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Abstract 

The production of banknotes is a complex process, composed of different printing 
steps, in which various kinds of defects can be generated that, if not adequately 
monitored, can lead to production waste, significantly impacting productivity and 
costs. This paper proposes a new approach for identifying defects during 
banknote production using one-shot learning methods. These methods rely on a 
small number of observations in order to train a Siamese neural network to 
reproduce the similarities between pairs of samples. The network can then identify 
defects in new banknote images by comparing them to benchmark samples. The 
proposed approach allows the correct identification of some specific defects on 
banknotes, even with limited training data, laying the foundation for the 
development of a solution for recognition and intelligent classification of defects 
on banknotes. 
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1. Introduction  

Similar to other industries, banknote production relies on a comprehensive system 
of quality controls. In the Eurosystem, such controls are conducted throughout 
the entire production process (raw materials, semi-finished and finished 
banknotes) in compliance with the relevant ISO standards and through rigorous 
procedures defined by the European Central Bank (ECB) and harmonized among 
the various printing works to ensure a high degree of homogeneity of euro 
banknotes. With particular reference to quality checks on finished banknotes, the 
number and type of printing defects acts as a key discriminating parameter for 
the conformity of each production batch. Today, the assessment of defects is 
carried out by operators through visual examination of the banknotes. Therefore, 
although there is an articulated set of safeguards aimed at ensuring the 
application of objective criteria, the experience and sensitivity of the workers play 
a decisive role in the evaluation process, which could therefore be affected by 
subjectivity factors. 

In principle, automating quality control of industrial products helps make 
processes more accurate and efficient. Artificial intelligence, and in particular 
neural networks in deep learning, are useful in this scenario due to their ability to 
represent and describe systems characterized by high complexity and variability. 
At the printing stage, the evaluation and identification of potential defects by 
neural networks enables a reduction in operational costs by devolving to quality 
control specialists the detailed analysis of potential defects found and their 
causes. 

This paper reports on what has been observed as part of an exploratory study 
on the use of neural networks for automated recognition and classification of a 
particular type of banknote defects in the context of quality control. Section 2 
provides an essential overview of the quality control process for detecting print 
defects on banknotes. Section 3 outlines the main technical features of Siamese 
neural networks - that is, the class of deep learning models used in the present 
study - as well as the set of input images used for training and calibration. The 
main aspects of model training and the results achieved using Siamese networks 
are reported and discussed in Section 4. Finally, Section 5 outlines possible 
directions for methodological and operational research and development. 
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2. Defects in banknote printing and production 
variability 

As part of the production process, strict quality controls are carried out on the 
produced and semi-finished banknotes, in compliance with the European Central 
Bank's (ECB) quality benchmark decisions and the requirements of the Integrated 
Quality, Environment and Occupational Health and Safety Management System. 

Together, these checks provide important information about potential 
process criticalities and final product defects; this information can be profitably 
used to intervene in the process itself to reduce production waste in the printing 
process and even marginal defects in the finished product.  

The verification of many parameters has already been automated through 
the introduction of optical measuring systems. However, visual acceptance checks 
on finished banknotes are still assigned to highly trained staff, who perform these 
tasks manually on a representative sample of each production batch. Defects are 
then identified and classified based on ECB documents and reference samples. 
Classification is done by defect type and size, as well as by area of the surface 
where different defects may be found. The final conformity assessment of the 
production batch then depends on the number and classification of defects found 
on the representative sample of the batch. This process is based on a set of rules 
and comparison with reference samples, similar to what is performed 
automatically by deep learning techniques. 

For the experimentation described in this paper, a pilot application was 
chosen for the detection of defects on the €50 banknotes of the Europa series2 
currently in production at the Bank of Italy. In this first phase, the study focused 
on a specific type of defect present on the European flag, the so-called bite defect, 
which consists of a lack of ink on a homogeneous background, and can vary in 
shape, size and position. The choice was determined by the relevance and number 
of occurrences referring to this defect type in the production batches examined 
at the time of experimentation. 

The variability of the banknotes was another important factor of analysis that 
had to be taken into account in the experimental phase. Since banknotes result 
from different printing stages, they may exhibit appreciable differences between 
them that reflect normal production variability and hence should not be 
considered defects. In particular: 

1. the position of elements on the banknote surface may vary within fixed 
margins of tolerance; 

2. the density and colour of inks can vary, resulting in different shades and 
intensities; 

3. the acquisition phase, either manual or automatic, can introduce additional 
image variability. 

 
2  The Europa series is the second series of Euro banknotes, introduced from 2013 to 2019. 
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In addition to product variability, it was also necessary to account for the 
variability of defects to be identified and classified, differing in size, location and 
colour intensity. 

