

IFC-Bank of Italy Workshop on "Data science in central banking: enhancing the access to and sharing of data"

17-19 October 2023

Coding time series with machine learning¹

Ayoub Mharzi,
International Monetary Fund (IMF)

¹ This contribution was prepared for the workshop. The views expressed are those of the authors and do not necessarily reflect the views of the Bank of Italy, the BIS, the IFC or the other central banks and institutions represented at the event.

STATISTICS

Coding Time Series With Machine Learning

**3RD IRVING FISHER COMMITTEE WORKSHOP
ON “DATA SCIENCE IN CENTRAL BANKING”**

BANCA D’ITALIA - OCTOBER 18, 2023

Ayoub Mharzi – Data Scientist
IMF Statistics Department

Context

Increasingly available
text data

Surveys

Data tables

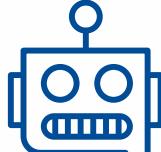
Websites

Challenges and
opportunities

Nonstandard
terminology

Outdated
processes

New technologies



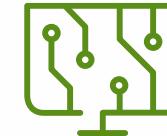
Objectives

Understand
the data

Explore new
approaches



Design solutions



What is “coding time series”?

- IMF member countries publish economic time series data in their National Summary Data Pages (NDSPs)
- IMF staff map these data to the internal Catalogue of Time Series (CTS) to ingest in IMF database.
- This is referred to as “coding time series.”

DATASTRUCTURE	IMF:ECOFIN_DSD(1.0)	Datastructure		
DATASTRUCTURE_NAME	ECOFIN Data Structure Definition	Datastructure Name		
DATA_DOMAIN	CGO	Dataset		
REF_AREA	KW	Country		
COUNTERPART_AREA	_Z	Counterpart area		
UNIT_MULT	6	Scale = Million		
FREQ	A	Frequency = Annual		
COMMENT	Source: https://www.cbk.gov.kw/en/stati Source / Observation status			
Descriptor_Alt	Descriptor	INDICATOR	2009	2010
	General public services and defence			
	Public order and safety			
	Education affairs and services			
	Health affairs and services			
	Social security and welfare affairs and s			
	Housing and community affairs and serv			
	Recreational, cultural and religious affa			
	Fuel and energy affairs and services			
	Agricultural affairs and services			
	Manufacturing affairs and services			
	Transportation and communication affa			
	Other economic affairs and services			
	Expenditures, not classified by function			

Challenges

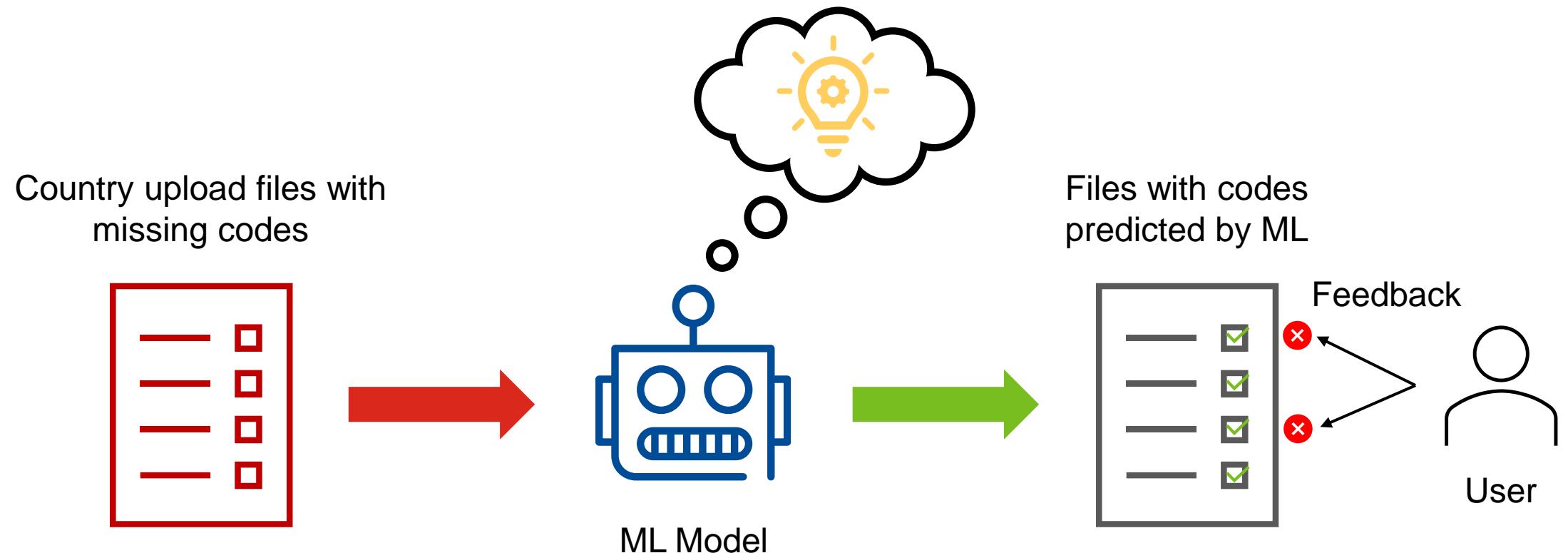
Time consuming and manual.

