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Abstract 

Payments and market infrastructures are the backbone of modern financial systems and play a              
key role in the economy. One of their main goals is to manage systemic risk, especially in the                  
case of systemically important payment systems (SIPS) serving interbank funds transfers. We            
develop an autoencoder for the ​Sistema de Pagos Interbancarios (SPI) of Ecuador, which is the               
largest SIPS, ​to detect potential anomalies stemming from payment patterns. Our work is             
similar to Triepels-Daniels-Heijmans (2018) and Sabetti-Heijmans (2020). We train four          
different autoencoder models using intraday data structured in three time-intervals for the SPI             
settlement activity to reconstruct its related payments network. We introduce bank run            
simulations to feature a baseline scenario and identify relevant autoencoder parametrizations           
for anomaly detection.  

The main contribution of our work is training an autoencoder to detect a wide range of                
anomalies in a payment system, ranging from the unusual behavior of individual banks to              
systemic changes in the overall structure of the payments network. We also found that these               
novel techniques are robust enough to support the monitoring of payments’ and market             
infrastructures’ functioning, but need to be accompanied by the expert judgement of payments             
overseers. 
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1.  ​Introduction 

Financial market infrastructures (FMIs) underpin the financial system and the economy by            
enabling multilateral transactions under certain rules and common platforms. They entail by            
design financial and operational risks related to interbank funds transfers. Given their systemic             
importance, central banks need to be able to monitor their activity and to identify anomalous               
events, and for these purposes artificial neural networks result purposeful. 

According to the CPMI-IOSCO Principles for Financial Market Infrastructures (PFMI), payment           
systems and FMIs should be properly designed to support their participants to manage and              
mitigate risks more efficiently, and have better liquidity management. Their performance is key             
to support the financial system’s health. Indeed, when payment processing rules or            
arrangements are not clear or comprehensive, payments and FMIs participants could take            
unnecessary. Likewise, if platforms are not resilient, the entire network could be endangered by              
cyber threats. In fact, poorly designed and operated payment systems and FMIs can contribute              
to exacerbate systemic crises. Contagion risk could impact the overall stability of the financial              
system. Therefore, the payment systems and FMIs must be robust and reliable, available even in               
times of stress  (CPMI-IOSCO, 2012). 

Monitoring payments and financial market infrastructures is one of the primary objectives for             
central banking to ensure that the above events take place. By overseeing the functioning of FMI                
and SIPS they can identify and address systemic risk events. Central banks have long worked in                
establishing an appropriate monitoring and risk management framework for SIPS, and other            
prominent payment systems and FMI. Oversight is also thought as a relevant task that fosters               
FMI good performance. This task is supported by several quantitative and qualitative tools,             
including international standards such as the PFMI, risk policies, Business Intelligence and other             
software tools for liquidity and collateral monitoring, business continuity plans, among others.            
Yet understanding the complexity of FMI and SIPS requires a powerful and well-designed             
toolkit. (CPMI-IOSCO, 2012) 

In light of this challenging task, we present an application of artificial neural networks for               
outlier detection, tailored to payment systems and FMIs. In our work, we focus on the major FMI                 
in Ecuador, the ​Sistema de Pagos Interbancarios ​(SPI), managing both wholesale and retail             
payment transactions. The SPI is a hybrid payments system performing Real-Time Gross            
Settlement and Deferred Net Settlement features.  

For the purpose of our work, payment systems can be efficiently represented as directed              
networks, where institutions are nodes and payment flows from an institution to another one              
constitute edges. There are payment flows or patterns of payment flows, i.e. network patterns,              
that can pose a systemic risk in case a particular participant, or a set of participants, is unable to                   
settle their transactions in a specific time interval. From an oversight point of view, it is crucial                 
to be able to determine a normal pattern in a payment network as well as to identify risky                  
events arising from anomalous patterns.  

In our work, we introduce and test a pattern recognition tool for anomaly detection based on an                 
autoencoder architecture. An autoencoder is an unsupervised feed-forward neural network that           
aims to reconstruct the input data at the output layer by passing through a lossy compression                
process that creates a lower-dimensional representation. This makes the model learn the most             
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important features inherent to the data. Once the autoencoder is trained and has learned the               
usual patterns, the anomaly detection is done through flagging those instances that have high              
reconstruction errors, which perhaps is an indicative of abnormal patterns. 

We trained four autoencoder models to identify common and anomalous payment patterns of             
financial entities (participants) in the SPI payments network. We present the results of the              
models that consist of anomalies between normal and unknown patterns of payment flows.             
These results can significantly contribute to oversight experts, to establish an alerting system             
and to anticipate potential risks in the SPI. The detailed set up, training and testing of our                 
models is further explained in the methodology section where we also provide information on              
the different architectures, dataset partitions' and data preprocessing taken. 

Our work is related to Triepels-Daniels-Heijmans (2018), Triepels-Heuver (2019), and          
Sabetti-Heijmans (2020). They also developed autoencoder approaches for both wholesale and           
retail payment systems, by training different models using daily payment flows, in some cases to               
identify financial stress in entities that have gone bankrupt. 

The main contribution of our work relates to training autoencoders able to detect a wide range                
of anomalies in the SPI, ranging from spotting the anomalous behavior of individual banks to               
detecting changes in the overall activity of the payments network. Our work highlights that              
these novel techniques are robust enough to support payments’ and market infrastructures’            
oversight, and ultimately to monitor financial stability, but need to be always in tandem with the                
expert judgement of central banking overseers.  

The remainder of the work is structured as follows. Section 2 surveys relevant literature that is                
closely related to our work. Section 3 describes the ​Sistema de Pagos Interbancarios ​and also               
provides a statistical analysis of the data. Section 4 introduces the methodology and             
autoencoder setup. Section 5 presents key results on the autoencoder performance and the             
bank run simulations. In Section 6 we discuss how our work can be further advanced. 

2. ​ ​A brief survey of literature 

Detecting outliers in a dataset is an old challenge in statistics (Edgeworth, 1887). Although the               
definition of anomaly can vary across different disciplines, the underlying statistical definition            
of anomaly is the same, i.e. a subset of data that behaves according to different patterns with                 
respect to those identified as the normal ones. This general definition suits perfectly the logic of                
many known machine learning algorithms. Not surprisingly, these algorithms have been           
developed and applied within many domains, e.g. intrusion detection, fraud detection, fault            
detection, as well as medical anomaly detection (Chandola, 2008).  