We initially proceeded with manual acquisition of high-resolution 
(~2656x1467 pixels, 24-bit colour, RGB model) images of each banknote, with the 
aim to minimize the probability of acquisition defects. In order to reach a sufficient 
number of samples to be processed, we also considered images acquired 
automatically during the production process, which had a lower resolution 
(~675x388 pixels, 24-bit colour, RGB pattern). For both cases, the acquisition of 
banknote images required operator intervention, although in the second case the 
procedure was significantly faster. Manual acquisition, on the other hand, allowed 
for a more careful selection of the defects to be acquired, representative of a 
longer production time frame (several weeks) and greater production variability. 
At present, the two different acquisition approaches are to be taken into account 
when training the network for their effects on the availability, extent and variability 
of the image sample. 

3. Methodology 

The proposed application focuses on the detection of bite-type printing defects 
using Siamese neural networks. This section introduces the reader to the technical 
aspects of the analysis conducted, which include: i) the type of data representation 
of digital images, i.e., ordered sets of matrices called tensors; ii) the convolutional 
neural networks used for tensor processing, and the limitations of such models in 
this specific application of banknote images elaboration; iii) the specialization of 
deep learning, known as one-shot learning, and the related class of Siamese 
neural networks. 

3.1 Data 

From a technical point of view, the images belong to the type of data in 
"unstructured" format. For the purpose of statistical learning, each image is 
mathematically represented by an ordered set of three matrices, or three-rank 
tensor, which captures its relevant characteristics. Specifically, the so-called 
pixels3, i.e. the elementary graphic components of each image, are mapped into 
groups of elements of the matrices. Within a tensor, each element of a matrix 
assigns a numerical value to its corresponding pixel; in the case of 24-bit colour, 
values vary between 0 and 255 and indicate the intensity of the colour associated 
with the matrix according to its placement in the sequence. In the case of the RGB 
model, the first matrix represents the so-called Red colour channel (R), the second 
matrix represents the Green colour channel (G), and the third represents the Blue 

 
3  Pixels are minimal units of the surface area of a digital image. 
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colour channel (B)4. As an example, according to such a representation scheme, a 
blue pixel in the image is obtained by setting to zero the related matrix values in 
the R and G channels, while setting to 255 the matrix value in the R channel. In 
the general case, given an image resolution of NxM pixels encoded via the RGB 
model, the image will be numerically represented by a three-rank tensor 
containing NxMx3 integers, each of which can as mentioned vary between 0 and 
255. 

3.2 Deep learning and convolutional neural networks 

Advanced image processing generally makes use of artificial intelligence 
techniques, particularly deep learning, for automatic recognition or classification 
of objects represented in an image. Deep learning is a specialization of machine 
learning, extending the process of learning a representation-rule mapping inputs 
to outputs to sequences of representation-layers (Goodfellow, Bengio & Courville, 
2016). The approach is based on the data-driven paradigm, according to which 
the information necessary for the understanding of a given phenomenon. The 
proper functioning of the related representation model5 is learned from a set of 
empirical data, called the training set. By design, training of complex machine 
learning model requires the specification and formalization of a limited number 
of assumptions about the phenomenon being analysed. 

Neural networks are models for deep learning equipped with internal 
processing components (layers) iteratively delivering a representation of inputs. 
Within each layers, information processing is based on units called neurons. In 
their simplest formalization, so-called "fully connected", layers are composed of 
neurons that receive, process, and transmit all information coming from a 
preceding layer to the next. 

In a fully connected neural network, input observation 𝒚𝒚0 ∈ ℝ𝑛𝑛0 is 
sequentially mapped into projection  𝒚𝒚𝑙𝑙+1 ∈ ℝ𝑛𝑛𝑙𝑙+1 , the projection of the input 
observation produced by the l-th fully connected layer, with l=0,...,L, derived 
through the recursive formula: 

𝒚𝒚𝑙𝑙+1 = 𝑔𝑔𝑙𝑙(𝒘𝒘𝑙𝑙𝒚𝒚𝑙𝑙 + 𝒃𝒃𝑙𝑙). 
𝑔𝑔𝑙𝑙 is a generic (possibly non linear) activation function that applies to the linear 
transformation of the vector 𝒚𝒚𝑙𝑙 ∈ ℝ𝑛𝑛𝑙𝑙 . Parameters’ values, i.e. the elements from 
matrix of weights 𝒘𝒘𝑙𝑙 ∈ ℝ𝑛𝑛𝑙𝑙+1 × 𝑛𝑛𝑙𝑙   and from vector of bias terms 𝒃𝒃𝑙𝑙 ∈ ℝ𝑛𝑛𝑙𝑙+1 , 
are defined by the learning process, provided a random initialization, based on 
the training set. 

The training of a model is also subject to a "calibration" phase, to validate its 
performance on an unseen set of observations and to establish optimal values of 
the model's hyper-parameters, i.e. its architecture - defined by the type of layers 

 
4  Another frequently used model is the so-called HSV, for which cell values vary between 0 and 360. 

The first channel corresponds to the hue (Hue). The second channel identifies the degree of 
saturation (Saturation). The third channel refers to the brightness of the colour (Colour Value). 