Not always straightforward.
E.g., “Health, affairs and services”:
218 indicators with the word “health”;
32 with the word “service.”

Finding similarities is not simple when new wording is used for time series descriptors.

Subject to Human Error

Hypothesis



Data processing

~142k coded indicators
from 53 countries across
4 macroeconomic sectors

Build a master dataset
based on already coded
data files to train/test

Light data processing and
cleaning approach to
allow reproducibility and
scalability

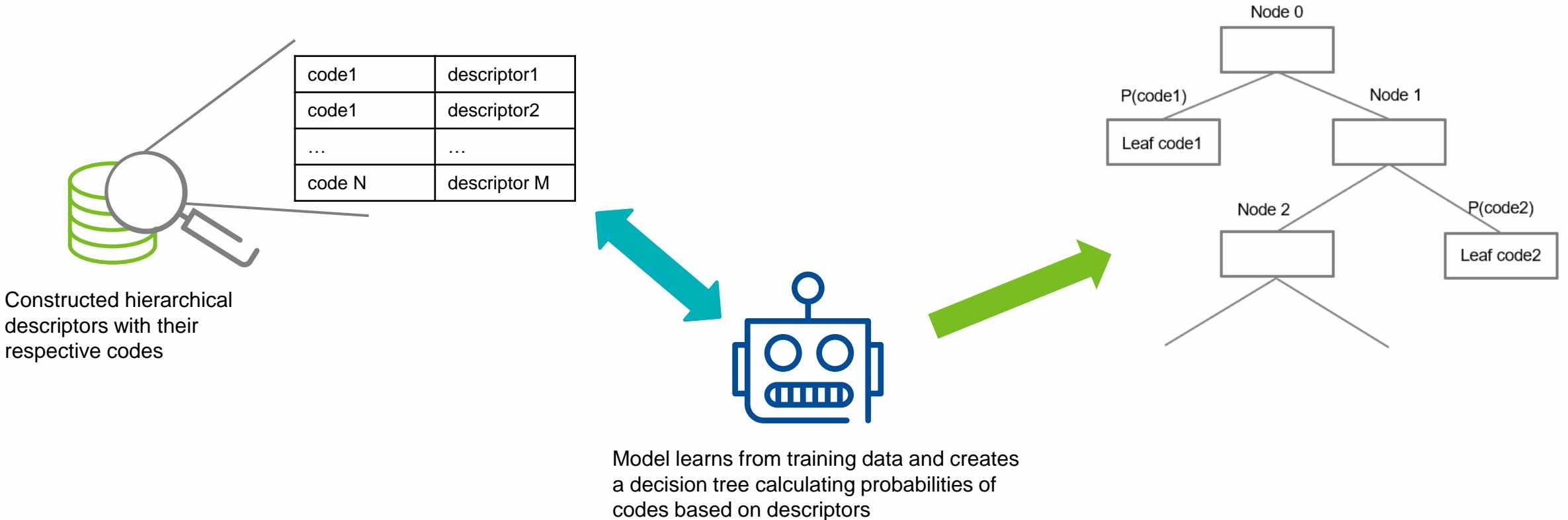
A few data files were in
French, Spanish and
Portuguese

- **Remove country-specific codes.**
- **Construct descriptors hierarchy.**
- **Keep only alphanumeric characters and remove stop words** (“a”, “the” etc.)
- **Keep available metadata fields** such as data domain, frequency, etc.
- **Train and Test data:** 90/10 split for training and testing/validation

Methodology

- Our data have specific terminology, a **supervised ML approach** is used.
- Start with proof of concept (PoC) to test the **feasibility and adequacy** of several ML models and feature extraction techniques (TF-IDF, word embeddings, Skip-Gram, logistic regression, etc.)
- Use an open-source text classification library, **fasttext**
- Text classification with Skip-Gram model and 3 n-gram
- Vectors dimension: 100, Epochs: 20

High-level underlying logic



Overall process

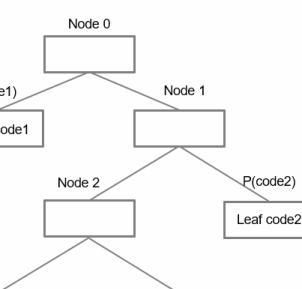
1 Data Processing

Health	Affairs	and	Services
--------	---------	-----	----------

DATA_DOMAIN_CGO	METHODOLOGY_2014_Manual	Health	Affairs	Services
-----------------	-------------------------	--------	---------	----------

3X

Model 2



3 Rank codes based on their probability

Code N	Probability N
code2	Probability 2
...	...
code 1	Probability 1

4 Returning top 5 codes with highest probability

GEL_G14(CG)	Government and Public Sector Finance, Expenditure by COFOG, Central Government, Health [2014 Manual]
...	...
...	...
...	...
...	...