Hodge and Austin (2004) described three fundamental approaches for outlier detection. ​Type 1             
where the outliers are determined without any prior knowledge, this approach is analogous to              
unsupervised learning, where the learning algorithm is provided with an unlabeled dataset and             
it aims to find hidden patterns within the data. ​Type II ​requires pre-labeled data targeted as                
normal or abnormal, this approach is analogous to supervised learning, where the learning             
algorithm objective is to fit a function that reproduces the behavior of pre-labeled data in order                
to make predictions on unseen data. And, ​Type III ​that requires also pre-labeled but it only                
models normality - and in few cases abnormality - helping to define a boundary for normality,                
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this approach is analogous to semi-supervised learning, which is in the middle ground between              
supervised and unsupervised learning and can use both labeled and unlabeled data during the              
learning process. Hodge and Austin described different techniques from three fields: statistics,            
neural networks and machine learning. One can also find hybrid systems that combine             
techniques from these fields. As our work analyzes a dataset that ​a priori do not contain labels                 
on what is and what is not an anomaly, our methodology can be classified as ​Type I at first                   
glance, i.e. analogous to unsupervised learning. But given that after the fitting process we create               
bank run simulations, which can be considered in a way as anomalies, to test the capacities of                 
the autoencoder to identify them, it is rather appropriate to state that our methodology falls               
within ​Type III​, i.e. analogous to semi-supervised learning.  

A challenge for outlier detection is associated with the presence of high dimensionality in the               
data. There are different approaches (Barnett and Lewis, 1994; Arning et al., 1995) to              
dimensionality reduction, including clustering methods (Knorr and Ng., 1998). One way to            
tackle high dimensionality is to make parsimonious projections in lower spaces and then             
proceed with the anomaly detection as proposed in Aggarwal (2001). One of the main              
properties of the data in this paper is that the number of features is close to the number of                   
observations, thus high dimensionality needs to be taken under consideration; remarkably, an            
advantage of the autoencoder is that - by design - the encoding creates a lower representation of                 
the data that learns the most relevant features.  

Autoencoders have been previously used for outlier detection. Hawkins et al., (2002) developed             
a methodology for an autoencoder with two different datasets, one dataset for network             
intrusion detection and the other for breast cancer identification. In the first case all outliers               
were identified and, in the second case over 75% out of the total, showing the robustness and                 
transferability of the methodology.  

Another case in which an autoencoder is implemented to detect anomalies is found in Williams               
et al. (2002). Their results were compared with three techniques: i) the Donoho-Stahel             
estimator, ii) an outlyingness estimator proposed in Hadi (1994) based on both the means and               
covariances of the variables and the Mahalanobis distance, iii) and a model of mixture-models              
clustering. The comparison was done fitting and testing the techniques on many datasets, where              
each dataset contained labels that identified the abnormal instances; the datasets relates to             
information from different areas such as breast cancer, internet intrusions and other topics. The              
results show that for small datasets, the compared techniques show a good level of              
performance, with clustering being the one that presented the most difficulties in detection, but              
in the case of longer datasets, the autoencoder showed better performance identifying            
anomalies. 

In the context of finance, applications of anomaly detection are found in Aleskerov et al. (1997),                
Ghosh and Reilly, (1994), Dorronsoro et.al. (1997), and Baruse et al. (1999), and are mainly               
concerned with credit card fraud detection. Nevertheless, the application of unsupervised           
machine learning methodologies for payment systems’ oversight is relatively new among           
central banks and relevant authorities. In a recent series of papers (Triepels-Daniels-Heijmans,            
2018; Sabetti-Hejmans, 2020), the autoencoder architecture has been shown to be effective for             
learning patterns of normal transaction data and to detect anomalous payments, using the             
autoencoder reconstruction error. In Triepels-Daniels-Heijmans (2018) two autoencoders with         
one hidden layer were trained - one used a linear activation and the other one used a sigmoid                  
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activation in the hidden layer. They used data from TARGET2 (the RTGS for the Eurosystem)               
settlement system to reconstruct liquidity-related information and also introduced a bank run            
simulation. The paper reported that the data presented relevant features of the payments             
network enabling the autoencoders to detect changes in the payments flow behavior.            
Sabetti-Heijmans (2020) compared the performance between one hidden layer and two hidden            
layers autoencoders, using data from the Canadian ACSS (a Canadian retail payment system).             
They found that the one hidden layer autoencoder had lower validation error compared with              
the two hidden layers autoencoder, but the two hidden layers autoencoder displayed a lower              
variance that can lead to better results when using testing data.  

Our work follows the general approach of Triepels-Daniels-Heijmans (2018) and          
Sabetti-Heijmans (2020), and it contributes to the literature by analysing a new dataset for the               
Ecuador SPI and presenting a detailed review of alerts, illustrating the ample range of anomalies               
that can be detected by the autoencoder.  

3. The ​Sistema de Pagos Interbancarios  

3.1 SPI main features  

The Central Bank of Ecuador (BCE) must provide the physical and electronic means of payment               
necessary for the proper functioning of the country's economy. In this respect, the BCE is the                
owner and operator of several payment systems, which as a whole are known as the Central                
Payment System (SCP). The SCP entails the interbank funds transferring system for large value              
payments and it also supports settlement of private retail payment systems and securities             
clearing and settlement systems. Thus, the SCP represents the most relevant payment            
infrastructure for Ecuador.  

The underlying system that makes up the SCP is the ​Sistema de Pagos Interbancarios ​(SPI). The                
SPI settles 60% of the total payments in the SCP, for which reason, this system is deemed as the                   
major SIPS in Ecuador. In light of its importance, our work focuses on the SPI activity. The                 
relevance of the SPI is paramount. It provides an infrastructure for different types of              
participants. Within this universe, there are banks with a higher activity and make payments              
with the rest of the SPI participants. Some SPI participants only make transactions with few               
entities in the payments network. It also channels all Government payments as well as 98% of                
wholesale and retail payments from the private sector. On average, the SPI processes 300,000              
transactions per day totaling USD 450 million.  

In terms of the clearing and settlement mechanism, the SPI makes the settlement of payments in                
three daily time-intervals. Each time interval represents an intraday settlement period for the             
interbank payments ordered by the financial entities in the SPI. These time-intervals are carried              
out at three different hours (08:30, 11:00 and, 16:30). Each time-interval is exclusive of the               
other, the net amounts between financial entities are cleared and settled at the end of each time                 
interval. The SPI only settles the operations of financial institutions that have liquidity in their               
accounts at the BCE to cover their net debit position at the time of the settlement of each of                   
these time intervals, otherwise the financial institution is excluded from the process. The latter              
in order to avoid liquidity risks for the entire SPI participants.  
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The SPI as any other payments and market infrastructure is subject to operational and financial               
risks. Technological advances such as malicious intruders or operational events experienced by            
a single participant, can both represent a major risk for the SPI and its participants, with                
undesirable negative effects in the financial system and, ultimately, the economy.  

Developing an automated oversight tool to detect atypical payments or payment behavior is a              
significant contribution to better identify malicious activity in SPI and other prominent payment             
infrastructures. Such an alert system should be also able to allow the monitoring authorities and               
the own operator to understand normal behavior of financial institutions as they participate in              
the SPI. For such purposes, we work on the autoencoder feedforward neural network to              
anticipate and identify potential risks in this systemically important market infrastructure of            
Ecuador. 