5  The proper functioning of the model is expressed by the value of an objective function, which 
guides its training process. 
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that regulate transmission of information; the depth of the neural network, i.e., 
the number of hidden layers; the number of neurons per layer and the activation 
function - and features of the training optimization routine, including the learning 
algorithm. 

Image processing applications typically make use of neural networks 
containing convolutional layers (Convolutional Neural Networks, CNNs)6. CNNs 
are inspired by the biological mechanism of visual perception. They operate a 
reduction in the complexity of the input data through targeted extraction of a 
synthesis to make processing efficient. Technically, convolutional layers process 
the information represented by a tensor according to a procedure based on 
recursive filters that slide along surface dimensions, that is, throughout groups of 
pixels adjacent to each other, or region. From each region, projections called filter 
maps are extracted. 

In order to ensure the stability of the information processing system, 
convolutional layers alternate with pooling layers that synthesize and aggregate 
the contribution of several adjacent regions into a filter map (Boureau et al., 2010). 
Typically, pooling layers collect either the average value (average pooling) or the 
maximum value (max pooling) of adjacent regions from each region. Pooling 
usually results into a lower-dimension tensor whose elements will serve as input 
for the next layer. 

By construction, the recursive region-based nature of the detection scheme 
entails replication of information from same pixel across multiple projections. As 
a consequence, each filter map is sensitive to small shifts of an element within the 
image area, and thus to small shifts of the pixels that contribute to define it. This 
is particularly relevant in the use case considered, since banknotes are 
characterized by an established organization of the elements represented on their 
surface, although with tolerated variability given by their reciprocal positioning 
and colour intensity. The use of CNN for classification in image processing can be 
distinguished into approaches based i) on input segmentation and recognition of 
different elements (object recognition) or ii) on labelling an input image (image 
recognition). Object recognition can either involve image segmentation into 
specific areas of the surface identified as potentially relevant, to be passed on to 
ad hoc image recognition models for labeling individual features, or incorporate 
the two phases within a single neural network (Redmon et al., 2016). CNNs for 
recognizing different elements of an image are usually characterized by complex 
architectures, which are associated with significant computational costs for the 
training and application phases. The literature related to image classification has 
over time produced CNNs characterized by high performance on large volumes 
of data, partly due to the refined complexity of the architectures (Krizhevsky et al., 
2017). In particular, the accuracy of the classification process is enabled by deep 
neural networks organized according to hierarchical structures (Simonyan & 
Zisserman, 2014; Szegedy et al., 2015; Yan et al., 2015) and granular 
parameterization of layers, in which the size of recursive filters approximates the 
single pixel (Zeiler & Fergus, 2014). 

 
6  LeCun et al. (1989). 
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The training process of a CNN consists in the global optimization of the 
model, through the progressive adaptation of its parameters’ value. To handle 
high dimensionality of the input and the recursive nature of its processing, CNNs 
used for image recognition are characterized by a significant number of 
parameters to be estimated, and thus require large training sets to converge. 
Since acquisition of a large number of training sample is especially costly in our 
setup, sound training of CNNs represents a challenging task. 

Flexibility of models characterized by complex architectures is known to 
expose classification exercises to so-called overfitting. Overfitting consists in the 
modeling of irreducible error in the training data, that penalizes the model's ability 
to generalize the prediction performance. To mitigate this risk and enhance 
convergence of the training process, while addressing the computational 
complexity of processing, a number of steps can be taken. Our application, in 
particular, makes use of: i) ad hoc methods for parameters initialization, assigning 
initial values within optimal ranges (Domínguez, 2020), such as the so-called 
Xavier method for defining the parameters of a uniform distribution (Glorot & 
Bengio, 2010); ii) optimal calibration of the training algorithm, typically belonging 
to the Stochastic Gradient Descent (SGD) category for CNNs (Qian, 1999; 
Wijnhoven & De With, 2010); iii) input normalization (via batch normalization) to 
smooth the values of the objective function and its gradient derivative (Ioffe & 
Szegedy, 2015); iv) adoption of regularization tools such as dropout (Hinton et al., 
2012), i.e., random switch-off of links between neurons during training, and 
quadratic regularization of weights in convolutional layers (Yu et al., 2008); v) re-
initialization of the value of parameters when local optima are achieved, to 
improve exploration of the solution space (Treadgold & Gedeon, 1996; Guo & Li, 
2006). 

3.3 Convolutional neural networks for the study of banknotes 

CNNs can improve banknote image analysis mainly due to two factors: the 
flexibility of the models and their ability to process data of digital image without 
resorting to intermediate tools to extract characteristic information, or features 
(Lee et al., 2017). 

