

 1/1

IFC-Bank of Italy Workshop on “Machine learning in central banking”

19-22 October 2021, Rome / virtual event

Unsupervised outlier detection in official statistics1

Nhan-Tam Nguyen, Deutsche Bundesbank,
and co-authors from the Deutsche Bundesbank

and the German Research Center for Artificial Intelligence

1 This presentation was prepared for the Workshop. The views expressed are those of the authors and do not necessarily reflect the views of the Bank of Italy, the BIS, the IFC or the central banks

and other institutions represented at the event.

Unsupervised Outlier Detection in Official Statistics

Tobias Cagala Jörn Hees Dayananda Herurkar Mario Meier
Nhan-Tam Nguyen Timur Sattarov Kent Troutman Patrick Weber*

November 1, 2021

Abstract

This paper presents a summary of a joint project conducted by the Deutsche Bundesbank and the German
Research Center for Artificial Intelligence (DFKI). As a joint use case in the area of financial micro data, we
evaluate the performance of all major classes of unsupervised learning algorithms for outlier detection and
implement a complete machine learning workflow. Our workflow extends beyond pre-processing the data
and flagging outliers by incorporating explainable AI methods and a possibility for the algorithm to exploit
feedback by domain experts. We apply our approach to micro data sets that are typically collected by a central
bank in the Euro area and that cover the structure and format of a wide range of financial data, namely the
interest rates statistics (MIR), the money market statistics (MMSR), the (sectoral) securities holdings statistics
(SHS-S), and the investment funds holdings statistics (IFS). With our work, we contribute to both the improve-
ment of the data quality management work done by official statistical departments as well as to the literature
on applied machine learning.

*Cagala: tobias.cagala@bundesbank.de; Hees: joern.hees@dfki.de; Herurkar: Dayananda.Herurkar@dfki.de; Meier:
mario.meier@bundesbank.de; Nguyen: nhan-tam.nguyen@bundesbank.de; Sattarov: timur.sattarov@bundesbank.de; Troutman:
kent.troutman@bundesbank.de; Weber: patrick.weber@bundesbank.de. The paper represents the authors’ personal opinions and does
not necessarily reflect the views of the Deutsche Bundesbank or its staff.

1

Contents

1 Introduction 3

2 Background 4
2.1 What constitutes an outlier? . 4

2.1.1 Global versus local outliers . 4
2.1.2 Available labels . 5

2.2 On the importance of train-test splits . 6
2.3 How to evaluate the success of unsupervised models? . 7
2.4 Computing environment . 9

3 Data sets 9

4 Data pre-processing and recommendations 10
4.1 General considerations . 10

4.1.1 Encoded categorical values . 10
4.1.2 Skewed and sparse distributions . 11
4.1.3 Missing values . 11
4.1.4 High dimensional data . 11
4.1.5 Large data sets . 12
4.1.6 Excluding extreme outliers . 12

4.2 Categorical variables . 13
4.3 Numeric variables . 14

4.3.1 Scaling . 14
4.3.2 Binning . 14

4.4 Feature engineering . 15

5 Approaches to detect outliers and recommendations 16

6 Combination of detectors and recommendations 22
6.1 Simple fusion methods . 22
6.2 Unsupervised fusion methods . 23
6.3 Complex fusion . 24

7 Active learning for outlier detection 25

8 Results and evaluation 26

9 Explainable AI 33
9.1 Global methods . 33

9.1.1 Linear regression . 33
9.1.2 Decision trees . 34

9.2 Local methods . 35
9.2.1 Local interpretable model-agnostic explanations (LIME) 36
9.2.2 Shapley additive explanations (SHAP) . 36
9.2.3 Applications of local explanations . 36
9.2.4 Evaluation . 37

9.3 Autoencoder neural network . 38

10 Conclusion 39

2

1 Introduction

To meet the demand for timely provision of high-quality micro data in an environment of steadily rising data
volumes, statistics departments of governmental organizations are increasingly turning to statistical learning
methods from the fields of data science and machine learning (see for example Tissot et al. (2018)). The mo-
tivation is clear: these methods potentially promise higher process efficiency with the input of fewer (costly)
human resources.

This paper presents a summary and lessons learned of a joint project conducted by the Deutsche Bun-
desbank and the German Research Center for Artificial Intelligence (DFKI). As a joint use case in the area of
financial micro data, we evaluate the performance of all major classes of unsupervised learning algorithms
for outlier detection and implement a complete machine learning workflow. Our workflow reflects the recur-
sive nature of modern machine learning applications by extending beyond simple feature engineering and
model estimation and into how to incorporate explainable AI methods and feedback by domain experts. We
apply our approach to data sets that are collected by the Bundesbank and cover the structure and format of a
wide range of financial data that include the interest rates statistics, the money market statistics, the sectoral
securities holdings statistics, and the investment fund holdings statistics.