3.2 The dataset 

Since the SPI implementation in 2002, the total amount and number of transactions settled in               
this system have grown year after year. In 2018, the SPI settled over USD 100 billion with a                  
corresponding number of transactions of almost 70,000, representing a daily average of USD             
400 million and 300 thousand transactions. For the purpose of our work, we used transaction               
information from 24 financial institutions in 2018, which represent around 90% of the amount              
channeled by SPI by the private sector.  

As seen in Figure 1, the typical flows for a large, medium, and small bank can significantly vary.                  
In our work, we consider a subnetwork of payments, i.e. the maximum number of flows that a                 
financial institution can have is 24, reflecting the fact that it can send payments to the rest of the                   
23 banks and to itself. 

Figure 1. Payment connections in the SPI for large-, medium- and small- banks  

 

For the purposes of this investigation, 741 time intervals corresponding to 247 working days of               
the year 2018 were used. In our analysis, each payment flow (i.e. connection) represents the               
exchange of interbank payments between bank A and bank B. If we analyze the frequency of                
participation of a bank in the SPI, on average, the analyzed payments flows, i.e. interbank               
payments by SPI participants, take place in nearly half of the 741 time intervals, that is 376 time                  
intervals. A fraction of 25% of the analyzed flows appeared more than 731 times, in effect these                 
are particularly recurrent transactions for 2018. Conversely, 25% of payment flows only took             
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place in 56 times intervals. A small set of unique payment flows occurred only once or up to 15                   
times.  

The average volume of payments per time interval amounts to USD 76 million. The maximum               
amount for 2018 time-interval was USD 212 million and the minimum, USD 31 million. Nearly               
75% of the intervals registered payments for over USD 60 million, each. 

Considering that there are interbank payment flows (i.e. payments between Bank A and Bank B)               
among all 24 banks, there can be a total of 576 (24 banks x 24 banks) possible connections.                  
However, the SPI dataset shows that for 101 connections there was no single exchange.              
Therefore, we only analyzed a total of 475 connections for 2018. We can observe that there is an                  
average of 241 connections for each time interval along the year. The lowest number of               
connections for a time interval was 47 payment flows, while the maximum, 298 flows. It is                
worth mentioning that in 95% of the intervals there were more than 207 flows. The average                
payment per flow was USD 2 million over 2018, while the maximum value for a payment                
connection reached USD 4 billion.  

Figure 2. Payment flows in the SPI 

      A. Average value                                                                B. Largest flows (USD millions) 

 

Figure 2A represents the average amount of all the flows of the SPI in 2018. The 75% of the                   
connections amounted to over USD 130 billion, 25% of the flows amounted to more than USD                
20 million. Figure 2B is a boxplot of the 11 most important flows in the SPI for payments made                   
in the year. These flows represent around 50% of the total amount of payments made by the SPI                  
in 2018. 

The SPI dataset includes large and small, as well as more and less frequent, payment flows for                 
2018. However, for anomaly detection, each connection can be important regardless of the             
magnitude or frequency of interbank payments. There are payment flows that can pose a              
systemic risk in case a particular participant is unable to settle them in a specific time interval.                 
From a payments system oversight point of view, it is crucial to be able to determine a normal                  
behaviour and to identify risky events arising from anomalous behaviours. With this goal in              
mind, in the following sections, we introduced and tested a pattern recognition tool for anomaly               
detection based on an autoencoder architecture. 
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4. Methodology 

In this section we begin by stating the general anomaly detection framework in the context of a                 
payment system. First we define the basic structures that will be used, such as the set of                 
participants, the time intervals, and the matrix that represents the interactions between            
participants. Once the above has been defined, the next step consists of the setup of the anomaly                 
detection task, which will be based on the measurement of the reconstructions’ quality made by               
a compression model. 
 
The section continues with a detailed description of the autoencoder, as the compression             
selected model, providing details of its operation and why it can be used to detect abnormal                
patterns in the data. The section concludes with a discussion on the preprocessing of the data                
that is made prior to the training of the models, to then continue with a review of the                  
adjustment and testing process of the models to finally introduce the bank run simulations.  
 

4.1. Definition of the general framework for the anomaly detection task  
 
Following Triepels (2018), let be the set of SPI participants that settles    {b , b , .., b }B =  1  2 .  n          
transactions between them. Now let us consider an ordered set of m time       t , t , .., }T = { 1  2 . tm        
intervals where each having that i ranges from 1 to m, and where are specific   τ , τ )ti = [ i−1  i            τ i    
timestamps delimiting time intervals. In our case each time interval represents one of the three               
intervals taking place in a SPI working day.  
 
Then, we define the structure for liquidity transmission among institutions within different time             
intervals. Let be total amount of liquidity transferred from institution to institution  a ij

(k) 
        bi    bj  

within the time interval . The liquidity matrix accounts for the liquidity transferred    tk      A(k)      
between all the institutions within the interval :tk  
 

 

 
The diagonal elements indicate the total amount of liquidity that transfers between its    a ii

(k)         bi     
own accounts. The elements of can be interpreted as the weights of a network where nodes     A(k)             
are institutions and edges are liquidity flows (payments). In order to feed the model with a                
simple data structure, every  is mapped to a liquidity vector​ with the form:A(k) a(k)  
 

a , .., , .., , .., ] ,a(k) = [ 11
(k) . an1

(k) . a1n
(k) . ann

(k) T  
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where  ​is a  column vector that consists of  appended columns.a(k) n2 A(k)  
 
The data we study contains information on the liquidity vectors for a series of periods at a                 
payments system. We aim to reconstruct the vectors by compressing and decompressing the             
dataset under use. For this purpose, we implemented a lossy compression, which generates a              
particular type of representation that allows the data to not be exactly learnt and some of the                 
information to be lost. When this type of compression is implemented, the relevant patterns              
present in the data are learned. Once the compression model learns the common patterns, that               
is, the most observed, and a new liquidity vector is fed for its reconstruction; if the                
reconstruction is bad, this is explained by the fact that vector information differs from the               
normal patterns that the model learned, indicating the possibility of a potential anomaly. The              
quality of the reconstructions will be measured through the reconstruction error, in other             
words, the differences between values yielded by the lossy compression and the real vector              
values. 
 
More formally, given a lossy compression model, let be the non-negative function that        ER       
measures the reconstruction error of liquidity vector ; where is the set       a(k)  E 0, )R : D → [ ∞   D     
of liquidity vectors for all time intervals. Our main objective is to find all the liquidity flows (i.e.                  
payment connections) in a particular time interval corresponding to reconstruction errors           
greater than a given threshold , i.e., given a set of liquidity vectors we aim to find the set     ε > 0         D        

. It is noteworthy that there is no rule or methodology to follow ina  ∈ D | RE(a ) ε}F = { (k) (k) ≥                
order to set the value for , instead it has to be set according to the particular characteristics of      ε              
the data and prior knowledge on the respective payments system.  
 