In the literature addressing processing of banknote images, applications 
typically make use of statistical-mathematical models and machine learning 
techniques to recognize denomination (Grijalva et al., 2010; Sharma et al., 2012; 
García-Lamont et al., 2013), serial number (Feng et al, 2014; Liu et al., 2010; 
Wenhong et al., 2010; Hasanuzzaman et al., 2011), currency (Manikandan & 
Sumithra, 2015), wearing (Sun & Li, 2008; Daraee & Mozaffari, 2010; Mousavi et 
al., 2015) or for the detection of counterfeit specimens (Darade et al., 2016; Suresh 
et al., 2016). Advanced analytical techniques are also employed for counting, 
operational support to visually impaired individuals, and quality monitoring of 
circulating banknotes among individuals, merchants and banks themselves. 

Recent literature also highlights publications using CNNs for banknote 
recognition (Jadhav et al., 2019; Zhang et al., 2019; Jang et al., 2020; Park et al., 
2020; Veeramsetty et al., 2020) and counterfeit specimen detection (Kamble et al., 
2019; Sawant et al., 2022), achieving an overall increase in performance. In order 
to overcome the challenges associated with the use of CNNs, such as the high 
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volume of observations requested for training, and the tendency of CNNs to 
overfitting given the variability characteristics associated with banknotes, CNNs 
have in some cases been developed according to adversarial learning approaches 
for generating synthetic images (Ali et al, 2019; Desai et al., 2021; Khemiri et al., 
2022) or transfer learning, i.e., approaches that make use of already trained models 
and then operate their specialization, or fine-tuning, through a less intensive 
training process (Laavanya & Vijayaraghavan, 2019; Linkon et al., 2020; Aseffa et 
al., 2022). 

Applications referring to banknote production can also be found in literature 
(Ke et al., 2016; Pham et al., 2017). In particular, research by Ke and co-authors 
focuses on the detection of bite-like defects - the same class of defects used in 
this work - by developing a CNN. Architectural details of the network and 
information on the training set, however, are not fully exposed by the authors. 

The review of methodologies proposed in the literature for image processing 
of banknotes through deep learning techniques underscored that, for the 
purposes of our application, training a sufficiently deep CNN would have a 
number of limitations, given by the aforementioned variability in the arrangement 
of graphical elements, defects on the image surface, and the limited availability of 
observations for training. To mitigate the relatively limited availability of 
observations, a preliminary extension of the training set was considered, by 
resorting to data augmentation solutions (Wang & Perez, 2017). Extensions 
considered in such preliminary stage included altering existing images through 
rotation, resampling, and transposition techniques, as well as generating synthetic 
observations obtained by perturbing available images or training a support model 
for image generation (Goodfellow et al., 2020). 

3.4 One-shot learning and Siamese neural networks 

Preliminary analysis suggested that data augmentation, in our case, is subject to 
the trade-off between the instability of the training process due to limited 
volumes of observations, and potential bias associated with synthetic data 
augmentation. In particular, data augmentation tends to expose the neural 
network to two types of issues. On one hand, additional images that over-
represent the occurrence of printing defects with certain characteristics make the 
model exposed to overfitting those materialization of the defects only: this would 
undermine the model’s ability to detect bite defects exhibiting different 
characteristics from those observed for training. On the other hand, the 
generation of novel synthetic defects could introduce relevant forms of 
algorithmic bias, in case these were unobservable in reality but relevant to steer 
the model’s reasoning. 

To curb such limitations, we resorted to CNN architectures following the one-
shot learning approach (Fei et al., 2006). 

One-shot learning represents a specialization of statistical learning, aimed to 
emulate the ability of the human mind to associate entities unknown to the 
subject with known ones, based on similarity criteria. The approach thus aims to 
reproduce the ability of natural intelligence to make visual comparisons based on 
the knowledge of a ground truth conferred by experience. Given an image of a 
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generic entity - such as an object, a human face, or a landscape - and a range of 
possible categories of membership, the assignment of the image to one of these 
categories occurs from the simultaneous identification of points of commonality 
and points of difference with representative images of each class. 

In its most rigorous formulation, one-shot learning requires that the training 
set consists of a number of prototypical observations equal to the number of 
categories of interest. However, the literature generally refers to one-shot learning 
in its more extended meaning7 referred to as k-shot, in which a (limited) number 
of examples per class are considered, then differentiating it from zero-shot 
learning (Palatucci et al., 2009) whereby no example image per class is available 
during training8. 

For one-shot learning, we make use of so-called Siamese neural networks 
(Koch et al., 2015). Siamese neural networks exhibit two parallel sub-architectures 
(i.e., branches) identical to each other in terms of structure and parameter values 
(such as in green in Figure 1). Each branch of a Siamese network processes the 
respective element of the pair of observations that constitutes its input: a 
"verification" observation, that needs potential attribution to a given class, and a 
"support" observation, representing the class. The network maps the pair of 
observations toward "signals", synthetic and separable representations of the 
input. The intuition is as follows: two observations belonging to the same category 
are projected by the parallel architectures onto signals that are similar to each 
other; conversely, observations belonging to different categories will be 
characterized by orthogonal signals. The verification and support signals, 
respectively.   𝒚𝒚𝑆𝑆𝑆𝑆𝑆𝑆,𝑣𝑣,𝒚𝒚𝑆𝑆𝑆𝑆𝑆𝑆,𝑠𝑠 ∈ ℝ𝑚𝑚 ,   are   combined   and   processed   by   a 
"comparison" layer (Figure 1, in orange), which quantifies their similarity by the 
representation   𝒚𝒚𝐿𝐿′ ∈ ℝ𝑛𝑛𝐿𝐿′ , obtained from the transformation: 

