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Deep Vector Autoregression for Macroeconomic 
Data 

Patrick Altmeyer1, Marc Agusti2, Ignacio Vidal-Quadras Costa3 

Vector Autoregression is a popular choice for forecasting time series data. Due to its 
simplicity and success at modelling monetary economic indicators VAR has become 
a standard tool for central bankers to construct economic forecasts. A crucial 
assumption underlying the conventional VAR is that interactions between variables 
through time can be modelled linearly. We propose Deep VAR: a novel approach 
towards VAR that leverages the power of deep learning in order to model non-linear 
relationships. By modelling each equation of the VAR system as a deep neural 
network, our proposed extension outperforms its conventional benchmark in terms 
of in-sample fit, out-of-sample fit and point forecasting accuracy. In particular, we 
find that the Deep VAR is able to better capture the structural economic changes 
during periods of uncertainty and recession. By staying methodologically as close as 
possible to the original benchmark, we hope that our approach is more likely to find 
acceptance in the economics domain. 

1 Introduction 

As stated by the European Central Bank, the monetary transmission mechanism is the 
process through which monetary policy decisions affect the economy in general and 
the price level in particular. Uncertainty with respect to this transmission is generally 
huge, given that it is characterized by long, variable and uncertain dependencies 
through time and variables. Hence, it is typically challenging to predict how changes 
in monetary policy actions affect real economic outcomes. It is therefore of foremost 
importance for policy-makers to use adequate tools to model the underlying 
mechanisms. 

With this in mind, a lot of research on the forecasting of time series has been 
developed to assess the effect of current policy decisions on future economic 
variables. Thanks to this, over the last decades policy makers have had more 
information when taking decisions. This information usually comes in the form of 
point estimates and interval forecasts. To come up with these estimates, several 
methodologies have been developed and applied in the time series forecasting 
literature. 

At the time of writing, one the most common methodologies to produce these 
estimates is the so-called Vector Autoregression (VAR). This framework, which 
belongs to the traditional toolkit of econometric forecasting techniques, has been 
shown to provide policy-makers with fairly good and consistent point and interval 

 
1 Delft University of Technology, p.altmeyer@tudelft.nl 
2 European Central Bank, marc.agusti _i _torres@ecb.europa.eu 
3 European Central Bank, ignacio.vidalquadrascosta@barcelonagse.eu 

mailto:p.altmeyer@tudelft.nl
mailto:torres@ecb.europa.eu
mailto:ignacio.vidalquadrascosta@barcelonagse.eu


  

 

2  
 

estimates. It has therefore been used extensively in the monetary policy divisions of 
central banks. 

Simultaneously, with the recent advancements in computational power, and 
more importantly, the development of advanced machine learning algorithms and 
deep learning, interesting novel tools have become available that may be useful for 
forecasting time series. Whereas the good performance of techniques such as VAR is 
well established, it is still uncertain whether deep learning algorithms can be applied 
successfully to macroeconomic data. 

To this end, this paper contributes a new and ground-breaking methodology 
that combines the VAR equation-by-equation structure with deep learning. We 
provide evidence that this improves the model’s capacity to capture potentially highly 
non-linear relationships in the underlying data generating process. The primary 
objective of this paper is to develop a methodology that produces improved 
modelling outcomes while deviating as little as possible from the established VAR 
framework, thereby keeping things straight-forward and familiar to economists. We 
show that the existing VAR methodology can be easily extended to the broader class 
of Deep VAR models and provide solid empirical evidence that Deep VAR models 
consistently outperform the conventional approach. 

To the best of our knowledge, this is the first paper to propose a Deep VAR 
framework of this structure, namely, to fit a deep neural network for each equation 
of the VAR process. Although previous work has explored the use of deep learning to 
forecast macroeconomic time series, previous proposed methodologies deviate more 
from the conventional VAR framework. For example, Verstyuk (2020) chooses to 
model the whole system through one unified deep neural network. We find that the 
equation-by-equation approach not only helps to maintain interpretability and 
simplicity, but also appears to produce better modelling outcomes. To enable 
researchers and practitioners to easily implement our proposed methodology, we 
have developed a unified framework for estimating Deep VAR models in R and plan 
to continue its development going forward. 

We find that the Deep VAR methodology outperforms the traditional VAR 
framework in terms of in-sample and out-of-sample fit as well as with respect to 
forecasting accuracy. In particular, the Deep VAR appears to be better at capturing 
non-linear dynamics underlying the time series process. It therefore leads to 
consistently lower modelling errors than the VAR, especially during periods of 
economic downturn and uncertainty. 

Arguably policy makers are not only interested in the forecasting accuracy of the 
model but are typically also concerned with inference. For example, central banks are 
often interested in knowing to what extent interest rates granger cause other 
variables within the monetary transmission mechanism. Another aspect policy makers 
and researchers care about is how the variables of the system evolve through time in 
response to innovations. This information is typically recovered using Impulse 
Response Functions (IRFs). The linear additive modelling assumption underlying the 
conventional VAR makes inference straight-forward. In the case of Deep VAR models 
inference is arguably more complicated, though promising avenues have recently 
been explored (Verstyuk 2020). We believe that the methodology proposed in this 
paper can be augmented to the inference realm in future work. 

The remainder of the paper is structured as follows: in section 2 we present a 
literature review of prior research on the methodologies used to provide forecasts 
and on the monetary transmission mechanism in general. Section 3 provides a 
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detailed description of the data we use for our empirical exercises. In section 4 we 
present the traditional VAR methodology and develop our proposed Deep VAR 
model. Sections 5 and 6 present our empirical findings and possible extensions and 
caveats, respectively. Finally, section 7 concludes. 

2 Literature review 

There is broad agreement among economists on the fact that monetary policy affects 
economic activity in the short and medium term. Friedman and Schwartz (2008) found 
that monetary policy actions are followed by movements in real output that may last 
for two years or more (Romer and Romer (1989); Bernanke (1990)). The underlying 
forces that trigger these outcomes is of great interest to most economists. Central 
bankers in particular aim to understand the monetary transmission mechanism. If 
monetary policy affects the real economy, then what exactly is the transmission 
mechanism through which these effects occur? This is one of the questions which is 
among the most important and controversial topics in modern-day macroeconomics. 

In the aftermath of the oil price shock in the 1970’s, interest emerged in 
understanding business cycles. To this end economists initially made use of large-
scale macroeconomic models, which was criticized by Lucas (1976), stating that the 
assumption of invariant behavioural equations was inconsistent with dynamic 
maximizing behaviour. Hence, New Classical economists started to make use of so-
called market clearing models of economic fluctuations. With the goal of really taking 
into account productivity shocks, Real Business Cycle models were developed 
(Kydland and Prescott (1982)). 

Following the failure of large-scale macroeconomic models when trying to 
predict business cycles, the economic profession resorted to structural vector 
autoregressive (VAR) models to analyse business cycles, which proved to be useful 
for capturing the impact of policy actions. Sims et al. (1986) suggested that VAR 
models were an efficient tool to evaluate macroeconomic models. One of the 
advantages of VAR models is their simplicity, which makes it easy to estimate and 
interpret them. 

Yet, this simplicity comes at a cost: conventional VAR models are typically not 
able to capture non-linear relationships in the data, which might be a significant 
limitation. In the very short run many time series can be expected to behave more or 
less according to their past and a linear model may be efficient to capture dynamics, 
but for longer term dependencies this is typically not the case. With respect to the 
economic time series that form part of the monetary transmission mechanism, 
specifically output, inflation, interest rates and labour market variables, non-linear 
dependencies are likely to form part of the data generating process as shown by 
Brock et al. (1991). This is true in particular during times of abrupt and significant 
economic fluctuations. 

During past years, economists have therefore started to add non-linear 
techniques to their forecasting tool kit. Machine Learning has contributed a lot to this 
field of research. Some of the most popular machine learning techniques which do 
not assume a linear relationship between inputs and outputs include K-Nearest 
Neighbours (first introduced by Fix and Hodges (1951)), Support Vector Machines 
(mostly developed by Cortes and Vapnik (1995)), Random Forests (first introduced in 
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1995 by Ho (1995)) and Deep Artificial Neural Networks (first proposed in 1943 by 
McCulloch and Pitts (1990)). The latter have been explored previously in the realm of 
time series forecasting (Hamzaçebi (2008), G. P. Zhang (2003), Kihoro, Otieno, and 
Wafula (2004)). Neural networks are non-parametric models that have been shown 
to be particularly successful at capturing non-linearities (G. Zhang, Patuwo, and Hu 
(1998), G. P. Zhang (2003)). 