4.2. Autoencoder modeling 
 
For our work, we select the autoencoder as the lossy compression model. The autoencoder falls               
in the category of artificial neural networks techniques. The basic unit of a neural network is the                 
neuron or node, which can be both fed directly with the data or fed through other connected                 
neurons, and depending on the type of neuron it will be defined how the information will be                 
processed to generate an output. As can be seen in Figure 3, the neurons of one layer connect                  
with those of the next but never between them. All neural networks have an input layer, an                 
output layer, and at least one hidden layer (the case of having more than two hidden layers it's                  
considered as deep learning). The types of neurons are: 
 
➔ Input neuron​: They are fed with the data directly and this conforms the output that               

feeds the next layer. 
➔ Hidden neurons​: Each of them is fed by all the neurons of the previous layer ( ) and               sxi′   

multiplied by a set of weights ( ). The output of these neurons is generated by first      swi′           
computing a weighted sum of the weights and the outputs of the previous layer and then                
applying a function to it called activation function, i.e., the output is given by   f             

. The term  refers to the bias that data poses.( x )f ∑
 

i
wi i + b b   

➔ Output neurons​: It follows the same process as hidden neurons, but the output it              
generates rather than feeding other neurons is the resultant final prediction. 
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The weights decide how much of the information in each neuron should be transmitted to  swi′               
the next layer; these are the parameters that will be learnt during the training process. The                
activation function , has the purpose to learn non-linear relationships between the  f           
components of the data.  
 
We utilized two different activation functions, Rectified Linear Unit (ReLU), namely           

, and the hyperbolic tangent (Tanh). The latter maps the value to theeLU (x) ax(0, )R = m x              
interval (-1, 1) and falls within the category of sigmoidal functions (s-shape) which provides a               
simple model for the firing of a real neuron. An issue regarding sigmoidal functions is that                
derivatives can become very small far from zero, affecting the learning process which is based               
on gradient methods; ReLU overcomes this issue - being linear for positive values - and also its                 
computation is simpler, but if during the learning process the weighted sums gets below zero,               
then most of the neurons in the neural network will go to zero, potentially leading to non                 
sensitivity and poor fitting . 78

 
The autoencoder is made up of two components, the encoder and the decoder. The encoder is                
the initial part of the autoencoder and it has the task to create an accurate lower-dimensional                
representation of the data. The second part of the autoencoder, the decoder, is in charge to carry                 
out the reconstruction of the data. The encoder goes from the input layer to the layer with the                  
lowest number of neurons, which is commonly called bottleneck ​given that is the layer of the                
network where data is the most compressed. The encoder can be represented as a function               

, where represents the input data . On the other hand, the decoder goes from the(X)h = f   X              9

bottleneck ​to the output layer, it can be represented by the function . ​The autoencoder            (h)r = g     
final objective is to find  and such that .f g (f (X))X ≈ g  
 

Figure 3. Autoencoders Architectures 

               
 
In Figure 3 we can observe the architecture for two autoencoders, one hidden layer (left panel)                
and two hidden layers (right panel), where and ; this tells us that the input data        m < n 2   l < m         

7 ​An alternative to overcome the issues that arise from the use of ReLU as activation function is to use the Leaky ReLU that 
has the same value for the non-negative values but for a negative variable (x) it assigns the correspondent value 0.01x. The 
use of this ReLU variation is left for future work.  
 
8 ​A further description on feed-forward neural network, components and learning process can be found in ​(Goodfellow et. al. 
2016)​. 
  
9 Input data is represented by the liquidity flows. 
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will be compressed through a projection from a -dimensional space to a -dimensional         n 2     m  
space, for the one hidden layer, having an extra compression from ​m ​dimensions to l ​dimensions                
in the case of having two hidden layers. Adding one more layer to the autoencoder compresses                
the bottleneck, forcing the neural network to learn a lower dimensional representation. Yet             
adding many layers increases the number of parameters and can cause the neural network to               
overfit the training data, thus failing to generalize. In our study we trained both one and two                 
hidden layers autoencoders.  
 
The learning of the autoencoder, and in general for neural networks, is achieved by the               
minimization of a cost or loss function with respect to the weights and biases (mentioned               
above). For our work, this function will correspond to the reconstruction error of our lossy            RE)(    
compression. More precisely, the reconstruction error will be given by the mean of the squared               
differences between the liquidity vectors and its reconstruction, in other words the the Mean              
Squared Error (MSE), for all time intervals, i.e. the loss function will depend on the set :D  

(a (h(a )))RED = 1
m ∑

m

k=1

(k) − g (k) 2  

 
The autoencoder’s weights are learnt through mini-batch backpropagation . We strived to           10

fine-tune the autoencoder’s hyper-parameters to improve its performance. This is          
accomplished through cross-validation, which performs an exhaustive search within a          
predefined set of hyper-parameters for multiple data partitions, where the performance of each             
hyper-parameter setting is evaluated. We also carry out pre-processing of the data, which can              
lead to a significant improvement in the performance. This is discussed in more detail in the                
next subsection. 
 

4.3. Model fitting, selection and testing 
 
In this subsection we describe the procedure to fit the autoencoder, which involves the              
preprocessing and partition of the data, and the training and validation steps. 
 
Before fitting the model, we pre-processed the data, this corresponds to a log-transformation             
that was followed by a min-max standardization. The former have the purpose to reduce the               
skewness in the payments flows, while the latter maps the values to the interval , to give              0, 1][     
the same degree of importance to all the bilateral transactions and avoid the autoencoder to be                
unbalanced toward the transactions with highest value. In such a pre-processing, let V be a               
feature (in our case we have 576 features, each one corresponding to the flow of liquidity                
between one institution to another) the log-transformation of V is done by applying the natural               
logarithm to it, this is computed for all the features.  
 
After this step, we continued with the min-max standardization, for this end, we first found the                
maximum and minimum values for feature V, to then transform each feature element by: 
 

10 ​Backpropagation is a learning mechanism, based on gradient descent, which is widely used for the training of neural 
networks. The mini-batch indicates that the updating of the parameters learned is done after passing not the complete dataset 
or a single instance (that currently are another types of backpropagation), but a portion of the whole dataset, to the network; 
a further insight can be found in ​(Goodfellow et. al. 2016)​. 
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inmax(x )m i = x −min(V )i
max(V )−min(V )  

 
Where is an element of V. The aforementioned steps led to smaller training and validation xi                
reconstruction errors than when the data was fed in its original form. 
 
Once the data is preprocessed, we make a partition of it. It's a common practice in machine                 
learning to separate the whole data into different subsets. In our work, we first randomly divide                
the data in two parts, the first, which will be used to perform cross-validation, is the larger and                  
contains 80% of the original data. The remainder 20% of the data, commonly called the test set,                 
is used in order to evaluate the performance of the model with data not observed during                
training or validation.  
 