𝒚𝒚𝐿𝐿′ = 𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆�𝒘𝒘𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝒚𝒚𝑆𝑆𝑆𝑆𝑆𝑆,𝑣𝑣 ,𝒚𝒚𝑆𝑆𝑆𝑆𝑆𝑆,𝑠𝑠� + 𝒃𝒃𝑆𝑆𝑆𝑆𝑆𝑆� 

where 𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆 and Sim are an activation function and a similarity function, 
respectively, 𝒘𝒘𝑆𝑆𝑆𝑆𝑆𝑆 ∈ ℝ𝑛𝑛𝐿𝐿′  × 𝑚𝑚 is the matrix of weights and 𝒃𝒃𝑆𝑆𝑆𝑆𝑆𝑆 ∈ ℝ𝑛𝑛𝐿𝐿′  is the 
vector of bias terms. In the general case 𝐿𝐿′ ≤ (𝐿𝐿 + 1), that is an additional 
sequence of representation layers could be attached from the comparison layer. 
In the simplest case, considered by our application,  𝐿𝐿′ = 𝐿𝐿 + 1,  i.e.,  the  
representation  obtained  from  the  output  of  the  comparison  layer  is definitely 
the output of the Siamese network, such that, in our binary case study, 𝑛𝑛𝐿𝐿′ = 1 
and 𝑔𝑔𝑆𝑆𝑆𝑆𝑆𝑆 is the sigmoid function that projects 𝒚𝒚𝐿𝐿+1 =  𝒚𝒚𝐿𝐿′  in the interval [0,1]. 
In the training phase, let N be a pairs of images in the training set; each pair is 
labeled as containing images - one as verification and one as support - belonging 
to the same class (𝑐𝑐𝑖𝑖 = 1) or to distinct classes (𝑐𝑐𝑖𝑖 = 0). The values 

 
7  One-shot learning should be distinguished from "one-shot transfer" which has to be intended as 

a specialization of transfer learning. 
8  In the literature, there are numerous examples of the application of neural networks based on 

zero-shot learning, as well as in the area of natural language processing. Among the most 
frequent applications are classification exercises under conditions of extreme class imbalance 
(Ochal et al., 2021), as well as face recognition tasks, which are required to guarantee a certain 
level of performance under conditions of high variability, for example in facial expression, 
brightness or background. 
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𝑦𝑦1𝐿𝐿+1, … ,𝑦𝑦𝑁𝑁𝐿𝐿+1 produced by the Siamese network therefore correspond to the 
probabilities that the N verification images belong to the same class as their 
respective support images. Training the model thus consists of minimizing the 
following loss function: 

𝐹𝐹𝐹𝐹(𝒚𝒚𝐿𝐿+1) =  −
1
𝑁𝑁

� 𝑐𝑐𝑖𝑖 log�𝑦𝑦𝑖𝑖𝐿𝐿+1� + (1 − 𝑐𝑐𝑖𝑖)log (1 − 𝑦𝑦𝑖𝑖𝐿𝐿+1)
𝑖𝑖=1,…,𝑁𝑁

 

where 𝑐𝑐𝑖𝑖 takes as said value 1 when the verification and supporting observations 
belong to the same class, 0 otherwise, and 𝑦𝑦𝑖𝑖𝐿𝐿+1 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐𝑖𝑖 = 1), 𝑖𝑖 = 1, … ,𝑁𝑁. 

4. Siamese networks for bite-type defect detection 

4.1 Model architecture and training 

In the developing of a Siamese network for the detection of bite defects on the 
European flag graphical element, we resorted to an essential architecture 
consisting of a pair of twin networks as depicted in Figure 1. Each network is 
characterized by three convolutional layers (Conv2D) followed by three collection 
layers (MaxPooling2D), on which a sequence of fully connected layers (Dense) is 
grafted for signal vectors generation. These are combined according to the 
absolute distance metric and used to derive the output value 𝒚𝒚𝐿𝐿+1, 
corresponding to the probability that the pair belongs to the same category9. 

  

 
9  Additional variants were considered during the experimental phase. For brevity and little 

contribution in terms of relevance to the final considerations, the results are not reported. 
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Conceptual representation of the Siamese network architecture used in this work. 