A particular subclass of neural networks used primarily for sequential data are 
recurrent neural networks (RNN). RNNs propagate previous outputs recursively 
allowing the model to learn persistent dependencies and thereby making them very 
efficient for time series data (Dorffner 1996). A recent staff working paper published 
by the Bank of England provides some empirical support for the argument that deep 
learning can be successfully applied to macroeconomic data (Joseph et al. 2021). The 
authors run a horse race for forecasting inflation across different time horizons 
comparing the performance of linear and non-linear models. They find that neural 
networks in particular and other common machine learning algorithms are useful for 
forecasting particularly at a longer horizon. 

3 Data 

To evaluate our proposed methodology empirically we use a sample of monthly US 
data on leading economic indicators, which spans the period of January 1959 through 
March 2021. We use the relatively novel FRED-MD data base which is updated 
monthly and publicly available (McCracken and Ng 2016). The sample spans from 
March, 1959 to March, 2021 providing us with a relatively rich data set of 
macroeconomic time series with 𝑇𝑇 = 745 observations. 

In order to investigate the monetary transmission mechanism, the literature 
typically focuses on variables related to economic output, inflation, short and long 
term interest rates as well as labour market indicators. Some go beyond to also 
include stock price indices, money and credit aggregates, balance of payments 
figures, confidence indicators and some cases foreign domestic indicators. In this 
paper we limit our attention to the four main indicators mentioned above. In 
particular we use changes in the industrial production index (IP) to measure output 
growth, changes in the growth of the (all items) consumer price index (CPI) to 
measure inflation, the Federal Funds Rate (FFR) as our interest rate and the 
unemployment rate (UR) as our labour market indicator. Note that we use IP rather 
than the gross domestic product as a proxy for output, because the latter is only 
available at quarterly frequency. 

Another strength of the FRED-MD is the fact that the data is already pre-
processed. Specifically, the industrial production index comes in log differences, the 
CPI in second-order log differences and both the Fed Funds Rate and the 
unemployment rate in first-order differences. This has allowed us to let the data enter 
our estimations without any further adjustments, which should facilitate the 
reproducibility of our results. 
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4 Methodology 

In conventional Vector Autoregression (VAR) dependencies of any system variable on 
past realizations of itself and its covariates are modelled through linear equations. 
This corresponds to a particular case of the broader class of Deep Vector 
Autoregressions investigated here and will serve as the baseline for our analysis. 

4.1 Vector Autoregression 

Let 𝐲𝐲𝑡𝑡 denote the (𝐾𝐾 × 1) vector of variables at time 𝑡𝑡. Then the VAR(𝑝𝑝) with 𝑝𝑝 lags 
and a constant deterministic term is simply a linear system of stochastic equations of 
the following form: 

𝐲𝐲𝑡𝑡 = 𝐜𝐜 + 𝐀𝐀1𝐲𝐲𝑡𝑡−1 + 𝐀𝐀2𝐲𝐲𝑡𝑡−2+. . . +𝐀𝐀𝑝𝑝𝐲𝐲𝑡𝑡−𝑝𝑝 + 𝐮𝐮𝑡𝑡 , 𝐮𝐮𝑡𝑡 ∼ 𝒩𝒩(𝟎𝟎,𝛴𝛴𝑢𝑢)  (4.1) 

The matrices 𝐀𝐀𝑚𝑚 ∈ ℝ𝐾𝐾×𝐾𝐾, where 𝑚𝑚 ∈ {1, . . . , 𝑝𝑝}, contain the reduced form coefficients 
and 𝐮𝐮𝑡𝑡 ∈ ℝ𝐾𝐾×1 is a vector of errors for which 𝔼𝔼𝐮𝐮𝑡𝑡 , 𝔼𝔼𝐮𝐮𝑡𝑡𝐮𝐮𝑡𝑡𝑇𝑇 = 𝛴𝛴 and 𝔼𝔼𝐮𝐮𝑡𝑡𝐮𝐮𝑠𝑠𝑇𝑇 = 𝟎𝟎 for all 
𝑡𝑡 ≠ 𝑠𝑠. We refer to (4.1) as the reduced form representation of the VAR(𝑝𝑝) because all 
right-hand side variables are predetermined (Kilian and Lütkepohl 2017). 

We can restate (4.1) more compactly as 

𝐲𝐲𝑡𝑡 = 𝐀𝐀𝐙𝐙𝑡𝑡−1 + 𝐮𝐮𝑡𝑡  (4.2) 

where 𝐀𝐀 = �𝐜𝐜,𝐀𝐀1 ,𝐀𝐀2 , . . . ,𝐀𝐀𝑝𝑝� ∈ ℝ𝐾𝐾×(𝐾𝐾𝑝𝑝+1) and 𝐙𝐙𝑡𝑡−1 = �1, 𝐲𝐲𝑡𝑡−1𝑇𝑇 , . . . , 𝐲𝐲𝑡𝑡−𝑝𝑝𝑇𝑇 �𝑇𝑇 ∈ ℝ(𝐾𝐾𝑝𝑝+1)×1. 
The expression in (4.2) demonstrates that the VAR(𝑝𝑝) can be considered as a 
seemingly unrelated regression (SUR) model composed of individual regressions 
with common regressors (Greene 2012). In fact, it is useful to note for our purposes 
that the VAR(𝑝𝑝) can be estimated efficiently through equation-by-equation OLS 
regression. In particular, it follows from (4.2) that 

𝑦𝑦𝑖𝑖𝑡𝑡 = 𝑐𝑐𝑖𝑖 + ��𝑎𝑎𝑗𝑗𝑚𝑚

𝐾𝐾

𝑗𝑗=1

𝑝𝑝

𝑚𝑚=1

𝑦𝑦𝑗𝑗𝑡𝑡−𝑚𝑚 + 𝑢𝑢𝑖𝑖𝑡𝑡 , ∀𝑖𝑖 = 1, . . . ,𝐾𝐾  (4.3) 

which corresponds to the key modelling assumption that at any point in time 𝑡𝑡 any 
time series 𝑖𝑖 ∈ 1, . . . ,𝐾𝐾 is just a weighted sum of past realizations of itself and all other 
variables in the system. This assumption makes the estimation of VAR(𝑝𝑝) processes 
remarkably simple. Perhaps more importantly, the assumption of linearity also greatly 
facilitates inference about VAR models. 

For implementation purposes it is generally more useful to estimate the VAR(𝑝𝑝) 
through one single OLS regression. To this end let 𝐀𝐀� = 𝐀𝐀𝑇𝑇 and note that (4.2) can be 
restated even more compactly as 

𝐲𝐲 = 𝐙𝐙𝐀𝐀� + 𝐮𝐮𝑡𝑡  (4.4) 

with 𝐲𝐲 = (𝐲𝐲1, . . . , 𝐲𝐲𝑇𝑇)𝑇𝑇 ∈ ℝ𝑇𝑇×𝐾𝐾 and 𝐙𝐙 ∈ ℝ𝑇𝑇×(𝐾𝐾𝑝𝑝+1). Then the closed form solution for 
OLS is simply 𝐀𝐀� = (𝐙𝐙𝑇𝑇𝐙𝐙)−1𝐙𝐙𝑇𝑇𝐲𝐲 and hence 

𝐀𝐀 = 𝐲𝐲𝑇𝑇𝐙𝐙(𝐙𝐙𝐙𝐙𝑇𝑇)−1  (4.5) 

4.2 Deep Vector Autoregression 

We propose the term Deep Vector Autoregression to refer to the broad class of 
Vector Autoregressive models that use deep learning to model the dependences 
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between system variables through time. In particular, as before, we let 𝐲𝐲𝑡𝑡 denote the 
(𝐾𝐾 × 1) vector that describes the state of system at time 𝑡𝑡. Consistent with the 
conventional VAR structure we assume that each individual time series 𝑦𝑦𝑖𝑖𝑡𝑡 can be 
modelled as a function of lagged realizations of all variables 𝑦𝑦𝑗𝑗𝑡𝑡−𝑝𝑝, 𝑗𝑗 = 1, . . . ,𝐾𝐾, 𝑚𝑚 =
1, . . . , 𝑝𝑝.  