The cross-validation is performed once the data is divided in subsets, to assess the performance               
of the different hyper-parameters, with the ultimate goal of setting the best model             
configuration. This is mainly guided by using as selection criterion the validation MSEs. More              
specifically, cross-validation as a re-sampling technique is useful to evaluate the effectiveness of             
machine learning models. For our work, we implemented K-fold cross-validation with 5 folds.             
As mentioned above, the implementation is performed on the 80% of the whole dataset. In sum,                
the cross-validation process can be divided into the following: first we randomly divide the data               
into 5 disjoint groups, or folds; then, a hyper-parameters configuration is chosen (e.g. an              
autoencoder with one hidden layer with 100 neurons); in the next step which corresponds to               
the first iteration, the model is trained in four groups and the validation is done in the remaining                  
group; and, the iteration ends with the computation of training and validation MSEs. The              
following iterations redo the same process, but as can be seen in Figure 4, the difference lies in                  
the training and validation sets that are used.  
 

Figure 4. 5-fold Cross-validation 

 
 
Once all the iterations are completed, the mean of both training and validation MSEs is               
computed and this will be the performance of the model with the previously hyper-parameters              
chosen. The above process is carried out for each element of the set of hyper-parameters to be                 
tested. 
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The determination of the best configuration of a model is made based on the validation MSEs.                
Generally, the model that yields the lowest MSE is selected, but it may be the case that the best                   
model is too complex, ie, that the number of neurons in the hidden layers is very large, and one                   
will prefer to choose a model with less complexity where the difference between their MSEs is                
not significant. 
 
After performing cross-validation and the best hyper-parameters configuration is selected, the           
model is re-trained in the 80% of the data. In the last step the model is fed with unobserved                   
data, which corresponds to the test set, and the instances that show highest reconstruction              
errors are identified.  
 

4.4. Bank run simulations  
 
Given that the SPI dataset presents a small amount of anomalies that could pose a level of                 
uncertainty about its abnormality, we perform a series of bank run simulations similar to              
Triepels-Daniels-Heijmans (2018) and test whether the autoencoder was able or not to flag             
them as anomalies. The simulations were done by randomly choosing an institution , then all            bi    
its outgoing flows for a given period are modified according to:  
 

B(k) (k))aij
(k) → aij

(k) + ( · E  

 
Where is the time period, was sampled from a random variable k      (k) ∈ {0, }B 1     ernoulli(p)  B    
and decides whether extra liquidity will be added or not to the current period,              (k) ∈ [0, ∞) E  
was sampled from a , which decides how much extra liquidity will be added to    xponential(λ)  E            
the payment flow. The parameters and determines the intensity of the bank run, the     p   λ          
greater, the more intense the bank run will be. The autoencoder is expected to be less able to                  
reconstruct the payment networks arising from these simulations, indicating that they are            
displaying anomalous behavior, in this case a bank run. 
 
5. Results 
 
In this section we first present the models we trained, highlighting the changes for each model                
related to the network architecture and the activation function. This is followed by a summary               
of the performance and results of every model. Next, we show the analysis of the anomalies that                 
were detected in all or the majority of the models and that were found relevant for oversight                 
purposes.  
 

5.1. Results from autoencoder's fitting and performance  
 
We analyze different setups for the autoencoder by varying the number of hidden layers, the               
number of neurons in each layer and the activation functions, this led us to the definition of four                  
different models: 
 
➔ Model 1: One hidden layer with TanH as the activation function 
➔ Model 2: Two hidden layers with TanH as the activation function 
➔ Model 3 One hidden layer with ReLU as the activation function 
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➔ Model 4: Two hidden layers with ReLU as the activation function 
 
As described in subsection 4.3, each of the models were evaluated using 5-fold cross-validation              
to determine the optimal number of neurons for the hidden layers, the values proven for each                
model are summarised in Table 1. It is noteworthy that the autoencoder performs a              
compression, this can be observed in the reduction of number of neurons between the input               
layer and the hidden layers. In the case of one hidden layer we have gone from a                 
576-dimensional space to a new space whose dimensions can range from 10 to 450. In the                11

case of two hidden layers we have a double reduction, first a reduction similar to the case of one                   
hidden layer takes place (now dimensions ranges from 10 to 400), then the autoencoder is               
forced to generate a smaller space with 8,16 or 32 dimensions. This compression enables the               
model to learn only the most important characteristics inherent in the data.  

Table 1. Summary of the configurations evaluated for each model 

 

Figure 5 shows the Model 1 (with one hidden layer) validation and training errors. We set the                 
final configuration at 300 neurons, which is the point where the error has no substantial               
reduction. 

Figure 5.  One Hidden Layer with TanH performance for different number of neurons 

 

For the case of Model 2, Figure 6 shows a stepwise decrement of the errors that relates to the                   
number of neurons used in the second hidden layer, where it can be said that having 32 neurons                  
in the second hidden layer is the best decision. For the first hidden layer, here it is observed a                   

11 ​The 576 dimensional space corresponds to all our features which are the 24x24 participants' settlement interactions.   
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 Activation 
Function 

Neurons in 
input layer 

Neurons in first 
hidden layer 

Neurons in second 
hidden layer 

Neurons in 
output layer 

Model 1 TanH 576 (10, 20, 30,..., 450) ----------------- 576 

Model 2 TanH 576 (10, 20, 30,..., 400) (8, 16, 32) 576 

Model 3 ReLU 576 (10, 20, 30,..., 450) ----------------- 576 

Model 4 ReLU 576 (10, 20, 30,..., 400) (8, 16, 32) 576 



 

continuous decreasing behavior, where the inflection point corresponds to 220 neurons. In light             
of this training results, the final configuration of Model 2 is set to have 220 neurons in the first                   
layer and 32 neurons in the second layer. 

Figure 6.  Two Hidden Layers with TanH performance for different number of neurons 

 

In Figure 7 is shown the performance of Model 3, which corresponds to one hidden layer with                 
ReLU activations. It can be observed that from 10 to around 80 neurons, the training and                
validation errors present a decreasing trend, but for the rest of the neurons the errors only                
increase, for that reason we decided to set the final configuration of the model using 80 neurons                 
in the hidden layer. 
 
