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Abstract

This paper addresses the issue of assessing the quality of granular datasets reported by

banks via machine learning models. In particular, it investigates how supervised and
unsupervised learning algorithms can exploit patterns that can be recognized in other data
sources dealing with similar phenomena (although these phenomena are available at a different
level of aggregation), in order to detect potential outliers to be submitted to banks for their own
checks. The above machine learning algorithms are finally stacked in a semi-supervised fashion
in order to enhance their individual outlier detection ability.
The described methodology is applied to compare the granular AnaCredit dataset, firstly with
the Balance Sheet Items statistics (BSI), and secondly with the harmonised supervisory statistics
of the Financial Reporting (FinRep), which are compiled for the Eurosystem and the Single
Supervisory Mechanism, respectively. In both cases, we show that the performance of the
stacking technique, in terms of F1-score, is higher than in each algorithm alone.
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1 Introduction’

Big-data analytics is increasingly being adopted within the community of central banks, for several purposes
(Cagala, 2017; Chakraborty et al., 2017). An important area regards the application of machine learning
techniques in order to improve the quality of data collected on the basis of regulatory reporting. Over the last
few years, such surveys have become more granular and complex, in order to allow a better understanding of
economic developments and, more in general, to improve the assessment of the actual and potential impact of
policies on the economy?. As regards banking data, a key role is played by credit disbursement to the economy
that, in Italy, represents more than two thirds of banks’ total assets.

The main sources of credit data currently used at the Bank of Italy are the Eurosystem’s collection of Balance
Sheet Items (BSI), the EU harmonized Financial Reporting (FinRep), the Italian Central Credit Register data
(CCR) and, for a couple of years now, the Eurosystem’s granular collection AnaCredit.

This paper investigates the possibility of building statistically founded cross-checking between the highly
granular AnaCredit survey and the aggregated BSI and FinRep statistics by exploiting the similarities shared
by the three surveys with respect to the phenomena that are covered. Originally, the three surveys were
designed for different purposes and so the actual data collections follow different reporting rules and
definitions with regard to the types of loans that are collected, the reporting population, the data model and the
transformation rules. More importantly for our purposes, BSI and FinRep are very well established and mature
data collections, whereas AnaCredit is quite a recent one, so it might not have achieved the same high quality
standards of the other two yet. This is why in this paper, in defining a new set of quality checks, we try to
exploit the information available in BSI and FinRep to improve the quality of AnaCredit data through outlier
detection techniques.

To set up a new set of data quality checks, the expertise of the analysts needs to be complemented with the use
of advanced statistical tools that allow us to handle the complexity of a highly granular survey such as
AnaCredit. In this respect, the basic idea of the paper is to resort to machine learning techniques to carry out
systematic cross-checking between series on the same phenomena although pertaining to different data
collections in order to identify potential outliers to be submitted to reporting banks for their own checks?.
From a methodological point of view, we rely on machine learning methods (Bishop, 2011; Hastie et al., 2001
and 2013) in order to overcome some of the limits recognized in the statistical literature on outlier detection
as regards the identification of the boundary separating ‘normal’ observations from outliers. These limits are
related both to the possibility that ‘normal behaviour’ might not be static but, rather, evolve over time and also

to the lack of labelled data for training models (Chandola et al., 2009). Within this research field (Cusano et

! The authors are grateful to Gianluca Cubadda and Alessio Farcomeni (University of Tor Vergata, Rome), Francesca
Monacelli and Roberto Sabbatini (Bank of Italy) for their useful comments and fruitful discussions on a preliminary draft
of the paper. The views expressed herein are those of the authors and do not necessarily reflect those of the Bank of Italy.
2 For a recent discussion see Coeuré, 2017.

3 Namely, records that are considered anomalous because they are significantly different from the other points of the
dataset (Aggarwal, 2017).



al., 2021; Zambuto et al., 2020; Farn¢ et al., 2018; Goldstein et al., 2016), the novelty of this paper lies in the
development of a general approach that makes a pairwise comparison between datasets containing information
on similar phenomena.

We show that the proposed methodology, based on an ensemble learning technique, detects anomalies with a
higher level of precision than the single methods used as baselines. Since anomalous observations are rare, the
main metric considered to evaluate the performance of our developed models is the F1-score. With reference
to this metric, the ensemble technique adopted also yields better results than the single baselines. In sum, we
will show that the actual implementation of this methodology can contribute to improving the quality of
AnaCredit data to the extent that the pairwise comparison with BSI and FinRep databases can lead to a more
accurate list of potential outliers to be submitted to the cross-checking of reporting banks. It is worth remarking
how the approach developed in this paper can be applied, more generally, to all those situations in which it is
possible to exploit the information contained in aggregated datasets to detect potential outliers in a highly

granular dataset.

The paper is organized as follows. Section 2 describes the three datasets under consideration and the
deterministic pre-processing treatment carried out in order to make it possible to compare the aggregated series
available for each of them. Section 3 explores the different strategies considered for detecting outliers and
illustrates the developed ensemble machine learning techniques within a semi-supervised setting. Section 4
presents the results of the proposed approach. Section 5 summarizes the main conclusions, outlining the

advantages of the proposed method and the possible directions for future research.

2 Data

Bank of Italy, in the context of the harmonized collections at the European level, collects aggregated credit
information mainly within the scope of two ‘surveys’“: the monthly Balance Sheet Items (BSI), which is used
for the common monetary policy analysis, and the quarterly Financial Reporting (FinRep) used for SSM
supervisory purposes. Both surveys capture credit phenomena at aggregated level; different contractual forms
of loans (i.e. overdrafts, mortgages, repurchase agreements) are added together by the amount paid out and
then they are broken down by the relevant characteristics of the borrowers (i.e. sector and the residence) and
by the main contractual features (currency, maturity, etc.). The global financial crisis of 2007-08 and the
European debt crisis of 2009-10 showed that such aggregated data had been not sufficient to fulfill users’ need.
This consideration led to the issue of Regulation (EU) 2016/867 on the collection of monthly granular credit
and credit risk data (ECB/2016/13), the so-called AnaCredit Regulation, aimed at making available a new

granular and multipurpose dataset containing loan-by-loan information on credit. Indeed, AnaCredit focuses

4 For the purpose of this paper, a ‘survey’ is a collection of homogenous data for a given purpose and disciplined by a
reporting framework.



on the single credit instrument issued by credit institutions, within a contract stipulated vis-a-vis a given
borrower (Di Noia et al., 2020). The main innovation brought by AnaCredit, as compared to BSI and FinRep
data, rely on a larger number of details, at the level of single loan granted to counterparty provided that it is
above the reporting threshold of 25,000 euros. This new unprecedented granular credit data collection allows
the European System of Central Banks (ESCB) to carry out its tasks having a view of the entire distribution of
this financial phenomenon. Furthermore, this data is more suitable to shed light on lending dynamics to legal
entities and on the accumulation of risky debts in the banking sector.

In the following sub-sections, we describe the pre-processing steps carried out to build the two datasets used
for our analysis. In particular, we use for our comparison only AnaCredit data starting from December 2018,
although the first reporting date was September 2018. We decided to skip first reporting dates that, as it is
often the case, present a very high degree of instability in terms of the quality of data, which is typically

connected to the effective implementation and settlement of the compilation rules by reporting banks.

2.1 AnaCredit vs. BSI

The first comparison we carry out is between AnaCredit and BSI data collections from Italian banks. The latter
refers to monthly aggregated stocks on assets and liabilities of Italian banks’ balance sheets and it is used to
compile the national contribution to Eurosystem’s monetary statistics. BSI loans aggregates are based on data
provided by reporting banks, which are then aggregated by amount according to some relevant loan
information: the characteristics of the underlying contracts (type of instrument, duration and currency) and
some classification variables of the contract counterparty (sector and residence). As anticipated, loans are
particularly relevant being the core business of banks as well as the largest fraction of their assets.