More specifically, we have 

𝑦𝑦𝑖𝑖𝑡𝑡 = 𝑓𝑓𝑖𝑖�𝐲𝐲𝑡𝑡−1:𝑡𝑡−𝑝𝑝; 𝜃𝜃� + 𝑣𝑣𝑖𝑖𝑡𝑡 , ∀𝑖𝑖 = 1, . . . ,𝐾𝐾  (4.6) 

where 𝐲𝐲𝑡𝑡−1:𝑡𝑡−𝑝𝑝 = �𝑦𝑦𝑗𝑗𝑡𝑡−𝑚𝑚�𝑗𝑗=1,...,𝐾𝐾
𝑚𝑚=1,...,𝑝𝑝 is the vector of lagged realizations, 𝑓𝑓𝑖𝑖 is a variable 

specific mapping from past lags to the present and 𝜃𝜃 is a vector of parameters. While 
in the conventional VAR above we assumed that the multivariate process can be 
modelled as a system of linear stochastic equations, our proposed Deep VAR(𝑝𝑝) can 
similarly be understood as a system of potentially highly non-linear equations. As we 
argued earlier, Deep Learning has been shown to be remarkably successful at learning 
mappings of arbitrary functional forms (Goodfellow, Bengio, and Courville 2016). 

Note that the input and output dimensions in (4.6) are exactly the same as in the 
conventional VAR(𝑝𝑝) model (equation (4.3)): 𝑓𝑓𝑖𝑖 maps from 𝐲𝐲𝑡𝑡−1:𝑡𝑡−𝑝𝑝 ∈ ℝ𝐾𝐾𝑝𝑝×1 to a scalar. 
Our proposed plain-vanilla approach to Deep VAR models diverges as little as 
possible from the conventional approach: it boils down to simply modelling each of 
the univariate outcomes in (4.6) as a deep neural network. We can restate this 
approach more compactly as 

𝐲𝐲𝑡𝑡 = 𝐟𝐟�𝐲𝐲𝑡𝑡−1:𝑡𝑡−𝑝𝑝; 𝜃𝜃� + 𝐯𝐯𝑡𝑡  (4.7) 

where 𝐟𝐟(⋅) = �𝑓𝑓1(⋅), 𝑓𝑓2(⋅), . . . , 𝑓𝑓𝐾𝐾(⋅)�𝑇𝑇 ∈ ℝ𝐾𝐾×1 is just the stacked vector of mappings to 
univariate outcomes described in (4.6). 

The notation in (4.7) gives rise to a more unified and general approach to Deep 
VAR models that would treat the whole process as one single dynamical system to be 
modelled through one deep neural network 𝐠𝐠: 

𝐲𝐲𝑡𝑡 = 𝐠𝐠�𝐲𝐲𝑡𝑡−1:𝑡𝑡−𝑝𝑝; 𝜃𝜃� + 𝐯𝐯𝑡𝑡  (4.8) 

This approach is in fact proposed and investigated by Verstyuk (2020) in his upcoming 
publication. We decided to go with the approach in (4.7) for two reasons: firstly, the 
link to conventional VAR models is made abundantly clear through this 
implementation and, secondly, we found that the equation-by-equation approach 
produces good modelling outcomes and is relatively easy to implement using state-
of-the art software. 

Finally, note that if 𝑓𝑓𝑖𝑖 in (4.3) is assumed to be linear and additive for all 𝑖𝑖 =
1, . . . ,𝐾𝐾 then we are back to the conventional VAR(𝑝𝑝). This illustrates the point we 
made earlier that the linear VAR(𝑝𝑝) is just a particular case of a Deep VAR(𝑝𝑝). Since 
the model described in equations (4.6) and (4.7) is less restrictive but otherwise 
consistent with the conventional VAR framework, we expect that it outperforms the 
traditional approach towards modelling multivariate time series processes. 

4.3 Deep Neural Networks - a whistle-stop tour 

So far we have been speaking about deep learning in rather general terms. For 
example, above we have referred to our model of choice for learning the mapping 
𝑓𝑓𝑖𝑖: 𝐲𝐲𝑡𝑡−1:𝑡𝑡−𝑝𝑝 ↦ 𝑦𝑦𝑖𝑖𝑡𝑡 as a deep neural network. The class of deep neural networks can 
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further be roughly divided into feedforward neural networks and recurrent neural 
networks. As the term suggests, the latter is generally used for sequential data and 
therefore our preferred model of choice. Nonetheless, below we will begin by briefly 
exploring feedforward neural networks first. This should serve as a good introduction 
to neural networks more generally and (even though we have not tested this 
empirically) there is good reason to believe that even Deep VAR models using 
feedforward neural networks perform well. 

4.3.1 Deep Feedforward Neural Networks 

The term deep feedforward neural network or multilayer perceptron (MLP) is 
used to describe a broad class of models that are composed of possibly many 
functions that together make up the directed acyclical graph. The functions 𝑓𝑓𝑖𝑖(⋅) - 
sometimes referred as layers 𝐡𝐡𝑖𝑖 - are chained together hierarchically with the first 
layer feeding forward its outputs to the second layer and so on (Goodfellow, Bengio, 
and Courville 2016). Applied to our case, an MLP with 𝐻𝐻 hidden layers can be loosely 
defined as follows: 

𝑓𝑓𝑖𝑖�𝐲𝐲𝑡𝑡−1:𝑡𝑡−𝑝𝑝; 𝜃𝜃� = 𝑓𝑓𝑖𝑖
(𝐻𝐻) �𝑓𝑓𝑖𝑖

(𝐻𝐻−1) �. . . 𝑓𝑓𝑖𝑖
(1)�𝐲𝐲𝑡𝑡−1:𝑡𝑡−𝑝𝑝���  (4.9) 

The depth of the MLP is defined by the number of hidden layers 𝐻𝐻, where, generally 
speaking, deeper networks are more complex. 

The desired outputs of any 𝑓𝑓𝑖𝑖
(ℎ) that will serve as inputs for 𝑓𝑓𝑖𝑖

(ℎ+1) cannot be 
inferred from the training data 𝐲𝐲𝑡𝑡−1:𝑡𝑡−𝑝𝑝 ex-ante, which is where the term hidden layer 
stems from. Each 𝑓𝑓𝑖𝑖

(ℎ) is typically valued on a vector of hidden units, each of them 
receiving a vector of inputs from 𝑓𝑓𝑖𝑖

(ℎ−1) and returning a scalar that is referred to as 
activation value. This approach is inspired by neuroscience, hence the term neural 
network (Goodfellow, Bengio, and Courville 2016). 

4.3.2 Deep Recurrent Neural Networks 

Recurrent neural networks (RNN) are based on the idea of persistent learning: a 
continuous process that evolves gradually and at each step uses information about 
its prior states instead of continuously reinventing itself and starting from scratch. To 
this end, RNNs develop the basic concepts underlying feedforward neural networks 
by incorporating feedback loops. Formally the loop is typically made explicit as 
follows 

𝐡𝐡𝑡𝑡 = 𝑓𝑓(𝐡𝐡𝑡𝑡−1, 𝐱𝐱𝑡𝑡;𝜃𝜃)  (4.10) 

where 𝐡𝐡𝑡𝑡 ∈ ℝ𝑁𝑁×1 corresponds to the hidden state of the dynamical system at time 𝑡𝑡 
that the RNN learns (Goodfellow, Bengio, and Courville 2016), and 𝑁𝑁 corresponds to 
the number of hidden units in each hidden layer, known as the width of the layer. In 
the given context we have that 𝐱𝐱𝑡𝑡 = 𝐲𝐲𝑡𝑡−1:𝑡𝑡−𝑝𝑝 as specified in (4.7). Given some random 
initial hidden state vector 𝐡𝐡0 the RNN updates parameters sequentially at each time 
step 𝑡𝑡 as follows 

𝐚𝐚𝑡𝑡 = 𝐛𝐛 + 𝐖𝐖𝐡𝐡𝑡𝑡−1 + 𝐔𝐔𝐡𝐡−1
𝐡𝐡𝑡𝑡 = tanh(𝐚𝐚𝑡𝑡)
𝑦𝑦�𝑖𝑖𝑡𝑡 = 𝑐𝑐 + 𝐯𝐯𝑇𝑇𝐡𝐡𝑡𝑡  (4.11)

 

where 𝐛𝐛 ∈ ℝ𝑁𝑁×1 is a vector of constants (biases), 𝑐𝑐 ∈ ℝ is a scalar that captures the 
deterministic term of the VAR, tanh is the hyperbolic tangent activation function, 
𝐖𝐖,𝐔𝐔 ∈ ℝ𝑁𝑁×𝑁𝑁 are coefficient matrices and 𝐯𝐯 ∈ ℝ𝑁𝑁×1 is a vector of coefficients. Note 
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that to simplify the notation we have omitted the layer index in (4.11): to be specific, 
𝐡𝐡𝑡𝑡 really represents 𝐡𝐡𝑡𝑡

(𝐻𝐻) (the ultimate hidden layer), 𝐡𝐡−1 stands for 𝐡𝐡𝑡𝑡
(𝐻𝐻−1) (the 

penultimate layer). Finally, at each step 𝑡𝑡 the first layer 𝐡𝐡𝑡𝑡
(0) of the forward propagation 

corresponds to 𝐲𝐲𝑡𝑡−1:𝑡𝑡−𝑝𝑝. 