For Model 4, Figure 8 shows its performance. It can be noted that the behavior of the errors is                   
stable for the configurations where the second hidden layer has 8 neurons, presenting only              
small variations. Then, for the configurations with 16 neurons in the second layer, a decrease in                
errors is observed, reaching the minimum with 110 neurons in the first layer; after this point a                 
slight increase in errors is observed. In the case of 32 neurons in the second layer, the                 
performance begins to be unstable, it is possible to observe peaks where the errors have large                
increases with respect to the rest of the configurations and where even the training and               
validation errors are the same .  12

 
Figure 7.  One Hidden Layer with ReLU performance for different number of neurons  

 

12 This is not desirable given that the training data is the one used to adjust the model, thus it should show smaller 
errors than the validation data which is not used for the training. 
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Figure 8.  Two Hidden Layers with ReLU performance for different number of neurons 

 
Once the optimal configuration for each model was selected we proceed to re-train the models               
on the whole set used for cross-validation. It follows the feeding of the models with unseen data.                 
The behavior of the reconstruction errors for the liquidity vectors belonging to the test set is                
expected to be stable and low and that only a few of them are above the average. This is given by                     
our assumption that most of the data has a normal behavior and that only a few instances will                  
perform abnormally; if the above does not happen, it means that our model did not perform                
correctly the reconstruction. This will imply that more data need to be used for training or that                 
the chosen configuration is not adequate. 
 
Figure 9 shows the results of the test set reconstruction for Model 1 and Model 2. It can be                   
observed that both models identified six time intervals where the reconstruction error is higher              
than the average, but the rest of observations present a stable reconstruction with the              
difference that Model 1 shows higher variance and that Model 2 has bigger overall              
reconstruction errors. 
 

Figure 9.  Errors corresponding to the reconstruction of test set for Model 1(left)  and Model 2 
(right) 

 
 
Figure 10 presents the reconstruction errors for the test set related to Model 3 and Model 4, it                  
can be observed that both models have a similar behavior and that six time intervals present                
larger reconstruction errors as in the case of the previous models. 
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Figure 10.  Errors corresponding to the reconstruction of test set for Model 3 (left)  and Model 4 
(right) 

 

Figures 9 and 10 show that there are six time intervals where all the models had difficulties in                  
carrying out the reconstruction of the corresponding liquidity vectors. This result indicates, on             
one hand, that our methodology is robust to changes in the architectures of the autoencoders,               
and on the other, that these intervals are potential anomalies. We will delve into the latter at the                  
end of this section. 

 
5.2. Bank runs simulations testing  

 
After the fitting and testing of the four models, we performed bank run simulations to see if the                  
autoencoder was able to flag them as anomalies. The bank run was done in the last 90 time                  
intervals (from 651 to 741) for 2018, on one SPI participant. The simulation consisted of               
stressing institution outflows toward the rest of participants. More specifically, we introduce  bi           
the bank run as a random value with exponential distribution and a probability of occurrence               
for the selected outflows, sampled from a Bernoulli distribution. Following   bi         
Triepels-Daniels-Heijmans (2018), the corresponding parameters for the ​Bernoulli and for     p      λ   
the ​Exponential​ sampled variables are defined as follows: 
 

(x) p )( ) p = ps + ( e − ps x
d

r  
 

(x) λ )( )λ = λs + ( e − λs x
d

r  
 

Where the subscripts and represents starting and ending values for each parameter,   s   e          
indicates the time interval, while is the total number of time intervals, 90, ∈ {1, , .., 90}x 2 .        d          

finally is a rate that controls the increase of . This parametrization increases the value of r          x
d        p  

and as time passes, leading to a more intense liquidity adding to the end of the period under λ                   
the simulation. 

Moreover, in Figure 11 and Figure 12, the MSE highlights the simulated bank run in the final                 
time intervals. In these time intervals, the MSE rapidly changed as the payment network              
unexpectedly began to change as well. Below, we present the MSE of the final liquidity matrices,                
emphasizing that the high outgoing liquidity flows of the stressed ​b​i could not be accurately               
reconstructed, resulting in a high reconstruction error during bank runs. This is observed in all               
proposed architectures, having that for the TanH models when two layers are used, the              
autoencoder makes stricter penalizations. It can be explained because the error related to the              
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simulations is larger than the case of one layer. On the other hand, the ReLU autoencoders show                 
a very similar behavior, showing larger errors for both the simulations and the rest of the time                 
intervals. 

 
Figure 11. Bank run simulations results for Model 1 and Model 2   

 
 
 
 

Figure 12. Bank run simulations results for Model 3 and Model 4 

 
 
With the above it can be confirmed that we have achieved a compression model that is capable                 
of learning the common patterns inherent to the data, and thus is able to recognize anomalous                
behavior. The next step, once the robustness of the autoencoder has been tested, is to deepen on                 
the analysis of the anomalies detected within the test set in order to have a deeper                
understanding on autoencoder capacities as an oversight tool.  
 

5.3. Alert analysis 

Besides identifying intervals with anomalous patterns of payments with the autoencoder, we            
investigated which of the flows (one or several) caused these anomalies. In this subsection, we               
present the main results obtained from the models presented in the previous section, analyzed              
from the point of view of the system overseer to confirm that the alerts could be considered real                  
anomalies. It is worth noting that there is a concordance in the alert results for all the trained                  
models that  indicate unusual payment patterns of systemic importance within the SPI. 

The table 2 shows the top ten time-intervals that can be classified as anomalies in the SPI                 
considering our four autoencoder models, the classification criterion is based on the set             F  
defined in subsection 4.1, that is, the anomalous instances will be those that are greater than ,                ε  
which in our case is equal to the 90th percentile of the validation MSE of each model. The first 6                    
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alerts (711,718,147,688,532,7) coincide in all models. The time intervals 484, 381, 628, 549, 97              
are repeating alerts on some models. While the time intervals 254, 549, 394 are alerts that only                 
Model 1 indicated. 

Table 2. Top 10 of time intervals with highest errors for each model 

 

It can be underscored that the resulting alerts show the time intervals in which there are fewer                 
than normal payment connections. In particular, we find both intervals for which major banks              
do not operate and intervals for which medium or small banks do not channel payments to large                 
banks, among other possible patterns. Results show that the autoencoder was able to alert on               
individual or systemic unusual patterns.  

Below, we present the most significant alerts that the autoencoder identified. They are useful              
examples of how this analysis can support the oversight of the ​Sistema de Pagos Interbancarios.  