Results

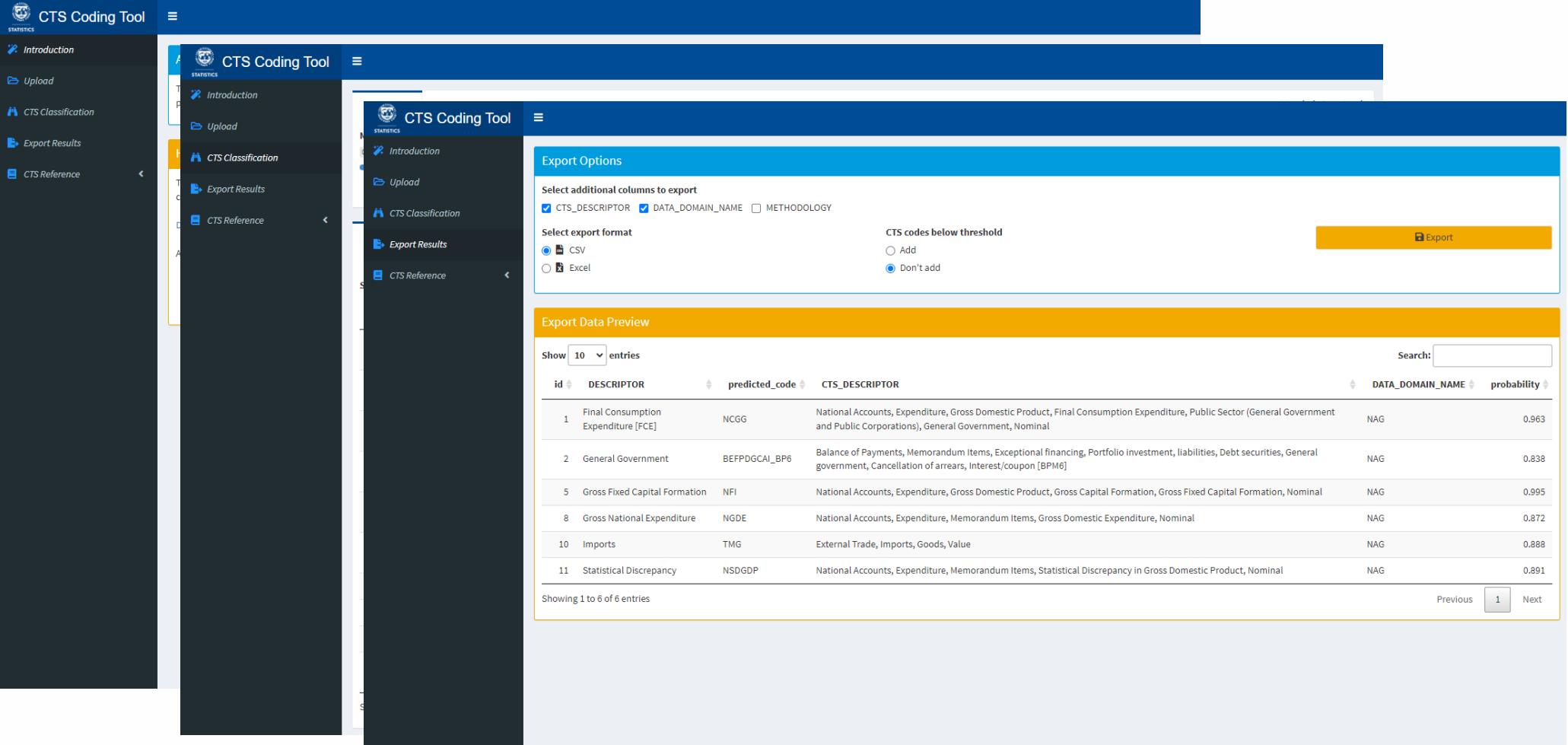
- Precision ranging by data domain, majority of domains precision around 90%
- Recall ranging by data domain, majority of domains recall around 90%
- Cases of low precision and recall due to:
 - ◆ Low number of time series for certain domain in training dataset
 - ◆ Original data file's structure not allowing to construct full hierarchy indicators
- For a data file with ~500 time series, the model takes about 2 seconds to return predicted codes