A shortfall of generic recurrent neural networks is that they fail to capture long-
term dependencies. More specifically, if parameters are propagated over too many 
stages in a simple RNN, it typically suffers from the problem of vanishing gradients 
(Goodfellow, Bengio, and Courville 2016). Fortunately, there exist effective extensions 
of the RNN, most notably the long short-term memory (LSTM), which was introduced 
by Hochreiter and Schmidhuber (1997) and is our model of choice for Deep VAR 
models. The key idea underlying LSTMs is to regulate exactly how much information 
is propagated from one cell state vector 𝐂𝐂𝑡𝑡−1 to the next 𝐂𝐂𝑡𝑡 through the introduction 
of so called sigmoid gates: 

 
“The LSTM [has] the ability to remove or add information to the cell state, carefully 
regulated by structures called gates. Gates are a way to optionally let information 
through.” — Olah (2015) 
 

These regulating gate layers include a forget gate 𝐟𝐟𝑡𝑡, an input gate 𝐢𝐢𝑡𝑡 and a 
output gate 𝐨𝐨𝑡𝑡 . Each of them are vector-values sigmoid functions whose elements 
𝐟𝐟𝑖𝑖𝑡𝑡 , 𝐢𝐢𝑖𝑖𝑡𝑡 ,𝐨𝐨𝑖𝑖𝑡𝑡 are bound between 0 and 1. Their individual purposes are implied by their 
names: faced with 𝐡𝐡𝑡𝑡−1 and 𝐲𝐲𝑡𝑡−1:𝑡𝑡−𝑝𝑝, the forget gate regulates how much of each 
individual unit in 𝐂𝐂𝑡𝑡−1 is retained. Then the input gate regulates which units of 𝐂𝐂𝑡𝑡−1 
should be updated and to what candidate values 𝐂𝐂�𝑡𝑡−1. Using the previous two steps 
the actual update is performed according to the following rule 

𝐂𝐂𝑡𝑡 = 𝐟𝐟𝑡𝑡 ⊙ 𝐂𝐂𝑡𝑡−1 + 𝐢𝐢𝑡𝑡 ⊙ 𝐂𝐂�𝑡𝑡−1  (4.12) 

where ⊙ indicates the element-wise product. Finally, the output gate acts like a filter 
on 𝐂𝐂𝑡𝑡 : the new hidden state is computed as 𝐡𝐡𝑡𝑡 = 𝐨𝐨𝑡𝑡 ⊙ tanh(𝐂𝐂𝑡𝑡) where as before we 
use the hyperbolic tangent as our activation function.4 Formally, we can summarize 
the LSTM neural network underlying our Deep VAR framework as follows: 

𝐟𝐟𝑡𝑡 = 𝜎𝜎�𝐛𝐛𝑓𝑓 + 𝐖𝐖𝑓𝑓𝐡𝐡𝑡𝑡−1 + 𝐔𝐔𝑓𝑓𝐡𝐡−1�
𝐢𝐢𝑡𝑡 = 𝜎𝜎(𝐛𝐛𝑖𝑖 + 𝐖𝐖𝑖𝑖𝐡𝐡𝑡𝑡−1 + 𝐔𝐔𝑖𝑖𝐡𝐡−1)
𝐨𝐨𝑡𝑡 = 𝜎𝜎(𝐛𝐛𝑜𝑜 + 𝐖𝐖𝑜𝑜𝐡𝐡𝑡𝑡−1 + 𝐔𝐔𝑜𝑜𝐡𝐡−1)
𝐂𝐂𝑡𝑡 = 𝐟𝐟𝑡𝑡 ⊙ 𝐂𝐂𝑡𝑡−1 + 𝐢𝐢𝑡𝑡 ⊙ tanh(𝐛𝐛𝐶𝐶 + 𝐖𝐖𝐶𝐶𝐡𝐡𝑡𝑡−1 + 𝐔𝐔𝐶𝐶𝐡𝐡−1)
𝐡𝐡𝑡𝑡 = 𝐨𝐨𝑡𝑡 ⊙ tanh(𝐂𝐂𝑡𝑡)
𝑦𝑦�𝑖𝑖𝑡𝑡 = 𝑐𝑐 + 𝐯𝐯𝑇𝑇𝐡𝐡𝑡𝑡  (4.13)

 

which is best understood when read from top to bottom. Once again we have 
simplified the notation by omitting the layer index in (4.11). The same notation as 
before applies. 

4.4 Model selection 

There are at least two important modelling choices to be made in the context of 
conventional VAR models. The first choice concerns properties of the time series data 
itself, in particular the order of integration and cointegration. The second choice is 
about the the lag order 𝑝𝑝. In order to arrive at appropriate decisions regarding these 

 
4 For a clear and detailed exposition see Olah (2015). 
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choices the VAR literature provides a set of guiding principles. We propose to apply 
these same principles to the Deep VAR, firstly because they are intuitive and simple 
and secondly because treating both models equally to begin with allows for a better 
comparison of the two models at the subsequent modelling stages. 

4.4.1 Stationarity 

When working with time series we are generally concerned about stationarity. Broadly 
speaking stationarity ensures that the future is like the past and hence any predictions 
we make based on past data adequately describe future outcomes. In order to state 
stationarity conditions in the VAR context it is convenient to restate the 𝐾𝐾-
dimensional VAR(𝑝𝑝) process in companion form as 

𝐘𝐘𝑡𝑡 = �

𝐜𝐜
0
⋮
0

� + 𝐀𝐀𝐘𝐘𝑡𝑡−1 + �

𝐮𝐮𝑡𝑡
0
⋮
0

�  (4.14) 

where 𝐘𝐘𝑡𝑡 = �𝐲𝐲𝑡𝑡𝑇𝑇 , . . . , 𝐲𝐲𝑡𝑡−𝑝𝑝+1𝑇𝑇 �𝑇𝑇 ∈ ℝ𝐾𝐾𝑝𝑝×1 and 𝐀𝐀 ∈ ℝ𝐾𝐾𝑝𝑝×𝐾𝐾𝑝𝑝 is referred to as the companion 
matrix (Kilian and Lütkepohl 2017). Stationarity of the VAR(𝑝𝑝) follows from stability: a 
VAR(𝑝𝑝) is stable if the effects of shocks to the system eventually die out. Stability can 
be assessed through the system’s autoregressive roots or equivalently by looking at 
the eigenvalues of the companion matrix 𝐀𝐀 (Kilian and Lütkepohl 2017). In particular, 
for the VAR(𝑝𝑝) in (4.14) to be stable we condition that the 𝐾𝐾𝑝𝑝 eigenvalues 𝜆𝜆 that satisfy 

det�𝐀𝐀 − 𝜆𝜆𝐈𝐈𝐾𝐾𝑝𝑝� = 0 

are all of absolute value less than one. Stability implies that the first and second 
moments of the VAR(𝑝𝑝) process are time-invariant, hence ensuring weak stationarity 
(Kilian and Lütkepohl 2017). 

A straight-forward way to deal with stationarity of VAR models is to simply 
ensure that the individual time series entering the system are stationary. This usually 
involves differencing the time series until they are stationary: for any time series 𝑦𝑦𝑖𝑖 
that is integrated of order 𝐼𝐼(𝛿𝛿), there exists a 𝛿𝛿-order difference that is stationary. An 
immediate drawback of this approach is the loss of information contained in the levels 
of the time series. Modelling approaches that take into account conintegration of 
individual time series can ensure system stationarity and still let individually non-
stationary time series enter the system in levels (Hamilton 2020). 

4.4.2 Lag order 

The VAR’s lag order 𝑝𝑝 can to some extent be thought of as the persistency of the 
process: past innovations that still affect outcomes in time 𝑡𝑡 happened at most 𝑝𝑝 
periods ago. From a pure model selection perspective we can also think of additional 
lags in terms of additional regressors that add to the model’s complexity. From that 
perspective, choosing a lower lag order corresponds to a form of regularization as it 
pertains to a more parsimonious model. 