For the purpose of this work, we take into account the main BSI time series of loans broken down by original
maturity of credit instruments, the residence and the institutional sector of the borrower. In particular, we
consider the following breakdowns: 1) Domestic Monetary Financial Institutions (MFIs), excluding Central
banks; 2) Domestic Central Banks; 3) Other Euro area MFIs; 4) Domestic General Government; 5) Other Euro
area General Government; 6) Euro area Other Financial Institutions and non-Money Market investment funds;
7) Euro area Insurance Corporations and Pension Funds; 8) Domestic Non-Financial Corporations (NFCs),
original maturity up to 1 year; 9) Domestic NFCs, original maturity over 1 to 5 years; 10) Domestic NFCs,
original maturity over 5 years; 11) Other Euro area NFCs, original maturity up to 1 year; 12) Other Euro area
NFCs, original maturity over 1 to 5 years; 13) Other Euro area NFCs, original maturity over 5 years.

The ECB and the National Central Banks (NCBs) have already developed cross-checks between BSI and
AnaCredit based on a deterministic approach: outliers are identified when the figures of interest exceed a pre-
specified threshold that, for each BSI time series, is the same across all banks and reference dates. Typically,
such thresholds are expressed in terms of percentage changes in the values detected in the two surveys. The
current quality-control system would largely benefit of a statistical approach aimed at identifying acceptance

thresholds that are bank-specific and can change over time.



The comparison between Anacredit and BSI surveys requires the pre-processing of their differences in order
to make data more comparable. To this end, we build a joint dataset and then we focus on the following
differences. Firstly, we drop out from AnaCredit all those loans that are not recognized in the bank’s individual
balance sheet, since BSI includes only loans for which banks bear credit risk. Secondly, since AnaCredit
contains accounting information only for end-of-quarter months, we impute the status of recognition of loans
for the other two months of the quarter®. Thirdly, as new loans purchased on market are present in BSI at
purchase price but in AnaCredit they are reported at nominal value, we discount the corresponding AnaCredit
values by the difference between the nominal value and the price at the time of purchase. Fourthly, we derive
in AnaCredit the classes of original maturity of loans present in BSI as the time between the settlement and
the final legal maturity date of the contract expressed in years. Finally, reconciliation of data structures is
performed in order to obtain comparable aggregates, by mapping the same subportfolio (e.g. interbank loans)
of loans. Following the above preliminary adjustments, we can aggregate AnaCredit data by amount for the
same bank and reference date and for the same characteristics of the BSI series, then obtaining the ‘AnaCredit
equivalent’ specification of the 13 BSI series listed above. For both BSI and ‘AnaCredit equivalent’, the 13
considered series are further broken down by the sector of economic activity (NACE ) of the counterparty and
the currency of the instrument 7. The comparison between the two sets of indicators is carried out over the time

span December 2018-March 2020 (monthly observations).

2.2 AnaCredit vs. FinRep

FinRep is the harmonized supervisory financial reporting that each credit institution must report on a quarterly
basis according to the instructions of Regulation EU 680/2014 (Implementing Technical Standards - ITS) and
International Financial Reporting Standards (IFRS). FinRep comprises accounting data on assets, liabilities,
equity and statement of profit and loss. Within the assets of the balance sheet statements, reporting banks are
also required to provide detailed information on loans, broken down by accounting portfolio, institutional
sector and economic activity (NACE classification) of the counterparty, type of instrument, credit quality status
and past due bands. It is relevant to underline that we exclude from the comparison all FinRep loans referred
to households (institutional sectors S.14 and S.15 according to ESA 2010 classification) since not in all cases
they are reported in AnaCredit. In order to derive the counterparty sector in FinRep, we resort to the detailed

reporting rules defined by PUMA2 documentation®.

5 We assume that the last accounting evaluation is still valid for the non-end-of-quarter months and that all the new
financial instruments are recognized. In general, it is quite rare that the recognition status of a financial instrument change
from a month to another. Furthermore, the quota of new financial instrument is small and these new instruments are
almost surely recognized.

6 See: Statistical Classification of Economic Activities in the European Community, Rev. 2 (2008) (NACE Rev. 2).

7 See Figures Al, A2 in Appendix A.

8 The main goal of PUMAZ2 process is to generate financial information for the production of several different statistical
and supervisory reports. PUMA2 documentation provides detailed transformation rules to generate the final statistical
reports from a granular input layers. For more details, see https://www.cooperazionepuma.org/.



http://ec.europa.eu/eurostat/ramon/nomenclatures/index.cfm?TargetUrl=LST_CLS_DLD&StrNom=NACE_REV2&StrLanguageCode=EN&StrLayoutCode=HIERARCHIC
https://www.cooperazionepuma.org/

The three main measures of the accounting AnaCredit data, i.e. (1) net and gross carrying amount, (2)
accumulated impairment amount and (3) accumulated changes in fair value due to credit risk, are compared to
the equivalent measures of FinRep. We report some examples of disaggregated series elaborated for the
comparison of the two dataset in Figure A3 of Appendix A.

As for the BSI comparison, a pre-processing of data is necessary to overcome a few differences between the
two surveys. In particular, the main information that needs to be reconciled refers to: counterparty sector; type
of instruments; the evaluation of past-due bands; the evaluation of gross carrying amount; the evaluation of
accumulated negative changes on fair value due to credit risk on non-performing exposures. As in the case of
BSI, the output is a joint dataset containing FinRep series and their equivalent (reconstructed) aggregation
based on AnaCredit data. The comparison is carried out with reference to end-of-quarter dates, over the time

span December 2018-March 2020.

3 Anomaly detection strategies: definitions and estimation procedures

Our cross-checking is based on two preliminary considerations. Firstly, BSI, FinRep and AnaCredit contain
similar information on loans; therefore, we can assume that the patterns of the series referred to the same
phenomena are similar. Secondly, the quality of BSI and FinRep datasets is very high, as improvements have
been introduced over many years. So we assume that the potential outliers identified on the basis of
‘divergences’ between the compared series — BSI vs. AnaCredit and FinRep vs. AnaCredit, respectively — can
be attributed to anomalies in AnaCredit data. The statistical approach that is followed combines supervised
and unsupervised methods for the identification of regular patterns. In particular, for the supervised approach
we develop a robust regression model, whereas for the unsupervised approach we resort to two autoencoder
models. The three base models above (‘learners’) are then combined via a ‘stacking algorithm’ consisting of

an additional classifier (‘meta-classifier’) trained on the base models’ outputs (Figure 1).

Figure 1: Workflow*
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* In our work only 3 learners are used as base models.



The meta-classifier allows us to synthesize the complementary insights derived from the different base models
and to outperform each one of them in making the final prediction®. In particular, the meta-classifier is trained
in a semi-supervised setting by using a dataset enriched with the binary labels ‘anomalous’ or ‘not-anomalous’
that, with reference to sample cases ', are attached to each observation on the basis of cross-checking with the
intermediaries and pre-assessments based on the domain knowledge.

It is worth anticipating that the strength of the above approach lies in its versatility in terms of use cases to
which it can be applied and ‘learners’ that can be considered. Actually, this method can be easily adapted to
any comparison between data collections sharing similar information and each specific base models
(‘learners’) could be swapped with others yielding better predictions and their number can also be changed.

It is worth noting that the prediction of the model, i.e. the list of potential outliers, refers to aggregates which
are themselves a decomposition of BSI or FinRep aggregates. This detail allows the anomaly to be
contextualized by elements that better explain it (such as the information that helps the reporting banks to
identify the erroneous records in their own archives and the reasons behind the data verification request),

allowing the intermediaries for a more effective and faster evaluation of the case.