Domain	N	precision	recall
balance payments bpm	5,014.0	0.965	0.966
m&b central bank	1,309.0	0.915	0.914
m&b depository corporations	1,293.0	0.92	0.922
international investment position bpm	1,205.0	0.975	0.973
direction trade statistics	771.0	0.966	NA
		0.965	
financial soundness indicators sectoral financial statements	544.0		0.963
		0.32	
financial soundness indicators institution deposit takers ofcs	533.0		0.319
national accounts gross domestic product	398.0	0.885	0.872
financial soundness indicators data report form	348.0	0.965	0.963
m&b financial corporations	344.0	0.925	0.924
balance payments	337.0	0.99	0.991
financial access survey	267.0	0.86	0.861
international investment position	247.0	0.98	0.980
merchandise trade	246.0	0.69	0.679
consumer price index	224.0	0.915	0.915

Achievements

- Use open-source tools to build a solution
- Built a specific vocabulary and train the model
- Light data processing allowing reproducibility and scalability of the tool
- Achieved for most domains a high-level Precision and Recall
- Create an **R package** with the documented code available for sharing upon request
- Build an **R-Shiny app** for end users based on received feedback

Shiny App



The screenshot displays the CTS Coding Tool Shiny App interface, showing three stacked panels of the application. The top panel shows the 'Export Options' section, the middle panel shows the 'Export Data Preview' section, and the bottom panel shows the 'Export Options' section again. The 'Export Options' section includes checkboxes for 'CTS_DESCRIPTOR', 'DATA_DOMAIN_NAME', and 'METHODLOGY', and radio buttons for 'CSV' and 'Excel' formats. The 'CTS codes below threshold' section offers 'Add' and 'Don't add' options. The 'Export Data Preview' section shows a table with 6 entries, each with columns for 'id', 'DESCRIPTOR', 'predicted_code', 'CTS_DESCRIPTOR', 'DATA_DOMAIN_NAME', and 'probability'. The table includes a search bar and navigation buttons for 'Previous', '1', and 'Next'.

id	DESCRIPTOR	predicted_code	CTS_DESCRIPTOR	DATA_DOMAIN_NAME	probability
1	Final Consumption Expenditure [FCE]	NCGG	National Accounts, Expenditure, Gross Domestic Product, Final Consumption Expenditure, Public Sector (General Government and Public Corporations), General Government, Nominal	NAG	0.963
2	General Government	BEFPDGCAI_BP6	Balance of Payments, Memorandum Items, Exceptional financing, Portfolio investment, liabilities, Debt securities, General government, Cancellation of arrears, Interest/coupon [BPM6]	NAG	0.838
5	Gross Fixed Capital Formation	NFI	National Accounts, Expenditure, Gross Domestic Product, Gross Capital Formation, Gross Fixed Capital Formation, Nominal	NAG	0.995
8	Gross National Expenditure	NGDE	National Accounts, Expenditure, Memorandum Items, Gross Domestic Expenditure, Nominal	NAG	0.872
10	Imports	TMG	External Trade, Imports, Goods, Value	NAG	0.888
11	Statistical Discrepancy	NSDGDP	National Accounts, Expenditure, Memorandum Items, Statistical Discrepancy in Gross Domestic Product, Nominal	NAG	0.891

Next steps

- Incorporate user feedback into the end-to-end pipeline
- Officially roll out the tool into production and implement monitoring mechanisms
- Test the model and solution for out-of-scope time series
- Make the R package sharable upon request

Lessons learned

- **NLP/ML is a fast-changing field:** methods such as TF-IDF or Random Forest, although still used as baseline, are increasingly challenged by more recent methods such as word embedding, transformers, and other deep learning models.
- **Generative AI is changing the landscape of NLP:** considering if it is worth developing in-house solution or opt for off-the-shelf solutions such as ChatGPT.
- **Importance of the maintenance strategy:** Preparing in advance the monitoring and re-training plan is crucial for the sustainability of the model and can increase the acceptance and facilitate the transition from PoC to production.
- **Machine Learning solutions take time to implement to reach robust and high-quality results.**
- **Collaboration and knowledge sharing can have a big impact :** peer organizations can face similar challenges and we believe a solution like ours could be adapted and implemented by others.

Useful References

- Text and classification
- Model retraining

Measure (2017): use artificial intelligence (AI) to map worker injury to internal coding

Statistics
Canada

Evans et al (2021), “Need for Speed: Using fasttext (Machine Learning) to Code the Labor Force Survey”

Thank You

Team: Alberto Sanchez, Alessandra Sozzi, Ayoub Mharzi, Lamya Kejji and Yamil Vargas

Ayoub Mharzi: Amharzi@imf.org

Analytics Team: STA-Analytics@imf.org