Various strategies have been proposed to estimate the true or optimal lag order 
𝑝𝑝 empirically (Kilian and Lütkepohl 2017). Among the most common ones are 
sequential testing procedures and selection based on information criteria. The former 
involves sequentially adding or removing lags - bottom-up and top-down testing, 
respectively - and then testing model outcomes in each iteration. A common point of 
criticism of sequential procedures is that the order tests matters (Lütkepohl (2005)). 
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Here we will focus on selection based on information criteria, which to some extent 
makes the trade-off between bias an variance explicit (Kilian and Lütkepohl 2017). In 
particular, it generally involves minimizing information criteria of the following form 

𝐶𝐶(𝑚𝑚) = log �det �𝛴𝛴�(𝑚𝑚)�� + ℓ(𝑚𝑚)  (4.15) 

where 𝛴𝛴� is just the sample estimate of the covariance matrix or errors and ℓ is a loss 
function that penalizes high lag orders. In particular, we have that our best estimate 
of the optimal lag order 𝑝𝑝 is simply 

�̂�𝑝 = argmin
𝑚𝑚∈𝒫𝒫

𝐶𝐶(𝑚𝑚)  (4.16) 

where 𝒫𝒫 = [𝑚𝑚min,𝑚𝑚max]. We will consider all of the most common functional choices 
for (4.15). 

4.4.3 Neural Network Architecture 

By now it should be clear that deep neural networks come in many shapes and sizes. 
When thinking about the architecture of a neural network many different design 
choices can be made and networks can thus be tailored to specific use cases. Here, 
we intend to keep things simple and vary only the depth and width of the LSTMs 
underlying the Deep VAR. The number of hidden units per hidden layer is held 
constant across layers. 

Figure 4.1 illustrates a simulated network architecture for the case of two lags 
(𝑝𝑝 = 2) and four variables (𝐾𝐾 = 4). We can see that the first layer corresponds to the 
inputs, that is, the input layer ∈ ℝ𝐾𝐾𝑝𝑝×1. This architecture consists of 𝐻𝐻 = 2 hidden 
layers each counting twenty hidden units. Since we are modelling equation-by-
equation, there is only one output unit, namely variable 𝑦𝑦𝑖𝑖𝑡𝑡 . 

With respect to network compilation, the popular Adam optimization algorithm 
is used (Kingma and Ba 2014). This algorithm can be used instead of the more 
traditional stochastic gradient descent to update network weights. There are several 
reasons to use this algorithm that are particularly appealing, among them its 
straightforward implementation and its computationally efficiency. Adam 
distinguishes itself from classic stochastic gradient descent in that it uses adaptive 
learning rates. 
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Figure 4.1: Neural Network Architecture. 
 

As mentioned above, the estimation of deep neural networks involves a very 
large number of parameters and hence regularization is an important concern. One 
way to mitigate the risk of overfitting is to choose a neural network architecture that 
is neither excessively wide nor deep. Another way to regularize the neural network is 
to use the fact that optimization at the training phase is stochastic. One greedy way 
to reduce overfitting risk is therefore to simply retrain the network multiple times and 
then average over the obtained parameter estimates and predictions (Srivastava et 
al. 2014). While theoretically appealing, this approach is computationally prohibitive. 
Instead, another layer of stochasticity can be introduced at the training stage through 
dropout: at each training iteration and each stage of the forward propagation a share 
of the hidden units is simply dropped at random. This approach mimics the idea of 
repeated training. Dropout adds noise into the model and thereby avoids that hidden 
layers try to adapt to a mistake made by previous hidden layers. 

5 Empirical results 

We now proceed to benchmark the proposed Deep VAR model against the 
conventional VAR and other existing approaches using our macroeconomic time 
series data. To begin with, we compare the models in terms of their in-sample fit. For 
this part of the analysis the models will be strictly run under the same framing 
conditions. Due to the RNN’s capacity to essentially model any possible function 𝑓𝑓𝑖𝑖(⋅) 
the Deep VAR dominates competing approaches in this realm. We investigate during 
what time periods the out-performance of the Deep VAR is particularly striking to 
gain a better understanding of when and why it pays off to relax the linearity 
constraint. 
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These findings with respect to in-sample performance provide some initial 
evidence in favour of the Deep VAR. But since a reduction in modelling bias is typically 
associated with an increase in variance, we are particularly interested in benchmarking 
the models with respect to their out-of-sample performance. To this end we split our 
sample into train and test subsamples. We then firstly benchmark the models in terms 
of their pseudo out-of-sample fit. Finally we also look at model performance with 
respect to 𝑛𝑛-step ahead pseudo out-of-sample forecasts. 

The final part of this section relaxes the constraint on the framing conditions. In 
particular, we investigate how hyperparameter tuning with respect to the neural 
network architecture and lag length 𝑝𝑝 can improve the performance of the Deep VAR. 

5.1 In-sample fit 

For this first empirical exercise all models are trained on the full sample. We have 
decided to include the post-Covid sample period despite the associated structural 
break, since it serves as interesting point of comparison. The optimal lag order as 
determined by the Akaike Information Criterium is 𝑝𝑝 = 6, where we used a maximum 
possible lag of 𝑝𝑝max = 12 corresponding to one year. A look at the eigenvalues of the 
companion matrix showed that the VAR(6) is stable. The LSTM models underlying the 
Deep VAR are composed of 𝐻𝐻 = 2 that count 𝑁𝑁 = 32 hidden units each. The dropout 
rate is set to 𝑝𝑝 = 0.25. 

To assess the fit of our models we use squared residuals. Figure 5.1 shows the 
cumulative loss of the Deep VAR model and its conventional benchmarks for each of 
the time series over the whole sample period. Aside from the linear VAR, we have 
added another popular approach towards VAR models that addresses non-linearity 
(Threshold VAR). We have also added a Random Forest Regressor (RF) for 
comparison, which was trained on the entire FRED-MD database, so far more 
variables than the four output variables. Previous studies have shown that RF tends 
to well at high-dimensional time series modelling (Masini, Medeiros, and Mendes 
2021). 

The first thing we can observe is that the RMSE of the Deep VAR is consistently 
flatter than the RMSE of its benchmarks. With respect to model fit, the Deep VAR 
dominates throughout the almost the entire sample period and for all of the 
considered variables. This empirical observation seems to confirm our expectation 
that the vector autoregressive process is characterized by important non-linear 
dependencies across time and variables that the conventional VAR and even the TVAR 
and RF fail to capture. 
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Figure 5.1: Comparison of cumulative loss over the entire sample period for Deep 
VAR and benchmarks. 
 

Figure 5.1 is especially useful to asses in which specific periods the Deep VAR 
model fits the data better than alternative approaches. From the very beginning and 
across variables, we observe that the increase in cumulative loss for other models is 
greater than for the Deep VAR model.  

The US economy during 1960s was influenced by John F. Kennedy’s introduction 
of New Economics, which was informed by Keynesian ideas and characterized by 
increasing levels of inflation, a reduction in unemployment and output growth. The 
change in government certainly corresponded to a regime switch with respect to the 
economy (Perry and Tobin 2010) and in that sense it is interesting to observe that the 
Deep VAR appears to be doing a better job at capturing the underlying changes. The 
1970s can be broadly thought of as a continuation of New Economics and loosely 
defined as a period of stagflation. The Deep VAR continues to outperform during that 
period. 

The first truly interesting development we can observe in Figure 5.1 coincides 
with the onset of the Volcker disinflation period. Following years of sustained CPI 
growth, Paul Volcker set the Federal Reserve on course for a series of interest rate 
hikes as soon as he became chairperson of the central bank in August 1979. The shift 
in monetary policy triggered fundamental changes to the US economy and in 
particular the key economic indicators we are analysing here throughout the 1980s 
(Goodfriend and King 2005). Despite this structural break, the increase in the 
cumulative RMSE of the Deep VAR remains almost constant during this decade for 
most variables. The performance of the VAR on the other hand is unsurprisingly poor 
over the same period, in particularly so for the CPI and the Fed Funds Rate, which 
arguably were the two variables most directly affected by the change in policy. The 
Deep VAR also clearly dominates the VAR with respect to the output related variables 
(IP) and to a lesser extent unemployment.  

These findings indicate that changes to the monetary transmission mechanism 
in response to sudden policy shifts are not well captured by a linear-additive vector 
autoregressive model. Instead they appear to unfold in a high-dimensional latent 
state space, which the Deep VAR by its very construction is designed to learn. 
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Following the Volcker disinflation period, Figure 5.1 does not reveal any clear 

outperformance of either of the models during the 1990s. Interestingly the dot-com 
bubble has little effect on either of the models, aside from a small pick-up in 
cumulative loss with respect to the CPI for both models. With all that noted, the Deep 
VAR still continuously outperforms the VAR since evidently its cumulative loss 
increases at a slower pace altogether. 