3.1 Robust Regressions

As mentioned in previous paragraphs, loans to legal entities reported in AnaCredit, BSI and FinRep refer to
the same information content, although at a different level of aggregation. The conceptual relationship between
the phenomena, confirmed empirically by the high correlation between AnaCredit aggregates, on one side, and
BSI and FinRep series, on the other!!, can be statistically exploited within a linear regression framework. In
our model BSI (or FinRep) series represents the independent variable, given its ascertained high level of
quality, whereas the equivalent AnaCredit aggregate is regarded as the dependent variable.

Despite the pre-processing steps described in Section 2 to build comparable credit statistics, there are inevitable
and permanent structural differences between the two datasets under comparison (e.g. the reporting threshold
effect and the exclusion of natural persons in AnaCredit). Therefore our linear regression introduces a specific
explanatory variable to capture such structural differences. This variable is able to consider such differences
as intrinsic and normal instead of as reporting mistakes.

We end up with the following equation, using a log transformation of the original variables ':

log(Ai,j,t) =po + .Bllog(Fi,j,t) + ﬁzlog( Fi,j,t—l/Ai,j,t—l) +€jes (D
where [ denotes a bank, j a sub-portfolio of loans and ¢ is a reference date. The AnaCredit aggregate for a

particular sub-portfolio of loans at time t (AL-, j,t) is compared with the correspondent amount of BSI (Fl-, j,t)

° See Lessmann et al., 2015.

10 In future developments of this paper, data revisions could also be considered to further enrich the prior knowledge.
' See Figure 4 in Appendix A for the distributions of such index.

12 For the derivation of the complete model see Appendix B.
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(the same comparison holds for FinRep). The second explanatory variable is added to capture the definitional
and structural differences between the datasets. The reporting mistakes remain isolated and they are contained
only in the error component €; ; . Unfortunately, we cannot identify the structural difference at time t, because
of the presence of (potential) reporting errors in 4; .. Instead, such differences are well identified at previous
times, -1, t-2, etc., on the basis of the findings of the data quality validation process in those periods. For the
sake of simplicity, our model considers only the differences at time #-/. This way, the equation (1) could be
read as an error correction model for the cross comparison of the two aggregates at time ¢ (for more details,
see Appendix B). We do not consider some seasonality form in equation (1), as we have short series available:
only 5 dates for the FinRep/AnaCredit and 16 for BSI/AnaCredit comparison. Indeed in our stock data, we do

not observe such element to a significant extent'® (see Figures A2 and A3 in Appendix A).

In an ‘ideal’ context, i.e. without anomalous data, the relationship in equation (1) would be correctly estimated.
The presence of anomalous data in the dependent variable spoils practically this relationship. However, the
literature on statistical robust estimation helps us to handle this issue (Hampel 1985; Hampel et al., 1986;
Farcomeni, 2015; Gschwandtner, 2012; Maechler, 2021), as shown in Figure 2, where the logarithm of
AnaCredit carrying amounts (y-axis) and the logarithm of FinRep carrying amounts (x-axis) for the time series
of ‘loans versus central governments, evaluated at amortized cost’ are plotted according to classical and robust

linear predictions.

Figure 2: Classical vs. Robust regression

Carrying amount - AnaCredit vs. FinRep

20-

Im type

15- === classical

= robust

log(AnaCredit)

10 15 20
log(FinRep)

The robust regression (black line) is not affected by anomalous data like high leverage data points - such as
red dots that are lying on the x-axis- as it happens in the classical linear regression (green line). The presence

of high leverage data points has a significant impact on the parameters of the regression.

13 When more data is available, as future work we will be able to model also the seasonality of the series.
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In particular, we consider the SMDM estimation proposed by Koller e Stahel (2011) that shows both high
asymptotic efficiency and high breakdown point (BP; see Hampel et al. 1985). Furthermore, as derived in
Appendix B we expect that the coefficients y and B; should be equal, respectively, to zero and one, while the
B, term should be less or equal to zero. Using the robust covariance matrix it is possible to test the null
hypothesis that these conditions are met (8y = 0, f; = 1 and §, < 0). When these conditions are not met, we

cannot consider the corresponding regression as reliable, and then we do not analyze the correspondent

aggregates that are compared.
Four types of outcomes are obtained from our robust regressions (Figure 3):
o ‘Good fit’ (top left): the regression estimates are coherent with the prior knowledge on the betas and
the R-squared is high;
o ‘Exact fit’ (top right): the SMDM algorithm tends to classify as ‘outlier’ those observations close to

the regression line;

e ‘Poor fit’ (bottom left): the robust regression is affected by a high number of leverage points (BP is
almost at 50%);

e ‘Broken fit’: there are more outliers than good observations (BP greater than 50%).
Figure 3: Types of robust regression fit

a - Good Fit b - Exact Fit
(80%<R2<98%, null hypothesis for betas are not rejected) (R2>=98%, null hypothesis for b0, bl and b2 may be rejected)
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In our analysis, we face mainly the problem known as ‘exact fit’ (see, for example, Maronna et al., 2006).
Because of the high correlation between the AnaCredit aggregates and the corresponding BSI (and FinRep)
series, our regressions often show a very high R-squared value (close to one), as the observed points are

concentrated around a very small radius of the regression line. As a consequence, even in presence of a small

12



distance between an observed point and the regression line, that observation is marked as an outlier although
it does not show an anomalous behavior. This is due to the fact that the distance is greater than the one
recognized as ‘normal’ by the model in such situation. A second consequence has to do with the impossibility
to perform reliable tests of hypotheses on the regression coefficients, as the robust estimates of their standard
errors are close to zero, leading to the wrong rejection of the theoretically expected relationship (i.e. the model

under the null hypothesis) when instead it should be regarded as valid.

To cope with the cases of exact fit, together with the cases of ‘poor fit” and ‘broken fit” when outliers are
clustered (see Figures 4 and 5), we investigate three possible solutions:
(1) resorting to the ‘Bonferroni correction’ for the chi-squared test of residuals (see Cerioli and
Farcomeni, 2011);
(2) adding Gaussian noise to the dependent variable (a procedure known as jittering);
(3) de-noising through the removal of observations (a procedure known as thinning; see Cerioli and

Perrotta, 2013).

Approach (1) relies on the assumption that the squared regression residuals follow approximately a chi-squared
distribution with one degree of freedom. As discussed in Cerioli and Farcomeni (2011), in order to control for
the probability of making one or more false rejections, a simple but effective method is to adopt the ‘Bonferroni
correction’ for the confidence level over the sample size a/n. The observation is labelled as outlier if the
statistics T;j; = él-zjt > )((21_,1 /n1)-

Strategy (2) consists in adding a Gaussian random noise €, € ~ N(0, g;.), to the dependent variable and, then,
perform a robust regression on the new transformed variable. For the calibration of g, first we run a robust

regression without adding noise and compute the Mean Absolute Deviation (MAD) of residuals, then we
multiply it by a constant factor k, considering a floor positive value §: o, = min (6, k * MAD(él- jt)). The

empirical values of k and § depend on the nature of the datasets under inspection: in this application, according
to the abovementioned literature, we use § > 0.1 and k € [1.48; 5].

Finally, the procedure (3) consists in removing observations in order to down-weight the influence of high-
density regions. To this end, it is necessary to define and evaluate a retain probability for each observation
{vi,x;}, i.e. the logarithm of A;j; and Fjj;. Following Cerioli and Perrotta (2013), we consider the retain
probability p(y;, x;) < 1 — A4(y;, x;), so that points will be deleted mainly in high-density regions; for the

1'* introduced by the authors.

estimation of 4,4 (.) we use the same isotropic Gaussian kerne
To detect outliers from procedure (2) and (3) we apply the chi-square test as defined in (1).