 Figure 1 
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To facilitate comparison between results, the architecture of the networks is 
unchanged in the main blocks, while the number of processing units, i.e. nodes of 
each layer, depends on the resolution considered. Specifically, after of the manual 
acquisition of the banknotes high-resolution images (~2656x1467 pixels, 24-bit 
color, RGB model), the following four sets of images were generated by re-
sampling, each of which was used in separate sessions for training and testing of 
the Siamese network in order to compare the performance obtained in the four 
cases: 

 
− Whole HR: whole banknote, high resolution (896x528 pixels); 

− Whole MR: whole banknote, medium resolution (448x264 pixels); 

− Whole LR: whole banknote, low resolution (299x176 pixels); 

− Flag: cropping of the banknote’s flag10 in high resolution (224x352 pixels). 

 

The training of the Siamese networks is done as mentioned through the 
Stochastic Gradient Descent (SGD) algorithm, starting from a set of parameters 
initialized according to the Xavier method. In order to promote optimal 
convergence of the process, batch normalization and dropout are also used, as 
well as re-initialization of the value of the parameters when a local optimum is 
reached, or the training set is overfitted (Figure 2). Hyper-parameters such as 
Leaky ReLu activation functions (Maas et al., 2013) are also defined using a set of 
calibration images excluded from the training process.  

 
10  See Jang et al. (2020). 
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Siamese neural network training process representation for the four different 
input resolution considered: Whole HR, Whole MR, Whole LR and Flag. The 
green (blue) curves represent the value of the loss function during the iterations 
of the SGD optimization routine in the training (validation) set images. The 
dashed lines indicate the re-initialization of the training process, corresponding 
to a local optimum convergence. 

 

Figure 
2 

 

 

 

 

The high performance of machine learning algorithms often has to contend 
with reduced interpretability of the learned internal mechanisms, as well as of the 
explainability of the underlying logic. Useful techniques to support the 
understanding, and thus the control of the proper logic of a complex analytical 
model, pertain to the field of so-called eXplainable Artificial Intelligence (Molnar, 
2020). In the case of Siamese networks, the graphical representation of signals 
allows visual comparison between the synthesis of the supporting and verification 
images for a qualitative assessment of the similarity of the vectors extracted from 
each twin network. However, the logic underlying the signal extraction process is 
concealed by the large number of parameters used for recursive projection of the 
information content of the input images, consistent with the poor interpretability 
of deep learning models (Zhang et al., 2019). 

Unlike other types of neural networks, in CNNs the transmission of input 
images from one convolutional layer to another allows intermediate tensors to be 
extracted, which can in turn be represented as images, called attention masks. In 
the literature, the use of attention masks is typically used during model training, 
and is aimed at exogenous control of the process by the analyst (Xu et al., 2015). 
Intuitively, the weight tensor of the l-th convolutional layer wl is combined 
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element by element with an arbitrary mask 𝒂𝒂 to emphasize or not emphasize 
specific areas of the image, and transformed as seen above according to the 
activation function 𝑔𝑔𝑙𝑙 . The resulting tensor, 𝒘𝒘𝑙𝑙,𝑎𝑎, is thus characterized by 
elements such that higher values will correspond to greater network attention to 
a particular area of the image and vice versa. 

For the purposes of our application, attention mechanisms are divided into 
hard and soft. Hard attention actually corresponds to random or deterministic 
exclusion of part of the surface (cropping). In this case 𝒂𝒂 takes binary values: 0 or 
1. Hard attention mechanisms can be used to exogenously direct the learning 
process or to maximize the exploration of the tensor surface and define optimal 
attention trajectories by the model (Ba et al., 2014). In its simplest form, soft 
attention instead resorts to an activation function that compresses the values of 
the weights into a given range (Xu et al., 2015), such as in the range [0,1] in the 
case of the softmax function. Built-in soft attention mechanisms are used to 
ensure overall control of the learning process11 (Gregor et al, 2015; Kosiorek et al., 
2017). 

This application considers an alternative use of soft attention masks 
according to a simplified approach geared toward model explicability. Attention 
masks are locally activated, after the training, to extract partial images along the 
twin CNNs, representing the logic adopted by the model along the processing 
steps. Specifically, for each convolutional layer the corresponding weight tensor 
is projected into the unit interval [0,1] according to the softmax activation 
function, which highlights the relative weight of each element. The weights thus 
transformed are then combined with the input of the convolutional layer. This 
corresponds to superimposing a soft attention mask on the banknote image. The 
intuition is as follows: the l-th layer uses weights whose relative values in the 
softmask are close to 1 at regions considered relevant for signal extraction, and 
close to 0 vice versa (see Figure 4). 

4.2 Results 

Having completed the learning phase, the Siamese network classifies each new 
image using the support image sets whose membership in one of the two 
categories of bite and no-bite is known by construction. Assignment of a new 
image to one of the two classes is then made from a comparison of the image 
and the two support sets. 