As the Global Financial Crisis unfolds around 2007 the pattern we observed for 
the Volcker disinflation remerges, albeit to a lesser extent: there is a marked jump in 
the difference between the cumulative loss of the VAR and the Deep VAR, in particular 
so for the CPI, the Fed Funds rate and industrial production. The gap for all these 
variables continues to widen during the aftermath of the crisis. The Deep VAR once 
again does a better job at modelling the changes that the dynamical system 
undergoes: post-crisis US monetary policy was characterized by very low interest 
rates, low levels of inflation as well as the introduction of a range of non-conventional 
monetary policy tools including quantitative easing and forward guidance. 

Finally, it is also interesting to observe how the different models perform in 
response to the unprecedented exogenous shock that Covid-19 constitutes. All 
models exhibit an abrupt and substantial increase in loss with respect to both IP and 
UR - the two series that were arguably most strongly affected by Covid. Evidently, the 
magnitude of that sudden increase is somewhat larger in absolute terms for VAR than 
for Deep VAR. Still, it is also worth pointing out that both the Threshold VAR and the 
Random Forest Regressor are less adversely affected by the Covid shock than Deep 
VAR. 

As a sanity check we also visually inspected the distributional properties of the 
model residuals for the full-sample fit. The outcomes are broadly consistent across 
models: while for some variables residuals are clearly not Gaussian, we see no 
evidence of serial autocorrelation of residuals (see Figures 9.2 and 9.3 in the 
appendix). 

5.2 Out-of-sample fit 

In order to assess if the Deep VAR’s outperformance is a consequence of overfitting, 
we now repeat the previous exercise, but this time we train the models on a 
subsample of our data. The training sample spans from March, 1959 to October, 2008, 
whereas the test data (including validation period) goes from November, 2008 to 
March, 2021. This corresponds to training the model on 80 percent of the data and 
retaining the remaining 20 percent for testing purposes. The optimal lag order for the 
training subsample is 𝑝𝑝 = 7 where we use the same criterion and maximum lag order 
as before. Once again we find this VAR specification to be stable. 

Tables 5.1 shows the Root Mean Squared Error (RMSE) for the in-sample and the 
out-of-sample predictions of both the VAR model and the Deep VAR model. We can 
see that the RMSE for the Deep VAR is lower than for the conventional VAR for both 
the training data and the test data and for all time series. The fifth column of the table 
shows us the ratio between the RMSEs of the Deep VAR and the VAR: the lower the 
ratio, the better the Deep VAR compared to the VAR. With respect to the training 
sample, the RMSE of the Deep VAR model is consistently less than 75% of that of the 
conventional VAR reflecting to some extent the results of the previous sections. 
Turning to the test data, there is no evidence that the Deep VAR is more prone to 
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overfitting than the VAR. For both industrial production and unemployment, the Deep 
VAR yields an RMSE that is around half the size of that produced by the VAR. For 
inflation and interest rate predictions the out-performance on the test data is less 
striking, but still large. 

 
Table 5.1: Root mean squared error (RMSE) for the two models across subsamples 
and variables. 

Sample Variable DVAR VAR Ratio (DVAR / VAR) 
test IP 0.00485 0.01484 0.32703 
test UR 0.90300 1.65170 0.54671 
test CPI 0.00225 0.00342 0.65892 
test FFR 0.15743 0.23974 0.65665 
train IP 0.00267 0.00727 0.36737 
train UR 0.03701 0.43322 0.08543 
train CPI 0.00035 0.00232 0.14925 
train FFR 0.03658 0.25780 0.14191 

5.3 Forecasts 

Up until now we have been assessing the model fit, which has provided some initial 
evidence in favour of Deep VAR. Typically though in the time series context we are 
more interested in out-of-sample forecasts. which we shall turn to next. 

We begin with a single forecasting exercise, where forecasts are produced 
recursively both for the VAR and the Deep VAR. Specifically, we use the models we 
trained on the training data to recursively predict one time period ahead, concatenate 
the predictions to the training data and repeat the process. Note that for the Deep 
VAR an alternative approach is to work with a different output dimension for the 
underlying neural networks.5 

We produce one-year ahead forecasts beginning from the first date in the test 
sample (November, 2008). Table 5.2 shows the resulting root mean squared forecast 
errors (RMSFE) along with correlation between forecasts and realizations. As we can 
see in the table, the RMSFE of the Deep VAR is consistently lower than the one for 
the VAR. Regarding correlations the VAR produces forecasts that are negatively 
correlated with actual outcomes for all time series: in other words, when the time 
series evolves in one direction, the VAR forecast tends to evolve in the opposite 
direction. For industrial production, the Deep VAR forecast also has a highly negative 
correlation with the actual values. For the rest of time series the Deep VAR forecasts 
correlate positively with actual outcome, albeit weakly. Another general observation 
we made with respect to these forecasts is that the forecasts from the conventional 
VAR are fairly volatile, while the Deep VAR forecasts swiftly reverts to steady levels 
(see Figures 9.8 and 9.9 in the appendix). 

 
Table 5.2: Comparison of n-step ahead pseudo out-of-sample forecasts. 
Variable VAR 

RMSFE 
Deep VAR 

RMSFE 
VAR 

correlations 
Deep-VAR 

correlations 
IP 0.01870 0.01673 -0.30409 -0.09175 
UR 0.85984 0.73402 -0.10093 0.31968 

 
5 In future work we plan to assess this approach further. 
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Variable VAR 
RMSFE 

Deep VAR 
RMSFE 

VAR 
correlations 

Deep-VAR 
correlations 

CPI 0.00946 0.00710 -0.33567 0.03954 
FFR 0.52321 0.39851 -0.55935 -0.01335 

 
Finally, we repeat the forecasting exercise above using a rolling window 

approach: we train our models on a window of 240 months, compute and store 12-
month ahead forecasts out of the training sample, roll the window one period forward 
and repeat the previous steps. This allows us to benchmark the different models in 
terms of their forecasting performance over the entire sample period. Once again 
forecasts are for now computed recursively: in other words, neural networks 
underlying the Deep VAR are not explicitly trained to forecast 12-steps ahead. 

In Figure 5.2 we have plotted the cumulative loss incurred by each model: the 
different output variables are faceted across columns; each row corresponds to a 
different forecast horizon. For example, the panel in row 2 of column 3 shows the 
cumulative mean squared error incurred by each model for forecasts up to the 3-
month horizon. 

While the results are less striking than what we observed above for the in-sample 
fit, the Deep VAR nonetheless dominates its conventional benchmark overall. For 
both inflation (CPI) and interest rates (FFR), the Deep VAR forecasts incur substantially 
lower loss over the entire sample period and in particular at short horizons. We also 
see somewhat better forecasts overall for industrial production, while for the 
unemployment rate the Deep VAR is at par with its conventional benchmark. It is not 
altogether surprising that losses converge at longer horizons since we would expect 
that forecasts from both autoregressive models converge to their unconditional 
expectations. 
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Figure 5.2: Comparison of cumulative rolling-window forecasting error over the 
entire sample period for Deep VAR and benchmarks. Forecasts are computed 
recursively. 

5.4 Varying hyperparameters 

While up until now with respect to model selection we have intentionally remained 
strictly within the conventional VAR framework, we will now relax that constraint and 
vary the lag length as well as hyperparameters of the Deep VAR. In particular, we 
perform a grid search where we vary the number of hidden layers (1,2,5), number of 
hidden units per layer (50,100,150), the dropout rate (0.3,0.5,0.7) and the lag order 
(10, 50, 100). For each combination of parameter choices we train the two models 
and compute the various performance measures introduced above.6 Our expectation 
is that the conventional VAR is prone to overfitting and will produce poor out-of-
sample outcomes for higher lag orders. For the Deep VAR we expect to interesting 
variation in the outcomes for different lag order and hyperparameter choices. It is not 
clear ex-ante that the Deep VAR should suffer from the same issue of overfitting for 
higher lag orders. The bulk of the corresponding visualizations can be found in the 
appendix. 

5.4.1 Tuning the Deep VAR 

To begin with, we shall forget about benchmarking for a moment and focus on the 
outcomes for the Deep VAR as we vary parameters. Recall that a higher number of 
hidden layers (depth), a higher number of hidden units (width) and a smaller choice 
for the dropout rate all correspond to an increase in neural network complexity. 
Consistent with this intuition we find that the in-sample loss for the Deep VAR 
improve as complexity increases (Figure 9.10): higher complexity leads to a reduction 
in bias and as we noted earlier the underlying recurrent neural networks should in 
principle be able to model arbitrary functions (Goodfellow, Bengio, and Courville 
2016). Conversely, we observe exactly the opposite pattern for out-of-sample loss: as 
evident from Figure 9.11 a higher choice for the dropout rate and lower choices for 
the depth and width of the neural networks generally yields a smaller out-of-sample 
RMSE across variables. 