The ‘exact fit” problem is well addressed by all the three solutions, as shown in Figure 4, where panel a
illustrates the standard robust regression and panels a/ to a3 indicate the corresponding, robust regression

when applying the three abovementioned strategies, respectively.

14 For its implementation, see function density.ppp of R package ‘spatstat’.
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Figure 4: Solving ‘exact fit’ issue
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The thinning procedure also allows to handle ‘broken’ and ‘poor’ fits (Figure 5): when extreme observations
are clustered, the expected regression lines are correctly estimated both for ‘broken fits’ and for ‘poor fits’,

allowing to correctly evaluate the hypothesis of presence of outliers.

Figure 5: Solving ‘poor fit’ and ‘broken fit’ cases
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Since the series analyzed are different in terms of sample sizes, variance of residuals and level of
contamination, and since each of the three methodologies has its own pros and cons, in order to take most out
of them, we apply them according to the following hierarchical order:
i) we run the jittering procedure, check that the null hypothesis for By, B;, and B, is not rejected and the
R-squared is above 80%. If such conditions are met, we classify the observation as an outlier or not
on the basis of the chi-square test on residuals; if not, we move to (ii);
ii) we run the standard robust regression, check that the null hypothesis for By, By, and f3, is not rejected
and the R-squared is above 80%. If such conditions are met, we classify the observation as an outlier
or not on the basis of the chi-square test on residuals; if not, we move to (iii);
iii) we run the thinning procedure, check that null hypothesis for By, By, and J3, is not rejected and the R-
squared is above 80%. If such conditions are met, then we classify the observation as outlier or not on

the basis of the chi-square test on residuals; if not, we do not evaluate the observation.

Finally, in order to put the results of the robust regression in stacking with those of other models, we introduce
a measure of anomaly for each data point inspected (score). Such scores are obtained by applying a min-max
scaler to the absolute value of residuals of each ‘acceptable’ regression (i.e. that satisfies the conditions above).
In Figure 6 the final scores of all the series for the BSI-AnaCredit and FinRep-AnaCredit comparison are
reported.

Figure 6: Scores distributions
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3.2 Autoencoders

An autoencoder (AE) is a special type of multi-layer neural network performing hierarchical and nonlinear
dimensionality reduction of data. The goal of an autoencoder is to replicate a given input as an output.
Therefore, the output is the input itself, reconstructed. Typically, the model architecture is layered and
symmetric, with the same number of nodes in the output and in the input layer, while nodes in middle layers
are fewer in number. Therefore, the only way to reconstruct the input is by learning weights so that the
intermediate outputs of the nodes in the middle layers consist in reduced representations. Figure 7 illustrates a

fully connected autoencoder architecture.
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Figure 7: Autoencoder architecture

Original image Reconstructed image

B

Autoencoders are unsupervised models, as they do not need labels since the target variable is the input itself.

Note that the outputs of the bottleneck layer represent the reduced representation, also known as ‘compressed
representation’.

Because of its reduced representation of data, autoencoders represent a useful approach to detect outliers
(Russo et al. 2019). The basic idea is that, in such dimensionality reduction, it is much harder to reproduce
outliers than inliers (normal points), so the error of outliers’ reconstruction will be larger and, therefore, better
identifiable.

Formally, autoencoders attempt to reconstruct an input image x € R**"*Y through a bottleneck, effectively
projecting the input (image) into a lower-dimensional space, called ‘latent space’. The projection

kxhxw _, pd

(dimensionality reduction) occurs through an encoder function E:R and the reconstruction

— R®*h>W “where d denotes the dimensionality of the latent space

through an inverse decoder function D: R¢
and k, & and w denote, respectively, the number of channels (equal to 3 in the case of Red, Green and Blue -
RGB —images, to 1 for grayscale images), the height and the width of the input image. Choosing d < k X h X
w prevents the architecture from simply copying its input and forces the encoder to extract meaningful features
from the input patches that facilitate accurate reconstruction by the decoder. The overall process can be

summarized as

£=D(E(x)) = D(2), )

where z is the latent vector and X the reconstruction of the input x. In our project, two models parameterize the
functions E and D: the convolutional autoencoder (AE-CNN) and the dense autoencoder (AE-DNN). In the
AE-CNN, c‘strided’ convolutions are used to downsample the input feature maps in the encoder and to
upsample them in the decoder, while in the AE-DNN, dense layers are used for the same tasks.

We propose to measure the reconstruction accuracy with the Structural Similarity Index Metric (SSIM), as in
Wang et al. (2004). This measure is designed to capture perceptual similarity; it captures inter-dependencies

between local pixel regions that are disregarded by the current state-of-the-art unsupervised defect
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segmentation methods based on autoencoders with per-pixel losses. The measure is not very sensitive to edge
alignment and attaches importance to salient differences between input and its re-construction. The SSIM
works in the spatial domain and, given two image patches x = {x;|i = 1, ...,P}andy = {y;|i = 1, ..., P}, it s

defined as

SSIM(X, y) _ (Z,ux,uy+c1)(20xy+c2) (3)

(uzud+c,)(02+05+c;)

where u, o are, respectively, the sample mean and sample standard deviation, gy, is the sample covariance

between x and y and (¢, ¢;) are two positive stabilizing constants. The resultant SSIM index is a real value
that could be normalized within the range [0, 1], where 1 indicates perfect structural similarity that can be
achieved only in case of two identical sets of data, while 0 denotes the absence of any degree of structural
similarity. Following this approach, a loss function is derived as a mean of structural dissimilarity indexes

(DSSIM), i.e. as the mean of the complement to 1 of the SSIM '° over all images
1 .
L5M(I) = 2 3,(1 - SSIM(i, ), 4)

where [ is the set of all images. This loss function is used for AE-CCN models, while in the case of AE-DNNs
the mean square error (MSE) is used.

The key idea of our model is to train an autoencoder on BSI (and FinRep) data in order to learn their ‘normal’
structure and to use it to identify abnormal structures (i.e. anomalous data) in AnaCredit. This method provides
an overall assessment of all data reported by each bank for a given reference date. The identification of the
reporting components that are anomalous occurs based on a score function, as described below.

The input data for the two neural networks are, respectively, the complete report of all series of a bank at a
given reference date for the AE-DNN and their transformation in image for the AE-CNN. To create the image
we use the collected scaled data to derive the auto cross-product: the result of this operation is a matrix whose
elements are in the [0, 1] range. This matrix can be regarded as an image in grey scale where each pixel is
originated from each value of the matrix; each value of the matrix gives the grey level to color the pixel. The
entries of the matrix have also a statistical meaning: each element gives the contribution of the interaction of
the single component of the data collected with respect to the others. The final selected architecture is different
for AE-DNN and AE-CNN. In the case of AE-DNN, the encoder and decoder networks consist of 2 fully-
connected layers with respectively 150 and 28 hidden units, with LeakyReLU as activation function. The first
layer also contains a dropout (Srivastava et al., 2014) of 5%. The bottleneck layer is set as one fully connected
layer with 20 hidden units, resulting in a 20-dimensional latent space.

In the case of AE-CNN, the encoder and decoder networks are comprised of convolutional layers with batch

normalization and a max-pooling window of 2x2 after each convolution. The sigmoid as activation function is

15 For more details, see Brunet et al. (2012).
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used and the padding to reproduce the same dimensions. The encoder network is structured in a stack of three
hidden layers with convolutional filters of respectively 16, 32, 16 units and kernel sizes of 3x3. The bottleneck
consists of a convolutional layer with 4 convolutional filters of 23x23 size. Regarding the decoder network, its
structure mirrors the encoding part having an up-sampling step in substitution of the max-pooling.