Systemic alert: ​The most relevant alert was given in time interval 711 (December 2018). This               
can be explained by an unusual low participation of banks in the SPI. In this case, only 47                  
payment flows (3 ordering banks) occurred, much lower than the average flows in each time               
interval, that is 240 payment connections. In Figure 13, we present the flows and amounts for                
this time-interval.  
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Rank Model 1 Model 2 Model 3 Model 4 

Time 
interval 

MSE Time 
interval 

MSE Time 
interval 

MSE Time 
interval 

MSE 

1 711 0.31 711 0.39 711 0.64 711 0.64 

2 718 0.08 718 0.14 688 0.18 688 0.18 

3 147 0.08 532 0.14 147 0.18 147 0.18 

4 688 0.08 688 0.14 718 0.18 718 0.18 

5 532 0.08 147 0.14 532 0.17 532 0.17 

6 7 0.08 7 0.13 7 0.17 7 0.17 

7 554 0.01 484 0.05 484 0.06 484 0.06 

8 254 0.01 381 0.04 628 0.06 628 0.06 

9 549 0.01 549 0.04 381 0.05 381 0.05 

10 394 0.01 345 0.04 97 0.05 97 0.05 

Median 0.007  0.028  0.041  0.041 

75th percentile 0.008 0.032 0.045 0.045 

90th percentile 0.011 0.034 0.049 0.050 



 

Figure 13. Alert for unusual low payment connections 

 

Individual alert for a SPI large participant: This large bank channelized 22% of the total in the                 
SPI and sent and received 11% out of the total operations in 2018. The activity of this large bank                   
is stable along a year time period; it participated in 735 of the 741 time intervals of the year. All                    
the models indicate that there are 6 time-intervals for which the bank did not participate in the                 
SPI at all. As a relevant fact, this bank had 17 payment connections on average over 2018. For                  
example, it can be seen that in intervals 717 and 719, this large bank registered 23 and 24                  
connections - above the average - but in intervals 7, 147, 532, 688,711, 718, this SPI participant                 
does not have a single connection. Figure 14 shows the activity of this "big bank" in all time                  
intervals of the year.  

Figure 14. Alerts for a large bank at times of no payment connections 

 

Alerts of low number of participants (and payment connections) in the SPI. ​In 5% of the time                 
intervals, the number of payment flows is considerably low in comparison with the average 241               
connections. The most significant alert is detected in interval 711 with only 47 payment              
connections. It is worth mentioning that this time interval was associated in the model with a                
higher alert. Figure 15 depicts the anomalous behavior for such intervals as well as others               
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below the average, all ranked according to their number of connections. These alerts also              
involve time-interval 484 and 394. 

Figure 15. Alerts of low number of participants (and payment connections)  

 

Problem with communication provider and impact on a large bank: ​The 484 time interval              
identified by the autoencoder is mainly explained by the non-participation in the SPI of a large                
bank as well as six other banks (1 medium and 6 little ones) that usually operate. According to                  
the records of operation of the SPI, at this time-interval (see Figure 16) there was a problem of                  
intermittent connection with certain banks with a provider of communication channels, which            
prevented them from sending operations to the Central Bank of Ecuador in this time interval. 

Figure 16. Alert for problem with communication provider  

 

 

Individual alert for a SPI “average Joe” participant: ​An alert of a medium bank is found in three                  
intervals (254, 554, 394, 628, 711). The autoencoder detected that in 99.5% of the 2018               
intervals, this “average Joe” bank has payment connections with the 5 largest banks             
participating in the SPI. The alert refers to three intervals for which this bank does not                
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participate in the system, including its regular connections with the 5 largest banks. Figure 17               
demonstrates that the “average-Joe” SPI participant was absent in such time-intervals. 

Figure 17. Alert for a medium size bank with no payments connections 

 

Unusual payment amounts: In the cases the autoencoder detects events in which the entities              
send unusual amounts in most cases it indicates the maximum or very low amounts with               
respect to its normal behavior. These behaviors are evident in the time interval analyzed 381,               
549, 345. For example, an entity that on average sends payments for an amount of USD 64,000,                 
the autoencoder alerts when this entity sends USD 1.9 million, the latter being the maximum               
payment made by the SPI. As shown in Figure 18, it may constitute a significant alert to be                  
analyzed further. 

Figure 18. Alert for amounts of payments different from the usual ones 

 

The above alerts provided by the autoencoder models are useful for the oversight and              
monitoring of the SPI because they allow us to detect payment patterns. The whole SPI dataset                
cannot be analyzed manually due to the quantity of information that is processed daily, so this                
methodology provides a powerful tool to equip oversight experts with the ability to identify              
both normal and anomalous payment patterns.  
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All in all, interpreting the autoencoder alerts requires the expert judgement of payments             
oversight teams who have the best understanding of how the system operates, to determine              
whether the alerts are relevant and if they constitute evidence for pattern changes that could               
represent a risk.  

Finally, the autoencoder can be used as a tool to detect possible operational problems that can                
cause uncertainty within the system. This is in line with Klee (2010) who used an algorithm to                 
identify outliers in the payment patterns of financial institutions in Fedwire Funds that stem              
from operational outages. Operational problems cause uncertainty regarding end-of-day Fed          
account positions that can impact rates in the Federal Funds market. The magnitude of the               
effects depend on the severity of the difficulty, the time it occurs, and the volume of payments                 
made by the affected participant. 

6.  Discussion of results 

The application of machine learning techniques to support monitoring of financial transactions            
in SIPS does not replace human decision making but rather it provides new tools to test both                 
simple and complex hypotheses on a large scale over big datasets. This is a critical development                
for SIPS and FMIs oversight. Autoencoder models can process long time-series of payment             
networks and based on volume distribution and network structure, they suggest arbitrarily            
small subsets of transaction periods for further evaluation. In effect, the generality of the              
autoencoder representation -given by the non-linear decomposition into adaptive hidden units-           
allows us to extract common patterns in the data and single out uncommon patterns of               
transactions. The detailed analysis of the properties of this subset of flagged transactions             
demonstrated the complexity of this automated monitoring procedure, as alerts were generated            
for a number of different reasons, related to volume, number of connections, or absence of               
specific institutions.  

The autoencoder for anomaly detection is a methodology originally proposed for a real-time             
payment system (RTGS) by Triepels-Daniels-Heijmans (2018), making the model to identify           
patterns in real time transactions. In our model, given the SPI does not fully perform as an RTGS                  
but rather as a hybrid, our analysis is more similar to Sabetti-Heijmans (2020) that performs an                
autoencoder for a DNS system. This confirms the versatility and validity of applying an              
autoencoder to detect anomalies in payment systems. As we underlined in previous sections,             
the autoencoder needs to be applied in tandem with the thoughtful review of a payment               
systems oversight team, to verify the real causes of the alert.  

The construction and training of the model is a careful process involving numerous validations              
and tests that must be carried out, but once the model has been trained its daily application in                  
detecting anomalies in SIPS and FMI operations can take only minutes. This is accompanied by               
the important and opportune access to data, we were able to use the BCE dataset while                
fine-tuning the model, as the Central Bank is responsible for operating and overseeing the SPI.               
This is important as noted by León (2020) who indicates that the application of new methods in                 
payment systems should consider low computational costs and ease in data collection. 

This document contributes to identify evidence of incidents in the payments flow of a respective               
system, and thereby provides new tools for payments oversight, and it ultimately sets the basis               
for early warning tools. We were able to detect anomalies in the payments flows processed by                

22 



 

banking entities in the major SIPS Ecuador, the ​Sistema de Pagos Interbancarios​. We proposed              
four models to test autoencoder robustness, where we selected the best architectures by             
performing cross-validation. These models were trained on real banks behavior stemming from            
the payments network of the SPI for 2018, which makes our work novel and relevant. All the                 
autoencoders we tested identified relevant anomalous patterns, finding problems in the           
reconstruction of the data and flagging specific payment networks as anomalous. In order to              
evaluate the models, a bank run simulation was performed, altering a major SPI participant’s              
outgoing payment flows exponentially over a period of time.  