Interestingly, both in- and out-of-sample loss tend to decrease significantly as 
the number of lags increases. In other words, the Deep VAR seems to be relatively 
insensitive to overfitting with respect to the lag order. With that in mind, we find that 
using standard lag order selection tools such as the AIC above may in fact not be 
appropriate for Deep VARs. 

Finally, Figure 9.12 provides an overview of how pseudo out-of-sample 
forecasting errors behave as we vary the hyperparameters. As before we produce 
one-year ahead forecasts starting from the end of the 80% training sample. In this 
context, the pattern is less clear and varies across variables. As the lag order increases, 
for example, the forecast performance for the unemployment rate deteriorates. For 
inflation, forecasts are poor for the medium lag choice of 𝑝𝑝 = 50 and much better for 
the low and high lag orders. The exact opposite relationship appears to hold for the 
Fed Funds Rate. With respect to the choices for the Deep VAR hyperparameters it is 
difficult to establish any clear pattern at all. The magnitude of differences in RMSFE is 

 
6 Of course, with respect to the conventional VAR only the lag order affects outcomes. 
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generally very small, so overall we conclude that to some extent the variation we do 
observe may be random. 

In light of this evidence, we propose that for the purpose of hyperparameter 
tuning Deep VAR researchers should focus on the RMSE associated with the 1-step 
ahead fitted values. For the underlying data, a reasonable set of hyperparameter 
choices could be: 1 hidden layer, 50 hidden units and a dropout rate of 0.5. 

5.4.2 Benchmark 

Using the hyperparameter choices proposed above we now turn back to comparing 
the performance of the Deep VAR to the conventional VAR. Figure 5.3 shows the 
pseudo out-of-sample RMSE and RMSFE for both models across the different lag 
choices. For the sake of completeness we also include the performance measures we 
obtained when we initially ran both models in section 5.2 using the optimal lag order 
as determined by the AIC. 

The first observation is that the Deep VAR outperforms the VAR across the board, 
reflecting our earlier findings. As expected, the VAR is subject to overfitting for when 
high lag order are chosen. This trend is observed both for the RMSE as well as the 
RMSFE. The fact that 𝑛𝑛-step ahead forecasts of the VAR are also subject to overfitting 
with respect to the lag order, while the Deep VAR appears unaffected, to some extent 
may reflect what we observed earlier: for the given data, Deep VAR forecasts swiftly 
converge to steady levels, while VAR forecasts are volatile, which may explain the 
relative outperformance of the Deep VAR. It appears that this effect is amplified for 
higher lag orders. 

 

 
Figure 5.3: Pseudo out-of-sample RMSE and RMSFE for both models across the 
different lag choices. For the sake of completeness, we also include the performance 
measures we obtained when we initially ran both models using the optimal lag 
order as determined by the AIC. 
 
To conclude this empirical section, we summarize our main findings: 
 

1. We provide evidence that the conventional, linear VAR fails to capture 
important non-linear dependencies across time and variables that are 
typically used to model the monetary transmission mechanism. 

2. Tapping into the broader class of Deep VAR leads to consistently better 
model performance. 

3. Deep VAR appears to be relatively insensitive to very high lag orders at 
which conventional VAR models are prone to overfitting. 
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6 Caveats and extensions 

In this work we have provided empirical evidence that the introduction of deep 
learning can lead to improved modelling and forecasting performance in the context 
of macroeconomic time series data. While we believe that our proposed methodology 
extends the conventional VAR framework quite naturally, it still comes with a lot of 
added complexity. Unfortunately, in the case of deep learning this added complexity 
also entails reduced interpretability: even though we have intentionally worked with 
a relatively small and simple neural network architecture, the number of parameters 
and interactions between neurons that they govern cannot possibly be interpreted 
by a human. This is why deep artificial neural networks are commonly referred to as 
black boxes. 

Perhaps more importantly in the context of time series forecasting, it is also much 
harder to quantify predictive uncertainty of deep neural networks: while confidence 
intervals around point forecasts from a linear VAR can be computed using closed-
form analytical expressions (Kilian and Lütkepohl 2017), no such expressions exist in 
the context of Deep VAR. Future work on this issue will most likely rely on probabilistic 
deep learning, which has gained popularity in recent years. Among the most widely 
used approaches to uncertainty quantification for deep learning are deep ensembles 
(Lakshminarayanan, Pritzel, and Blundell 2016) and Monte Carlo dropout (Gal and 
Ghahramani 2016). The former boils down to training not just one but multiple 
networks and effectively averaging over predictions: since weights are initialized 
randomly, predictions are stochastic. The latter similarly introduces stochasticity by 
activating dropout not only during training but also at the testing stage. A common 
drawback of these and other approaches that rely on Monte Carlo is the increased 
computational burden. As an alternative to Monte Carlo Daxberger et al. (2021) have 
recently shown that Laplace approximation can be used for effortless Bayesian deep 
learning. 

Support for the estimation of impulse response functions is another missing 
cornerstone in the current version of our proposed framework. IRFs are used to 
understand how system variables change in response to unit shocks to any of the 
system variables. When estimating the model with the traditional VAR, IRFs can be 
readily derived from the reduced form model coefficients. Generalized (or structural) 
IRFs require the system to be fully identified, which is typically achieved through 
restrictions on contemporaneous (and likely correlated) reduced-form errors. In the 
context of Deep VAR further research is required concerning both computation of 
IRFs and the identification problem. Verstyuk (2020) computes impulse response 
functions for their proposed MLSTM numerically and relies on a Cholesky 
decomposition of the reduced-form covariance matrix, just like in the conventional 
setting. A more desirable approach may once again involve probabilistic deep 
learning: Ish-Horowicz et al. (2019) proposes a straight-forward approach towards 
producing global feature importance measures for input features of Bayesian neural 
networks. It might be possible to leverage these importance measures as proxies for 
the conventional VAR’s linear coefficients and produce approximate impulse 
response functions for Deep VAR models in the same way as for conventional VAR 
models. Of course, these are merely rough ideas for future research. 
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7 Conclusions 

Our initial motivation for this study was to see if by incorporating some of the latest 
developments from the machine learning and deep learning domains in the 
conventional VAR framework, we could attain improvements in the modelling and 
forecasting performance. In an effort not to deviate too much from the established 
framework, we only relax one single assumption to move from the conventional linear 
VAR to a broader class of models that we refer to as Deep VAR models. 

To assess the modelling performance of Deep VAR models compared to linear 
VAR models we investigate a sample of monthly US economic data in the period 
1959-2021. In particular, we look at variables typically analysed in the context of the 
monetary transmission mechanism including output, inflation, interest rates and 
unemployment. Our empirical findings show a consistent and significant 
improvement in modelling performance associated with Deep VAR models. In 
particular, our proposed Deep VAR produces much lower cumulative loss measures 
than the VAR over the entire period and for all of the analysed time series. The 
improvements in modelling performance are particularly striking during subsample 
periods of economic downturn and uncertainty. This appears to confirm or initial 
hypothesis that by modelling time series through Deep VAR models it is possible to 
capture complex, non-linear dependencies that seem to characterize periods of 
structural economic change. 

When it comes to the out-of-sample performance, a priori it may seem that the 
Deep VAR is prone to overfitting, since it is much less parsimonious than the 
conventional VAR. On the contrary, we find that by using default hyperparameters 
the Deep VAR clearly dominates the conventional VAR in terms of out-of-sample 
prediction and forecast errors. An exercise in hyperparameter tuning shows that its 
out-of-sample performance can be further improved by appropriate regularization 
through adequate dropout rates and appropriate choices for the width and depth of 
the neural. Interestingly, we also find that the Deep VAR actually benefits from very 
high lag order choices at which the conventional VAR is prone to overfitting. In 
summary, we provide solid evidence that the introduction of deep learning into the 
VAR framework can be expected to lead to a significant boost in overall modelling 
performance. With respect to the main question posed at the beginning of this work, 
we therefore conclude that deep learning may be leveraged effectively in the context 
of macroeconomic time series modelling and vector autoregression. 