Training these two networks on BSI (and FinRep) dataset, which we assume are of a better quality, generates
a distribution of the losses (MSE or DSSIM) associated with the entire dataset reported by each bank. This
distribution is compared with the one derived from the application of the model to the AnaCredit dataset.
Figure 8 illustrates, as an example, the loss distributions (and relative cumulative distribution functions)
obtained by training the AE-CNN model on BSI and then applying it to AnaCredit. Similar distributions occur
for the comparison between AnaCredit and FinRep and in the cases of AE-DNN networks. For low values of
the dissimilarity index the two distributions overlap, as expected, while for high values we observe the

difference that need to be investigated.

Figure 8: Structural dissimilarity index
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The distribution of DSSIM or normalized MSE '® helps to label as anomalous or not anomalous the whole set
of AnaCredit data reported by each bank at a reference date, but it does not provide information on what
components (i.e. which of the BSI and the FinRep series) have contributed the most to such result. To this end,
we consider a score function mixing the loss function (DSSIM or normalized RMSE - /) value with the absolute

relative difference (f) between pairs of BSI (and FinRep) and equivalent AnaCredit series:

s(Lfy=1-f? )

16 We normalize the RMSE with the mean to obtain the coefficient of variation.
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where [ is the generic loss function for the model considered and f is the absolute relative difference between
a generic BSI (and FinRep) aggregate and the equivalent AnaCredit, considered squared to emphasize big
differences. Such a defined score function allows weighing the global evaluation (loss function) over all the
pairwise comparisons. Besides, we rescale the score values in the interval [0, 1] to have a normalized score,
which can be compared to those produced by the other models developed.

Such normalized scores (see Figure 9) allow discriminating between good (low score values) and anomalous

data (high score values).

Figure 9: Scores distributions
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In the following steps, the scores obtained above are used as input to the stacking models.

3.3 Stacking predictions in a semi-supervised learning setting

After training the basic models, for each observation (combination of reference date, reporting entity and
compared aggregate) we have three anomaly scores, two produced by the autoencoders and one by the robust
regression: these are the final predictions that are input to the meta-learners.

The robust regression scores exhibit low correlation with the autoencoders’ scores, while the two autoencoders’
scores do not have remarkable correlation among them. This is a common result in the two joint datasets

(Figure 10). As the scores within the two comparisons map different information, they are combined together

to produce a final forecast.
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The combination takes place with the stacking technique (Wolpert, 1992; Dzeroski and Zenko, 2004), i.e.

through a meta-learner using the abovementioned scores (predictions) as input for its forecast (Figure 1).

Figure 10: Correlation between learners’ scores
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Stacking models typically yields a better performance than each of the input learners. Stacking models require

the existence of labels, i.e. a response variable that is attempted to replicate. To get a response variable, some
cases have been sampled and verified with banks, while others have been pre-labelled on the basis of the
domain knowledge of the analysts. Such information is bound to learner scores, obtaining a final partially
labelled dataset on which we can train meta-learners in a semi-supervised learning paradigm (Chapelle ef al.,
2006; Gonzalez et al., 2019).

With regard to the pre-labeling, based on domain knowledge, we mark as ‘correct’ (label 0) observations for
which the difference between the amounts in BSI (FinRep) and the corresponding amounts in AnaCredit is
deemed very small. In addition, we have marked as ‘anomalous’ (label 1) those for which the same distance is
far negative, i.e. less than a chosen percentile of the empirical distribution.

The sampled cases are selected following a stratified sampling approach using the Neyman’s optimal criterion
(Neyman, 1934). The stratification is obtained by considering the joint distribution of the scores appropriately
discretized in binary values'’, so that each observation is classified to a specific stratum. Neyman's optimal
criterion is used with reference to the different variability of the average scores and to the sampling cost of
each stratum, the latter being inversely proportional to the median distance of the difference between the
amount of BSI (and FinRep) and the corresponding amount of AnaCredit. At this step, the sample size remains
determined '® and the units are selected within each stratum with simple random sampling without replacement.
Each sampled unit is analyzed with the bank that has reported it and this leads to the attribution of a response

(R) that confirms or not the correctness of the AnaCredit data.

17 The scores are converted into binary coding, choosing the value of 0.2 as threshold.
18 For more details, see Table Al in Appendix A.
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Moving to the meta-learners, two different semi-supervised approaches are considered. Following the first
semi-supervised approach, we develop and compare models in a context where the sample distribution of
anomalous and not-anomalous cases within strata based on responses received have been previously reported
to the universe of observations. In the second semi-supervised approach, the reporting of the sample responses
to the universe and the estimation of the parameters of the models occurs in the training phase.

In the first setting, the completion of the labeling is performed following a Monte Carlo simulation approach.
Pseudo labels (i.e. simulated responses) to the not-sampled and not-pre-labelled observations are assigned
randomly by replicating the sample distribution of the responses received by banks within each stratum. By
repeating this pseudo labeling over a sufficiently high number of times (we choose N = 1000), we obtain a
dataset with this set of pseudo response variables, where each is composed by sampled/pre-evaluated labels
(R) and simulated labels (Z).

On this enriched dataset, we train four different meta-learners: a logistic regression (LOGIT), a k-nearest
neighbor (KNN), a random forest (RF) and a support vector machine (SVM). Each of these models has been
optimized by cross-validation and the training is performed over the N simulated response variables. The final
prediction is obtained as the central value of the N simulated predictions.

In this way, for a given reference date ¢ and with respect to each bank i and sub-portfolio of loans j, we train
four different models on the full vector of responses (R and Z) able to combine the predictions of the underlying
scores exploiting different combination paths. Afterwards, we compare the model predictions and choose the
best one with regard to some appropriate reference measures '°. F1-score is our preferred reference measure to
address the issue of the unbalanced classes (of 0 and 1) in the variables R and Y, but we provide the results
also obtained for other measures, e.g. precision rate, recall, etc.

As regards the LOGIT, denoting by p; j: = Pr(?i, jt = 1) the probability of an observation to be an outlier,
where i, j, ¢ represent, respectively, a bank, a sub-portfolio of loans and a given reference date, the model is

described by the following equation:

lije= 121;";; = Bo + B1ScoreRobReg; j; + B,ScoreCNN; j; + f3ScoreDNN; j. + Oy + €, (6)
where O is a vector of control variables, i.e. dummy variables for the identification of re-aggregations of the
analyzed aggregated series, and ¢; ;; is the noise term. In order to train the meta-learner, we use the weighted
accuracy - with optimal weights®® chosen for non-anomalous and anomalous data respectively - to cope with
the imbalance in the responses. The optimal weights are obtained at the maximum value of the average F1-
score calculated on the training set by employing the five-fold cross validation.

As regards the other three models, the generic function describing each of them is:

19 See Figure A5 in Appendix A.
20 See more details in Figure A6 in Appendix A.
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ﬁ‘j_t = f(ScoreRobRegi_j,t,ScoreCNNi_j’t,ScoreDNNi_j,t, (E)) + &t (7

where f(+) is a different function based on the model type and &; j ; is the noise term. Also for these models,
the meta-parameters are calibrated on the training set by employing the five-fold cross validation, maximizing

the average F1-score.

In the second setting, semi-supervised models for the equation 7 are trained by using only the sampled and
pre-labelled variable (R) instead of ¥, as the labeling is carried out within the model estimation process. In this
class of models, the following algorithms have been used: Self-training, SETRED, Tri-training, Co-Bagging
and Democratic-Co.