The selection of the support images to be used for comparison is a critical 
step in the use of Siamese networks because classification is done from pairs of 
observations. The choice on the method for the support image selection certainly 
has an impact on the overall performance of the network; to analyze this impact, 
a hold-out image set, i.e., a portion of the images in the verification set, was 
selected, and initially separated from the training set, and finally used for the sole 

 
11  Specifically, at a given output, such as the classification of an element on the image surface, the 

model is asked to identify the reference region by operating a bias in the value of the 
corresponding parameters. 
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evaluation of the support image selection method to ensure the quality of the 
analysis. The following approaches are then considered: 

1. RND-1: Each verification image is compared with one randomly selected 
support image per class;  

2. SSIM-0: Each verification image is compared with a specific single support 
image per class: the support selected image is the one with the maximum 
similarity with the verification image among those available in that particular class, 
according to the Structure Similarity Index Measure (SSIM)12; 

3. SSIM-1: Each verification image is compared with the second most similar of 
the available support images candidates for each class. In the SSIM-1 approach, 
the exclusion of the most similar support image is intended to reduce the impact 
of not pertinent but similar features that might be misleading for the classification 
exercise; 

4. SSIM-k: Each verification image is compared with k suppor images per class, 
selected according to similarity (k=10 in the following analysis). 

Table 1 shows the results obtained using the four different resolutions 
described above, and using the four different selection methods for the support 
images. The test set contains 46 images, including 14 with bite defect of different 
severity13. The performance on the test set is measured from the Recall rate14, i.e., 
the rate of images with correctly classified bite defect, and the F1-score, the 
harmonic mean of the Recall and Precision score, defined as the rate of banknotes 
correctly classified as not defective. In our application, false positives, i.e., images 
of banknotes incorrectly identified as defective, and defect under-reporting, or 
false negatives, are considered equally costly. 

 

  

 
12  SSIM is a widely used measure for image comparison and image quality assessment, introduced 

by Wang et al. (2004). It is derived from the composition of three comparison runs related to 
image brightness, contrast and texture. 

13  The classification is based on the documentation provided by the European Central Bank. 
14  Given the number of banknotes classified as defective by the network (all positives), Recall is 

defined by the proportion of banknotes correctly classified (true positives): Recall = (true 
positives)/(all positives). 
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Results for the binary image classification exercise in the test set, for the high 
(HR), medium (MR) and low (LR) resolution whole banknote cases, and for 
the European flag crop case. Performance below the threshold value 0.5 is 
indicated by "-". 

 Table 1 
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Whole HR - .75 .62 - - .67 .55 - 

Whole MR 1. .87 .87 .5 .84 .82 .93 .67 

Whole LR - .62 .62 - - .55 .62 - 

Flag - - .5 .98 - - - - 

 

 

 

We observe that, for the verification set considered, the use of the medium-
resolution whole image (Whole MR) allows for greater accuracy in classifying 
observations into bite and no-bite. In particular, the SSIM-1 selection method 
appears to perform better in assigning the banknote to the correct category. 

Siamese networks are characterized by their ability to identify critical features 
during the projection of the input into the signal, thus the assignment of the 
verification image to its correct class, under conditions of high variability. When 
this variability is quite excessive, as in the case of high resolution images (Whole 
HR) the granularity in terms of pixels becomes misleading to separate signals 
obtained from the verification and the support images. This can also be seen from 
the visual inspection of the signals extracted from the Siamese network, shown in 
the top left panel of Figure 3, where it can be seen that signals are more similar 
to each other when compared with the medium-resolution case (top right). 
Similarly, by excessively reducing the image resolution, the absolute size of the 
bite defect, the relative size of the field corresponding to the flag, and the overall 
variability turn out to be attenuated to a point that the Siamese network cannot 
learn a reliable criterion for their recognition (bottom left). In the case of cropped 
images containing the flag element only, the combination of the reduction in 
overall (second-level) variability and the increased relative weight of the region of 
pixels corresponding to the defect, which is characterized by high (first-level) 
variability, make a one-shot learning approach inappropriate. Indeed, the 
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performance measured in quantitative terms, and the graphical inspection of the 
obtained signals (bottom right) reflect this inadequacy. 

 

 

Comparison of signals for verification and support images. The images show the 
signals obtained for pairs of images of type Whole HR, Whole MR, Whole LR, and 
Flag. Support images were selected using the SSIM-1 method. For each box, the 
verification signal is obtained from an image with a bite defect, to be compared 
with the bite and no-bite type support images, respectively.  Figure 3 

 

 

 

 

Figure 4 illustrates an example of the attention mechanism operated by the 
convolutional components of a Siamese networks, obtained for the same bite 
defect image, and in the four cases Whole HR, MR, LR, and Flag crop. In the 
different images, brighter shades correspond to a greater attention, or 
concentration, conferred by the neural network in the three convolutional layers 
inside the CNN. It can be seen that, in the absence of indications given to the 
network during its construction, both the architecture for the analysis of high-
resolution images and that for medium-resolution images are able to 
independently identify the area of the critical surface for our purposes of bite 
defect detection, and subsequent assignment to one class or the other. This 
virtuous process does not seem to be triggered, except approximately, in the case 
of the Siamese network calibrated from the low-resolution training set. Similarly, 
the same behaviour is produced in the cropped flag case: the Siamese network 
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seems to "focus" on the entire image area, thus making the process of 
synthesizing the input information overly susceptible to minor variations. 