We also point out several shortcomings of our proposed Deep VAR framework, 
which we believe can be alleviated through future research. In particular, policy-
makers are typically concerned with uncertainty quantification, inference and overall 
model interpretability. Future research on Deep VAR models should therefore address 
the estimation of confidence intervals, impulse response functions as well as variance 
decompositions typically analysed in the context of VAR models. We point to a few 
possible avenues that involve probabilistic deep learning. We very much recognize 
the need for model interpretability especially in the context of policy-making and 
believe that the Deep VAR framework proposed here can be augmented to meet 
these demands.  
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Appendix 

8 Tables 

9 Figures 

 
Figure 9.1: Time series 

 
Figure 9.2: Quantile-quantile plots of full-sample residuals. 

 
Figure 9.3: ACF plots of full-sample residuals. 
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Figure 9.4: VAR fitted values plotted against observed values for the training sample. 

 
Figure 9.5: Deep VAR fitted values plotted against observed values for the training 
sample. 

 
Figure 9.6: VAR fitted values plotted against observed values for the test sample. 
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Figure 9.7: Deep VAR fitted values plotted against observed values for the test 
sample. 

 
Figure 9.8: VAR n-step ahead forecasts plotted against observed values. Forecasts 
are for the first year of the test sample. 

 
Figure 9.9: Deep VAR n-step ahead forecasts plotted against observed values. 
Forecasts are for the first year of the test sample. 
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Figure 9.10: Train sample RMSE for Deep VAR for different variables. 
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Figure 9.11: Test sample RMSE for Deep VAR for different variables. 

 
Figure 9.12: Pseudo out-of-sample RMSFE for Deep VAR for different variables. 
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Figure 9.13: Comparison of out-of-sample RMSE for conventional VAR and Deep 
VAR for different variables. 
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Figure 9.14: Comparison of pseudo out-of-sample RMSFE for conventional VAR and 
Deep VAR for different variables. 

10 Code and Package 

All code used for the empirical analysis presented in this article can be found on the 
corresponding GitHub repository. Researchers interested in using Deep VARs more 
generally for their own empirical work may find the R deepvars package useful which 
is being maintained by one of the authors. The package is still under development 
and as of now only available on GitHub. To install the package in R simply run: 

devtools::install_github("pat-alt/deepvars", build_vignettes=TRUE) 

Package vignettes will take you through the basic package functionality. Once the 
package has been installed simply run utils::browseVignettes() to access the 
documentation. 

https://github.com/pat-alt/deepvarsMacro
https://github.com/pat-alt/deepvars
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Motivation

Can we leverage the power of deep learning in VAR mod-
els?

▶ We propose Deep VAR: a novel approach towards VAR that
leverages the power of deep learning in order to model
non-linear relationships.

▶ Worked under the following premise: maximize performance
of an existing and trusted framework under minimal
intervention.

▶ We maintain the additive structure of the VAR, but relax the
assumption of linearity by modelling each equation of the VAR
system as a recurrent neural network.

▶ By staying methodologically as close as possible to the
original benchmark, we hope that our approach is more likely
to find acceptance in the economics domain.



Key contributions

▶ Simple methodology close in spirit to conventional benchmark.
▶ Significant improvement in model fit and forecasting accuracy.
▶ Open source R package deepvars to facilitate reproducibility.

Work-in-progress:

▶ Master’s thesis was selected for publication by Universitat
Pompeu Fabra.

▶ Feedback rounds with Eddie Gerba (Bank of England, LSE)
and Chiara Osbat (ECB).

▶ Presented an updated version of the paper at NeurIPS 2021
MLECON workshop in December.

https://github.com/pat-alt/deepvars
https://www.bankofengland.co.uk/research/researchers/eddie-gerba
https://www.ecb.europa.eu/pub/research/authors/profiles/chiara-osbat.en.html
https://sites.google.com/view/mlecon2021/home
https://sites.google.com/view/mlecon2021/home


Previous literature

▶ Non-linear dependencies are likely to form part of the data
generating process of variables commonly used to model the
monetary transmission mechanism (Brock et al. 1991).

▶ A range of machine learning models has previously been used
in the context of time series forecasting Kihoro, Otieno, and
Wafula (2004). Deep learning has been shown to be
particularly successful at capturing non-linearities G. P. Zhang
(2003).

▶ Joseph et al. (2021) review both machine learning and deep
learning methods for forecasting inflation and find that neural
networks in particular are useful for forecasting especially at a
longer horizon.



Methodology
▶ Relax the assumption of linearity and instead model the

process as system of potentially highly non-linear equations:

yit = fi (yt−1:t−p; θ) + vit , ∀i = 1, ..., K (1)

▶ Each single variable is model is modelled as a recurrent neural
network:

Figure 1: Neural Network Architecture.



Data

▶ To evaluate our proposed methodology empirically we use the
FRED-MD data base to collect a sample of monthly US data
on:
▶ output (IP)
▶ unemployment (UR)
▶ inflation (CPI)
▶ interest rates (FFR)

▶ Our sample spans the period from January 1959 through
March 2021.



Model fit

Figure 2: Comparison of cumulative loss over the entire sample period for
Deep VAR and benchmarks.



Forecasting

Question: recursive forecasts like in conventional VAR or
training on n outputs?

▶ Initially we opted for the former approach and provided
anecdotal evidence that Deep VAR outperforms

▶ Have since tested this more rigorously using rolling window:
▶ Deep VAR still outperforms VAR especially at short horizon
▶ Currently investigating if training on n outputs provides

additional edge.



Concluding remarks
▶ Simple framework that relies on the premise of minimal

intervention in the conventional and trusted framework.
▶ Deep learning appears to do a good job at capturing

non-linear dependencies.

But. . .
▶ Added complexity is (often) coupled with lack of

interpretability:
▶ No analytical expressions for impulse response functions and

variance decompositions
▶ Verstyuk (2020) manages to recover IRFs numerically; should

be readily applicable to our Deep VAR framework.
▶ Uncertainty estimation can be done through Bayesian

methods: deep ensemble, MC dropout, Variational Inference:
▶ All of the above entail an added layer (layers really!) of

computational complexity.
▶ Laplace Redux for effortless Bayesian Deep Learning

(Daxberger et al. 2021) holds promise, but not yet
implemented.



Your questions and comments



References I
Brock, William Allen, William A Brock, David Arthur Hsieh, Blake

Dean LeBaron, and William E Brock. 1991. Nonlinear
Dynamics, Chaos, and Instability: Statistical Theory and
Economic Evidence. MIT press.

Daxberger, Erik, Agustinus Kristiadi, Alexander Immer, Runa
Eschenhagen, Matthias Bauer, and Philipp Hennig. 2021.
“Laplace Redux-Effortless Bayesian Deep Learning.” Advances
in Neural Information Processing Systems 34.

Hamzaçebi, Coşkun. 2008. “Improving Artificial Neural Networks’
Performance in Seasonal Time Series Forecasting.” Information
Sciences 178 (23): 4550–59.

Joseph, Andreas, Eleni Kalamara, George Kapetanios, and Galina
Potjagailo. 2021. “Forecasting Uk Inflation Bottom Up.”

Kihoro, J, RO Otieno, and C Wafula. 2004. “Seasonal Time Series
Forecasting: A Comparative Study of ARIMA and ANN
Models.”



References II

Olah, Chris. 2015. “Understanding LSTM Networks.” https:
//colah.github.io/posts/2015-08-Understanding-LSTMs/.

Verstyuk, Sergiy. 2020. “Modeling Multivariate Time Series in
Economics: From Auto-Regressions to Recurrent Neural
Networks.” Available at SSRN 3589337.

Zhang, G Peter. 2003. “Time Series Forecasting Using a Hybrid
ARIMA and Neural Network Model.” Neurocomputing 50:
159–75.

Zhang, Guoqiang, B Eddy Patuwo, and Michael Y Hu. 1998.
“Forecasting with Artificial Neural Networks:: The State of the
Art.” International Journal of Forecasting 14 (1): 35–62.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Hiddens



Long Short-Term Memory
▶ The most common choice of neural networks architectures for

modelling persistent time series is the LSTM:
“The LSTM [has] the ability to remove or add informa-
tion to the cell state, carefully regulated by structures
called gates. Gates are a way to optionally let informa-
tion through.” — Olah (2015)

ft = σ (bf + Wf ht−1 + Uf h−1)
it = σ (bi + Wiht−1 + Uih−1)

ot = σ (bo + Woht−1 + Uoh−1)
Ct = ft ⊙ Ct−1 + it ⊙ tanh (bC + WCht−1 + UCh−1)
ht = ot ⊙ tanh(Ct)
ŷit = c + vT ht

(2)



Rolling window forecasts
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