The Self-training model (Yarowsky, 1995) is probably the earliest idea about using unlabelled data in
classification. This wrapper-algorithm, starting from only the labelled data, iteratively uses a supervised
learning method trained only on the part of the dataset labelled until the current iteration. At each step, it labels
a part of the unlabelled points according to the current decision function until the whole dataset is labelled.
Similarly, the SETRED algorithm (Li and Zhou, 2005) first learns from labelled examples, and then iteratively
chooses to label a few unlabelled cases on which the learner is most confident in prediction and adds them to
its labelled set for further training at next step. However, at each iteration SETRED does not completely accept
all the pre self-labelled examples, but it actively identifies the possibly mislabelled examples by testing a
predefined null hypothesis with the local cut edge weight statistic associated with each self-labelled example.
If the result of the test falls in a left rejection, the example is regarded as a good one; otherwise, it is a possible
mislabelled example and it should not be included to the learner’s training set.

The Tri-training algorithm (Zhou and Li, 2005) generates three classifiers from the original labelled set and
labels an unlabelled observation if the other two classifiers agree on the labeling, under certain conditions.
This procedure is repeated until convergence (generally with the complete labeling of the dataset).

The Co-Bagging method (Blum and Mitchell, 1998) assumes that the feature space can be split into two
different conditionally independent views and that each view is able to predict the classes on its own. It trains
one classifier in each specific view, and then the classifiers learn from each other the most confidently predicted
examples from the unlabelled pool. The process continues until a predefined number of iterations is reached.
The Democratic-Co algorithm (Zhou and Goldman, 2004) uses multiple algorithms, instead of multiple views,
to enable learners to label data from each other. This technique leverages off the fact that different learning
algorithms have different inductive biases and that better predictions can be made by the majority vote.

In the next Section, we present the empirical results of the abovementioned models.
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4 Results and discussion

The empirical results of the models introduced in the previous section are presented in the following two sub-
sections, the first devoted to the comparison between AnaCredit and BSI, the second to that between AnaCredit

and FinRep.
4.1 BSI vs. AnaCredit: empirical evaluation

The data dimension used for training and testing the models are reported in Table 1.

Table 1: Observations in training and test set

1° semi-supervised

2° semi-supervised

setting setting
Training 5440 6199
Test 2331 1572
Total 7771 7771

The different size of the training and the test sets in the two approaches derives from the fact that in the first
setting labels are available for all observations, being simulated via Monte Carlo. In the second setting, we
need to consider only labelled observations in the test set; therefore, we assign all unlabelled observations to
the training set and then split the pre-labelled observation between training and test set according to a 50%

share.

Before evaluating the meta-learners, we measure the performance of the three learners (basic models) with
standard performance metrics together with the balanced accuracy (in order to take into account the imbalance
of the target variable Y in our dataset). Table 2 presents the performance metric results that can also be

considered as benchmarks for the meta-learners results, presented in Section 3.

Table 2: Performance of the base models (learners)

Sample cases

RobReg DNN CNN
Precision| 0.09507  0.82353 1.00000
Recall| 0.04500  0.02333  0.01333
Specificity| 0.79965  0.81260  0.81122
Accuracy| 0.73601  0.81266  0.81170
F1score| 0.06109  0.04538  0.02632
Balanced accuracy | 0.42233  0.41797  0.41228

All the metrics considered in Table 2 are evaluated on a test set representing 30% of the available data. The
Table clearly shows that the three basic models RobReg, DNN and CNN perform quite well in terms of

accuracy, with values equal to 0.736, 0.813 and 0.811, respectively.. Unfortunately, since our input dataset is
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biased towards non-anomalous cases (0.79 and 0.21) in Y variable, such models perform poorly when metrics
taking into account the imbalance are considered: for instance, the balanced accuracy drops to 0.422, 0.418,
and 0.412, respectively.

To strengthen the power of prediction of our models, a stacking step is further considered. In the first place, a
baseline logistic model combining the predictions of the three basic models only on the sampled and pre-
labelled data is developed. In particular, this baseline model is trained with a weighted accuracy in order to
take into account the imbalance between non-anomalous and anomalous cases. Such model presents the
following main results (Table 3): the F1 score is 0.997, the balanced accuracy 0.998, the precision 0.981 and
the recall 0.988.

The performance over all the dataset is presented in Table 3 that shows the central values of the different meta-

learners trained on the 1000 simulated pseudo labels.

Table 3: Performance of the models within the first semi-supervised setting

Baseline* LOGIT1 KNN RF SVM
Precision 0.981+0.019 0.901+0.016 0.848+0.014 0.864+0.018 0.830+0.021
Recall 0.988+0.011 0.433+£0.161 0.459+0.016 0.463+0.014 0.514+0.017
Specificity 0.994+0.006 0.867+0.003 0.871+0.003 0.872+0.003 0.882+0.004
Accuracy 0.997+0.003  0.870+0.004 0.869+0.004 0.872+0.004 0.876+0.005
F1 score 0.997+0.002  0.585+0.017 0.596+0.015 0.603+0.015 0.635+0.017
Balanced accuracy  0.998+0.001  0.650+0.009 0.665+0.009 0.668+0.009 0.698+0.010

* Only on sampled cases.

All the metrics are evaluated on five test sets, each representing 30% of the data and obtained setting a different
random seed: the central value of the different metrics is reported together with the deviation of this value from
the minimum and maximum, in order to assess metrics’ variability. The linear SVM yields somewhat better

results in terms of F1 score and balanced accuracy when trying to replicate the baseline.

As regards the second setting of semi-supervised algorithms, the results highlighting their performances are

shown in the following table:

Table 4. Performance of the models within the second semi-supervised setting

Self-training SETRED Tri-training Co-Bagging Democratic-Co
Precision  0.995+0.005  0.993+0.007  0.993+0.007  0.989+0.004  0.993+0.007
Recall 0.995+0.005  0.988+0.012  0.987+0.011  0.995+0.005  0.989+0.008
Specificity  0.999+0.001  0.997+0.003  0.997+0.002  0.999+0.001 0.997+0.002
Accuracy 0.998+0.001  0.997+£0.000  0.997+0.000  0.997+0.000  0.997+0.000
F1score 0.995+0.003 0.991+0.003  0.991+0.002  0.992+0.002  0.992+0.002
Balanced accuracy 0.997+0.003  0.993+0.007 0.992+0.007 0.997+0.003  0.993+0.005
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All the models use the support vector machine as learner (Democratic-Co use also a KNN and a C5.0) and all
the metrics are evaluated on the test presented in Table 1. Additional four runs using different random seeds
are used to generate new training and test sets, in order to assess metrics’ variability. Based on the F1 score,
the best performer is the self-training algorithm, showing a central value of 99.5%. If we compare it to the
baseline model, we find a good replication in the F1-score and better results in terms of precision and recall.

Pairwise comparison of the various models is carried out by using the McNemar’s Test for binary
classification. Table 5 contains the p-values for the null hypothesis that two models do not have significant
differences in their label predictions. A small p-value denotes that there is a statistical significant difference in

the power of prediction between the two models.

Table 5: Predictions comparison (*)

Self-training SETRED Tri-training | Co-Bagging | Democratic-Co

Self-training 0.009 0.138 0.003 0.013

SETRED 0.269 0.000 0.251
Tri-training 0.002 0.025
Co-Bagging 0.000

Democratic-Co

(*) P-value mean over the five test set. A p-value lower than 0.05 indicates a significant

disagreement between the model predictions.

Table 5 shows that the self-training predictions are statistically equivalent to the tri-training ones. Since the
self-training model gets the higher Fl-score, and all the differences with SETRED, Co-Bagging and
Democratic-Co are statistically different from zero, we can conclude that the self-training model is the best

performer.
4.2 FinRep vs. AnaCredit: empirical evaluation

The data dimension used for the training and test set are reported in Table 6.