 

Graphical representation of the attention mechanism operated by the three 
blocks of the convolutional component of the Siamese networks for a training 
image with bite defect, in the formats Whole HR, Whole MR, Whole LR, and Flag.  Figure 4 

 

 

 

 

5. Conclusions and possible extensions 

This paper reports the main results obtained from the exploratory study on the 
use of neural networks for the autonomous recognition and classification of 
banknote defects in the context of quality control. The complexity of the problem, 
mainly due to the high degree of natural product variability and the variability of 
defect types and locations, imposed a very stringent approach in the selection of 
experimental scenarios. We restricted the analysis to a specific type of defects 
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(bites), located on a predetermined portion (Flag) of a single denomination of 
banknotes (€50 of the second series). 

The results support the relevance of these tools for identifying print defects. 
In particular, the case of medium-resolution whole banknote (Whole MR) allows 
balancing the needs related to image acquisition, computational efficiency, and 
quality of model performance. Further work needs to be carried out in order to 
attest their actual potential as an alternative, or cooperative, use along with 
current non-automated qualitative techniques. Further study and 
experimentation activities must extend the analysis to categories of defects other 
than bite, making use of useful techniques to adapt a previously trained model to 
a new task (so-called transfer learning), while maintaining a binary classification 
output. Finally, the implementation of a system for the classification of multiple 
print defects could make use of so-called ensemble learning techniques to 
combine and aggregate the results produced by a multi-network architecture. 

However, any extensions considered would be circumscribed by an a-priori 
choice that keeps their domain of analysis and research within one-shot learning 
algorithms, and specifically using Siamese networks. This choice is also suggested 
by the literature produced by the scientific community for problems variously 
related to what is presented in these pages. 
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Introduction

Banknote production in the Eurosystem relies on strict
quality controls throughout the process (ECB quality
requirements, ISO standards);
Similar to any manufacturing process, the printing of
banknotes can give rise to various imperfections and
defects;
The number, type, and size of defects on banknotes are
critical for the conformity of production batches (with
related losses).



Introduction

Banknotes exhibit variability in the position of
elements, and in the shade and intensity of colors;
While measurement of many parameters is carried out
via automatic optical systems, the validation process
cannot be fully automatized and requires highly
trained staff (potential subjectivity factors);
Artificial Intelligence (AI) systems are profitably used
across industries to support and automatize quality
control;
Our work focuses on a denomination/defect pair to
assess whether neural networks could improve process
efficiency.



Data

Since acquisition of high-resolution images is costly:
Focus on e50 banknotes of the Europa series;
Focus on flag-bite defects: lack of ink on a homogenous
background, with varying shape, size, and position.

We manually acquire 24-bit color images (RGB model)
of banknotes with 2,656 x 1,467 pixels resolution and
annotate them as fit/unfit.



Neural Networks & Image Processing

Previous research on banknotes
analysis mostly resorts to
convolutional neural networks
(CNNs);
Applications address recognition of
denomination, serial number,
currency, state of wear as well as
counterfeit detection. On the
production phase, we mention Pham
et al., 2017; Ke et al., 2016.
The inherent variability of banknotes
requires training of complex CNN
architectures, usually addressed via
data augmentation.



One-shot learning & Siamese Networks

The traditional way: data
augmentation

Manual: Overfitting of specific bite
defects;
AI-enabled: Hallucination-prone
behavior;

The practical way: one-shot learning
(Fei et al., 2006)

Emulates the ability of the human
mind to associate entities based on
similarity criteria.



Model development & Training

We build a Siamese neural network architecture (Koch
et al., 2015) for the bite-detection task:

Each twin branch extracts a signal from its input, either
a verification or a support image;
The more similar the signals, the most likely images
belong to the same class.



Model development & Training

We train our models on different resolutions of the input
set: high, medium and low resolution + cropped flag
detail:

Training set: N = 200 images (100 bites, 100 fit;
C(N ,2) training pairs);
We ensure convergence of the training process to global
minima via drop-out, batch normalization, random
re-initialization of weights;
We control internal logics of networks via soft masks
extracted from convolutional layers.



Empirical Results



Empirical Results

Test set size: 46 images (14 bites; 32 fit);
RND-1: Support image is picked at random;
SSIM-j, j=0,1: the (j+1)th most similar image is picked as support;
SSIM-k: the k most similar images are picked as support, with k=10.



Empirical Results



Conclusions & Next Steps

Our exploratory study provides insights on the
detection of banknote defects for quality control via
one-shot learning;
We find medium resolution input allows for greater
accuracy based on different metrics and evaluation
criteria;

Trade-off between resolution and attention scattering
due to variability patterns of banknotes;

We are able to gain insights on the internal logics
adopted by the models via soft masks;
Future work will extend the analysis to additional
defects (minor bite type defects already tested) and
denominations, and to additional model architectures.



Thank you!
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