learning), while maintaining a binary classification
output. Finally, the implementation of a system for the classification of multiple
print defects could make use of so-called ensemble learning techniques to
combine and aggregate the results produced by a multi-network architecture.

However, any extensions considered would be circumscribed by an a-priori
choice that keeps their domain of analysis and research within one-shot learning
algorithms, and specifically using Siamese networks. This choice is also suggested
by the literature produced by the scientific community for problems variously
related to what is presented in these pages.
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Introduction

@ Banknote production in the Eurosystem relies on strict
quality controls throughout the process (ECB quality
requirements, ISO standards);

@ Similar to any manufacturing process, the printing of
banknotes can give rise to various imperfections and
defects;

e The number, type, and size of defects on banknotes are
critical for the conformity of production batches (with
related losses).



Introduction

@ Banknotes exhibit variability in the position of
elements, and in the shade and intensity of colors;

e While measurement of many parameters is carried out
via automatic optical systems, the validation process
cannot be fully automatized and requires highly
trained staff (potential subjectivity factors);

o Artificial Intelligence (Al) systems are profitably used
across industries to support and automatize quality
control;

@ Our work focuses on a denomination/defect pair to
assess whether neural networks could improve process
efficiency.



Data

@ Since acquisition of high-resolution images is costly:
e Focus on € 50 banknotes of the Europa series;
e Focus on flag-bite defects: lack of ink on a homogenous
background, with varying shape, size, and position.
@ We manually acquire 24-bit color images (RGB model)
of banknotes with 2,656 x 1,467 pixels resolution and
annotate them as fit/unfit.

N




Neural Networks & Image Processing

@ Previous research on banknotes
analysis mostly resorts to
convolutional neural networks
(CNNs);

@ Applications address recognition of
denomination, serial number,
currency, state of wear as well as
counterfeit detection. On the
production phase, we mention Pham
et al., 2017; Ke et al., 2016.

@ The inherent variability of banknotes
requires training of complex CNN
architectures, usually addressed via
data augmentation.




One-shot learning & Siamese Networks

@ The traditional way: data
augmentation

e Manual: Overfitting of specific bite
defects;

o Al-enabled: Hallucination-prone
behavior;

@ The practical way: one-shot learning
(Fei et al., 2006)

o Emulates the ability of the human
mind to associate entities based on
similarity criteria.
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Model development & Training

@ We build a Siamese neural network architecture (Koch
et al., 2015) for the bite-detection task:

o Each twin branch extracts a signal from its input, either
a verification or a support image;

e The more similar the signals, the most likely images
belong to the same class.
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Model development & Training

We train our models on different resolutions of the input
set: high, medium and low resolution + cropped flag
detail:

e Training set: N =200 images (100 bites, 100 fit;
C(N,2) training pairs);
@ We ensure convergence of the training process to global

minima via drop-out, batch normalization, random
re-initialization of weights;

@ We control internal logics of networks via soft masks
extracted from convolutional layers.



Empirical Results
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Empirical Results
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WHOLE MR 1 .87 .87 -3 .84 .B2 .93 .67
WHOLELR = .62 .62 -55 .62
FLAG - - -5 .98

Test set size: 46 images (14 bites; 32 fit);

RND-1: Support image is picked at random;

SSIM-j, j=0,1: the (j+1)th most similar image is picked as support;
SSIM-k: the k most similar images are picked as support, with k=10.



Empirical Results




Conclusions & Next Steps

@ Our exploratory study provides insights on the
detection of banknote defects for quality control via
one-shot learning;

@ We find medium resolution input allows for greater
accuracy based on different metrics and evaluation
criteria;

e Trade-off between resolution and attention scattering
due to variability patterns of banknotes;

@ We are able to gain insights on the internal logics
adopted by the models via soft masks;

e Future work will extend the analysis to additional
defects (minor bite type defects already tested) and
denominations, and to additional model architectures.
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