Table 6: Observations in training and test set

1° semi-
supervised 2° semi-supervised
setting setting
Training 26035 29680
Test 11201 7656
Total 37336 37336
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As in the BSI comparison, the different size of the training and the test sets in the two approaches derive from
the constraint of assigning, in the second semi-supervised setting, a share of 50% of pre-labelled observations

to the test set and the rest of observations to the training set, while in the first setting it is not present.

In this case, we have a greater number compared to the BSI-AnaCredit case due to more disaggregated series
considered in FinRep. As for BSI-AnaCredit, we first measure the performance of the three underlying models
with standard performance metrics together with the balanced accuracy (imbalance of target variable Y). The

results, reported in Table 7, are useful in terms of benchmark to the meta-learners presented in Section 3.

Table 7: Performance of the base models (learners)

RobReg DNN CNN
Precision  0.05330 0.83333 0.75000
Recall  0.05263 0.00283 0.00170
Specificity  0.82913 0.84726 0.84711
Accuracy 0.71184 0.84725 0.84708
F1score 0.05296 0.00564 0.00339
Balanced accuracy  0.44088 0.42505 0.42441

All the metrics are evaluated on the test set representing 30% of the available data. The Table clearly shows
that the three models RobReg, DNN and CNN perform quite well in terms of accuracy, with values equal to
0.712, 0.847 and 0.847, respectively. Therefore, their predictive capacity, considering the two classes of
anomalous and non-anomalous data at the same time, is quite high. However, the dataset we are considering
is unbalanced towards anomalous cases (only 16%). When we move to measures that take into account such
imbalance, their performance decreases; for instance, the balanced accuracy falls to 0.441, 0.425, and 0.424,
respectively.

Moving to the stacking step, the results of the performance measures for a weighted logistic baseline (only on
sampled and pre-labelled data) and for LOGIT, RF, KNN and linear SVM models (over all the dataset) are
reported in Table 8.

Table 8: Performance of the models within the first semi-supervised setting

Baseline* LOGIT KNN RF SVM
Precision 0.998+0.002 0.833+0.008 0.501+0.005 0.747+0.010 0.503+0.006
Recall 0.999+0.001  0.367+0.009 0.204+0.004 0.434+0.008 0.380+0.013
Specificity 0.996+0.004  0.890+0.002 0.860+0.002 0.899+0.001  0.884+0.002
Accuracy 0.998+0.003 0.886+0.002 0.836+0.002 0.885+0.002 0.837+0.002
F1score 0.997+0.003 0.508+0.009 0.290+0.005 0.548+0.009 0.432+0.010
Balanced accuracy 0.997+0.003  0.628+0.005 0.532+0.002 0.667+0.005 0.631+0.006

* Only on sampled cases.

All the metrics are evaluated on five test sets, each representing 30% of the data, obtained by setting a different

random seed; the central value over the five test sets is reported for the different metrics and the deviation of
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this value from the minimum and maximum value so as to assess metrics’ variability. The various models

attempt to replicate the baseline; although far from it, the model with the best results is the random forest, with

an Fl-score equal to 0.548 and a high precision of 0.747.

As regards the second approach of semi-supervised algorithms, the results highlighting their performances are

shown in Table 9.

Table 9: Performance of the models within the second semi-supervised setting

Self-training SETRED Tri-training Co-Bagging Democratic-Co
Precision 0.723+0.167  0.929+0.072  0.825+0.075  0.825+0.075  0.833+0.001
Recall 0.513+0.058  0.487+0.058  0.504+0.042  0.523+0.023  0.179+0.179
Specificity  0.605+£0.079  0.656+0.106  0.653+£0.097  0.653+0.097  0.500+0.107
Accuracy 0.697+0.054  0.733+0.054  0.715+£0.036  0.715+0.036  0.518+0.125
F1score 0.598+0.098  0.634+0.034  0.634+0.034  0.650+0.018  0.500+0.001
Balanced accuracy 0.563+0.065  0.582+0.072  0.595+0.053  0.595+0.053  0.335+0.139

All the models use C5.0 as learner (Democratic-Co use also a KNN and a SVM) and all the metrics are
evaluated on the test presented in Table 6. Additional four runs using different random seeds are used to
generate new training and test sets in order to assess metrics’ variability. According to the Fl-score, Co-
Bagging is the best performers, followed by the SETRED and Tri-training algorithms.

Pairwise comparisons of various models is carried out by using the nonparametric McNemar’s Test for binary
classification. Table 10 contains the p-values for the null hypothesis that each pair of models does not show
significant differences in their label predictions. A small p-value denotes a significant difference
(improvement) in the prediction between the two models. Results reported in Table 10 show that the
predictions of Co-Bagging is equivalent to the others. Therefore, there is not a clear winner from this
competition and the Co-Bagging, SETRED and Tri-training algorithm seems to be equally efficient. Only the

Democratic-co presents a rather poor performance.

Table 10: Predictions comparison (*)

Self-training | SETRED | Tri-training | Co-Bagging | Democratic-Co

Self-training 0.473 0.787 0.833 0.080

SETRED 0.488 0.573 0.184

Tri-training 0.500 0.089

Co-Bagging 0.087
Democratic-Co

(*) P-value mean over the five test set. A p-value lower than 0.05 indicates a significant

disagreement between the model predictions.
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5 Summary and conclusions

AnaCredit is a relatively recent ESCB dataset; it contains granular information (at contract and instrument
level) on loans that banks grant to legal entities. Within the ESCB, two other ‘historical’, high quality datasets
providing similar information on loans are the BSI and the FinRep, which are typically used in monetary policy
and supervisory analyses respectively. Both of them can be exploited for a pairwise comparison with
AnaCredit data to enhance the outlier detection process in the AnaCredit granular survey.

More specifically, we explore the use of machine learning techniques to carry out the above cross-checking
with specific reference to loan portfolios, in a framework that takes the time dimension into account and is
bank-specific. We resort to three models — a robust regression one and two autoencoder models — that grasp
the existing relationships between each benchmark dataset — BSI and FinRep — and AnaCredit in order to
identify potential outliers in the latter one.

Each model assigns an ‘anomaly score’ to each observation considered (uniquely identified by reporting date,
entity, and loan aggregate). These anomaly scores are combined in order to yield a better forecast using a
stacking approach under a semi-supervised learning context. Indeed, our approach lies in a semi-supervised
environment having true anomalous or non-anomalous data labels only for a subset of the datasets. The true
labels are based on both the domain knowledge of the analysts and the responses directly received from
reporting entities on a number of observations, which are sampled by using a selection schema that is able to
reproduce the distribution of scores assigned by the three models.

In this semi-supervised context, we consider two settings. In the first one, where the true labels have been
reported to the universe of observations under a Monte Carlo simulation, we train logistic, random forest, KNN
and SVM models and compare the results obtained from each of them. In the BSI-AnaCredit comparison, the
SVM model has the highest F1-score, whereas in the FinRep-AnaCredit comparison the random forest is the
better learner in terms of the same statistic. In the second setting, where the expansion of true labels takes place
within the learning of the models themselves, we train Self-training, SETRED, Tri-training, Co-bagging and
Democratic-co models and compare their results to the baseline. We find that for the BSI-AnaCredit
comparison, the self-training gives the better Fl-score, while for FinRep-AnaCredit comparison, the Co-
Bagging model turns out to have the best performance. Considering all the models developed, we find that the
algorithms of the second settings of semi-supervised models outperform those of the first settings.

Possible refinements of the paper, which are left to future developments, might consist in developing the
current base learners: for the robust regressions we could move to a panel approach and for the autoencoders
to the variational autoencoders. Further improvements are related to the optimization of the parameters
underlying the second setting semi-supervised models and the use of other disaggregated BSI and FinRep
series.