In our approach, we were able to identify alerts that could affect the system, such as: 1)                 
non-participation of systemically important participants, 2) a low number of connections           
(payment flows), 3) medium-size banks not sending payments to systemically important           
participants, among others. Additionally, the bank run simulation shows the ability of the             
autoencoder to detect risk events that may be generated in the SPI in the absence of common                 
patterns. Importantly, we deepened the analysis of the alerts that the autoencoder signaled as              
potential anomalies by relying on the expert judgement of overseers of the SPI.  

Further studies in machine learning for anomaly detection in payment systems can improve the              
accuracy, reliability, and speed of the methodology leading to financial alerts that are more              
spot-on, consistent, and that can be performed in real-time. Notwithstanding, these techniques            
should not be intended to replace the knowledge in payment systems oversight teams but              
rather become part of their toolkit. 
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Classifying payment patterns with artificial neural 
networks: An autoencoder approach
Jeniffer Rubio, Paolo Barucca, Gerardo Gage, John Arroyo, Raúl Morales-Resendiz



Introduction

Payments and market infrastructures are the backbone of modern financial systems and play
a key role in the economy by enabling multilateral transactions under certain rules and
platforms. One of their main goals is to manage systemic risk, especially in the case of
systemically important payment systems serving interbank funds transfers. Thus central
banks need to be able to monitor their activity and to identify anomalous events.

Thanks to the availability of high data volumes and to the increment in computation
capabilities it is posible to develop tools that automatically performs tasks as the identification
of anomalous patterns.

In this vein, we developed a methodology based on a unsupervised neural network, the
autoencoder, to detect a diverse set of anomalies arising within the Sistemas de Pagos
Interbancarios (SPI) from Ecuador. It was found that the methodology is robust enough to
support the monitoring of payment systems, but need to be acompained by the expert
judgement of payments overseers.
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Methodology

The data we study contains information on the liquidity vectors, we aimed to reconstruct the
vectors by compressing and decompressing the dataset under use. For this purpose, we
implemented a lossy compression, which generates a particular type of representation that
allows the data to not be exactly learnt and some of the information to be lost.

When this type of compression is implemented, the relevant patterns present in the data are
learned. Once the compression model learns the common patterns and a new liquidity vector
is fed for its reconstruction; if the reconstruction is bad, this is explained by the fact that vector
information differs from the normal patterns that the model learned, indicating the possibility of
a potential anomaly.

The quality of the reconstructions will be measured through the reconstruction error which is
the difference between the values yielded by the lossy compression and the real vector
values.
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Methodology

Anomaly detection framework
 𝐵𝐵 = 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛 set of SPI participants
 𝑇𝑇 = {𝑡𝑡1, … , 𝑡𝑡𝑚𝑚} ordered set of m time intervals
 𝑎𝑎𝑖𝑖,𝑗𝑗 total amount of liquidity transferred from institution 𝑏𝑏𝑖𝑖 to institution 𝑏𝑏𝑗𝑗
 𝐴𝐴(𝑘𝑘) liquidity matrix for the k-th interval

𝐴𝐴(𝑘𝑘) =
𝑎𝑎1,1

(𝑘𝑘) ⋯ 𝑎𝑎1,𝑛𝑛
(𝑘𝑘)

⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛,1

(𝑘𝑘) ⋯ 𝑎𝑎𝑛𝑛,𝑛𝑛
(𝑘𝑘)

 �𝑎𝑎(𝑘𝑘) liquidity vector (𝐴𝐴(𝑘𝑘) rearrangement)
 𝑅𝑅𝑅𝑅:𝐷𝐷 → 0,∞ , non-negative function that measures the reconstruction error of liquidity vector,

where D is the set of all liquidity vectors
Our goal is to find the set 𝐹𝐹 = �𝑎𝑎 𝑘𝑘 ∈ 𝐷𝐷 𝑅𝑅𝑅𝑅 �𝑎𝑎 𝑘𝑘 ≥ 𝜖𝜖}, where 𝜖𝜖 > 0
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Methodology

For our work, we selected the autoencoder as the lossy compression model, which is an
unsupervised neural network.

The autoencoder is made up of two components, the encoder and the decoder. The encoder
is the initial part of the autoencoder and it has the task to create an accurate lower-
dimensional representation of the data. The second part of the autoencoder, the decoder, is in
charge to carry out the reconstruction of the data. The encoder goes from the input layer to
the layer with the lowest number of neurons, which is commonly called bottleneck given that
is the layer of the network where data is the most compressed. The encoder can be
represented as a function ℎ = 𝑓𝑓(𝑋𝑋), where 𝑋𝑋 represents the input data. On the other hand,
the decoder goes from the bottleneck to the output layer, it can be represented by the function
𝑟𝑟 = 𝑔𝑔(ℎ). The autoencoder final objective is to find 𝑓𝑓 and 𝑔𝑔 such that X ≈ 𝑔𝑔(𝑓𝑓(𝑋𝑋)).
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Model fitting, selection and testing

 Before fitting the model, data was pre-processed, this corresponded to a log-transformation
and standardization.

 Then the data was partitioned into cross-validation and test sets in a proportion of 80% and
20%, respectively.

 We analyzed different setups for the autoencoder by varying the number of hidden layers,
the number of neurons in each layer and the activation functions (TanH and ReLU), this led
us to the definition of four different models
 Model 1: Model 1: One hidden layer with TanH as the activation function.
 Model 2: Two hidden layers with TanH as the activation function.
 Model 3 One hidden layer with ReLU as the activation function.
 Model 4: Two hidden layers with ReLU as the activation function.

The number of neurons in each hidden layer (hyperparameters) were selected through a 5-fold
crossvalidation.
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TanH models results
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ReLU models results
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Bank run simulations
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Alerts analysis
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Alerts Analysis
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Alerts Analysis
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Conclusions

 The application of machine learning techniques to support monitoring of financial
transactions in SIPS does not replace human decision making but rather it provides new
tools to test both simple and complex hypotheses on a large scale over big datasets .

 The generality of the autoencoder representation -given by the non-linear decomposition
into adaptive hidden units- allows us to extract common patterns in the data and single out
uncommon patterns of transactions.

 Further studies in machine learning for anomaly detection in payment systems can improve
the accuracy, reliability, and speed of the methodology leading to financial alerts that are
more spot-on, consistent, and that can be performed in real-time

 These techniques should not be intended to replace the knowledge in payment systems
oversight teams but rather become part of their toolkit
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