The framework developed in this paper is quite flexible and general and can be applied to carry out pairwise

comparisons between datasets on similar phenomena but with different levels of granularity. As shown in our
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empirical exercise, this approach exhibits important advantages not only in terms of a more accurate detection
of potential outliers in a highly granular database, but also from the point of view of reporting banks that will

have to cross-check such anomalies and decide whether to confirm or revise the data.
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Appendix A - Tables and Charts

Figure Al: BSI aggregates
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Figure A2: AnaCredit and BSI series (examples)
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Figure A3: AnaCredit and FinRep series (examples)
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Table Al: stratified sampling dimension

AnaCredit-BSI AnaCredit-FinRep

Strata not sampled sampled not sampled sampled
0-0-0 4192 11 22210 9
0-0-1 2 2 35 2
0-1-0 13 2
0-1-1 4 2
1-0-0 425 11 3529 8
1-0-1 8 3 3 2
1-1-1 0 1

0-cases 2529 9761

1-cases 587 1756
Total 4627 3144 25794 11542

x-y-z stratum 1is identified respectively by Robust Regression (x), CNN (y), DNN (z) by binary
prediction (0 not anomaly, 1 anomaly). 0-cases previously classified not anomalies and 1-cases
previously classified anomalies

Figure AS: performance metrics
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Figure A6: optimizing meta-parameters

BSI-AnaCredit — logit] model

0.45-

<
o~
S

Average 5-CV F1 score
&

0.30-

0.00 005 0.0 015 020 025
zero-weight

BSI-AnaCredit — knn model

Average 5-CV F1 score
o o
8 3

o
o
>

0 10 20 30 40 50
k
BSI-AnaCredit — random forest model

0.63-

=
o
[}

Average 5-CV F1 score
o
>

o
o
S

0.59-

N
w
IS

mtry
BSI-AnaCredit — SVM model

0.65-

o
@
o

Average 5-CV F1 score
&

o
o
=

1000 2000 3000 4000 5000
cost

o-

FinRep-AnaCredit — logit] model

()
5 040
O
7]
L
>
o
n
&
@ 0.35-
[]
>
<
000 005 0.0 0415 020 025
zero-weight
FinRep-AnaCredit — knn model
0.30-
©
Q
o
2 0.20-
w
>
(@]
0
(]
o
@
[
Z 028-
0 10 20 30 40 50
k
FinRep-AnaCredit — random forest model
© 0.55-
9]
a
i
B 054-
)
(0]
o
o
[
Z 053-
0.52- ' '
1 2 3 4
mtry
FinRep-AnaCredit — SVM model
o
o
S 0.40-
(2]
L
>
Q
wn
()
©0.35-
)
>
Z
0.30-
0 1000 2000 3000 4000 5000
cost

The parameters have been optimized with respect to the mean value of the simulated response variables.
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Appendix B - Robust regression equation

Let P; j s be the amount of loan s of the subportfolio j granted from bank i at reference date 7. Then the

aggregated amount for bank 7 and the j-¢4 subportfolio at date ¢ is given by:

(B.1) Fije = X024 P,

where J; j ; is the number of loans in the the j-th subportfolio.

In the AnaCredit framework, there are different criteria triggering a reporting obligation of loans (i.e. that
regulatory threshold of 25,000 euros, the counterparty classified as legal persons, etc.). Therefore, the sum is

only restricted to such eligible loans:

(B.2) A= Zélitl Pyjts1(s:seeligible loans),
where I(x) is an indicator function which is equal to 1 in case of eligible loan. 4; ;. is by definition less or
equal to F; j ;. Since we have errors in AnaCredit data (§; j;), we can express the amount observed: 4; j + as

*

the product of the ‘true’ value Aj;, and an error & A; ;. = A7 ; * &; j . Therefore, the difference between

the logarithm two aggregates of the two compared datasets can be expressed as follows:

(B.3) log(4; ) —log(F ) = log(A; ) +10g(&; ) — log(Fy )

For an unbiased estimator T ; ; of the ‘true’ difference, in the form T; j, = log(4; ;) — log(F; ) — u; ¢, SO
the equation (B.3) can be written,

(B4) log(4;j¢) = log(Fy ) + T je +10g(&ije) + Uit
The previous equation represents the theoretical model, in which the reporting error adds to a white noise u; j ;.
An easy empirical specification to capture the relation between the two variables is by means of an

Autoregressive Distributed Lag model (Granger, 1981) of order (1,1):

(B.5) log(Aji) = ag + arlog(A;ji—1) + azlog(Fj ) + azlog(Fyje—1) + €t
As we are interested to capture the differences in the aggregated amounts as independent variable, in order to
specify T as function of past differences, we impose the restriction @3 = —a;. This restriction allows to obtain

the following restricted model:

(B.6) log(A; ;) = ao + azlog(Fyj ) + azlog(Fj—1/Aijt-1) + €ije

When E(Tl-,j,t) = azlog(Fjt—1/Aijt-1) and ag =0, a, =1, this last equation is equivalent to our
theoretical model in B.4, where €; j» = log(¢; j ) + ;j ¢ Since T is non-positive and the difference referred
to t-1 is non-negative, then the coefficient a3 must be non-positive. It’s worth to noting that the error reporting
term (§; j +) is only included in the error component term of equation B.6.

In our work, we have applied a log transformation?! of the original data values.

2' We adopt the logIp function of x, that is the natural logarithm of x+1.
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Goal

Strengthen the system of quality
controls overseeing the
AnaCredit, BSI and FinRep,

surveys

Create cross- and personalized- checks for
identifying potentially anomalous reports

Pair-wise comparison



Data
4

Italian primary reporting: more granular
series of BSI and FinRep

Monthly cross-dataset,
| J December 2018-March 2020

. 1. Outstandig nominal amount of
loans

Quarterly cross-dataset,
December 2018-March 2020

: 1. the net and gross carrying amount,
FIN Rep ] 2. the accumulated impairment amount,

3. the accumulated changes in fair value
due to credit risk




Proposed methodology

We develop three (k=3)

learners:

Learner1

Robust regressions for
linear relashionship
Learner ...
) Dense Autoencoder

(BSI or FinRep)
Learner k Convolutional Autoencoder

The predictions of each learner are
anomaly scores normalized in the unitary
interval




Proposed methodology

Stacking the prediction in
semi-supervised seftings

Pre-labelled cases: from a
sample basis

(revisions for future
extensions)

Learner...

Learnerk

Labels

*1n our work k=3




Proposed methodology .

Stacking methods on partially labelled
datasets:

First setting (stafic approach)

Pre-labelled cases are reported to the universe
INn a Montecarlo simulation

Second setfing

Semi-supervised approch: iterative labelling



Results

First setting

Baseline*
LOGIT1
KNN

Co-Bagging
Democratic-Co

AnaCredit-BSI

Precision

0.981+0.019
0.901+0.016
0.848+0.014
0.864+0.018
0.830+0.021

F1 score

0.997+0.002
0.585+0.017
0.596+0.015
0.603+0.015
0.63510.017

AnaCredit-BSI

Precision

0.995+£0.005
0.993+0.007
0.993+0.007
0.989+0.004
0.993+0.007

F1 score

0.995%0.003
0.991+0.003
0.991+0.002
0.992+0.002
0.992+0.002

AnaCredit-FinRep

Precision

0.998+0.002
0.833+0.008
0.501+0.005
0.747+0.010
0.503+0.006

F1 score

0.997+0.003
0.50810.009
0.290+0.005
0.548+0.009
0.432+0.010

AnaCredit-FinRep

Precision

0.723+0.167
0.929+0.072
0.825+0.075
0.825+0.075
0.833+0.001

F1 score

0.598+0.098
0.634+0.034
0.634+0.034
0.650+0.018
0.50040.001
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