With our work, we contribute to the applied machine learning literature in two ways. First, we evaluate
the performance of unsupervised learning algorithms in improving the data quality of micro data by flagging
reporting errors that have characteristics of outliers. To this end, we collect reporting errors that domain ex-
perts (humans) detected in the past which gives us a unique labeled data set of errors and/or outliers that
we can use to benchmark how well unsupervised methods recognize these errors. Second, we provide guid-
ance on the implementation of all steps of an automated, unsupervised machine-learning pipeline that ranges
from the pre-processing and selection of algorithms, to the application of explainable artificial intelligence
(Explainable-AI) and active learning to enable and incorporate human feedback for official statistical data.

Our key findings are as follows: First, related to the performance of unsupervised algorithms, we show
that most of the algorithms successfully isolate anomalous data points in micro data that were previously
flagged in the data quality management (DQM) process by humans.1 They achieve this without information
on the labels by separating data points that deviate from the underlying structure of the data. In fact, we find
that unsupervised algorithms can not only detect erroneous data points, but also hint at unusual data points
and patterns that can further be analysed by data users. Second, we show that methods from the field of
Explainable-AI provide domain experts with hints on how the models distinguish between anomalous and
regular data points and can thereby inform business intelligence and allow statistics departments to issue
more targeted DQM-related requests to reporting agents. Third, we address the challenge of incorporating the
expertise of domain experts and reporting agents back into the production pipeline by implementing an active
learning loop.

We conclude that unsupervised learning algorithms, applied to granular, financial data of the sort collected
by a central bank, are not only suitable to detect incorrect reporting and thereby improve data quality, but
that these methods can also detect unusual patterns in very heterogeneously structured data sets. However,
our work also stresses that a production pipeline that is largely automated and that provides the possibility to
actively incorporate (human) feedback is at least as important as a proper selection of algorithms.

The remainder of this paper is structured as follows: In Section 2, we summarize the different kinds of out-
lier detection methods, introduce measures for evaluating the performance of unsupervised outlier detection
algorithms, describe our approach to counteract over-fitting, and describe the ecosystem in which we imple-
mented the algorithms. In Section 3, we provide an overview of the data sets that we used for our study and
descriptive statistics on outliers as well as the dimensions of each data set. Section 4 discusses pre-processing
before running unsupervised algorithms, including how to deal with null values, how to handle categori-
cal data, and how to scale data in the presence of dependencies. We further discuss the impact that feature

1Following Aggarwal (2015) an outlier or anomaly is a data point that is significantly different from the remaining data. In this paper,
we use the terms outlier and anomaly interchangeably.

3

engineering can have on the performance of algorithms in this section. Next, we provide a broad concep-
tual overview of algorithms for the unsupervised detection of outliers in Section 5, including an outline of the
strengths and weaknesses of each algorithm and their usefulness for detecting local versus global outliers. Sec-
tion 6 moves away from single outlier detection methods to approaches that combine several machine learning
algorithms into one single model, aiming at improving the performance of the final model. In Section 7 we
provide an introduction to active learning. In Section 9, we open up the black box of unsupervised learning
algorithms and introduce methods from the toolbox of Explainable AI. We close the section with an exam-
ple on how explanations for outliers that were detected with autoencoders can provide novel insights to data
producers and users alike. Section 8 shows cross-validated performance metrics for the detection of outliers
in granular financial data sets with the approaches that we discussed in sections 5 and 6. Finally, Section 10
concludes this paper.

2 Background

2.1 What constitutes an outlier?

Detecting outliers or anomalies is a common data analysis task across various domains (e.g. health-care, qual-
ity assurance, financial data) with a variety of application scenarios (e.g. the identification of diseases, intru-
sions, mistakes, fraud, see e.g. Hodge and Austin (2004); Ahmed et al. (2016); Bhuyan et al. (2014)).

In general, outlier detection (OD) tries to solve a heavily imbalanced binary classification problem between
a few points of interest (the true outliers) and the majority of other “normal” points (the true inliers). To solve
the problem, outlier detection in general relies on the assumption that the true outliers can be distinguished
from true inliers in the vector-/feature-space, e.g., by having a larger distance to their neighbors. Points show-
ing such irregularities in feature-space are often called predicted outliers or simply outliers, while those similar
to the majority are often called predicted inliers or simply inliers (Aggarwal, 2015; Aggarwal and Sathe, 2015;
Chandola et al., 2009). It is worthwhile emphasizing the difference between “true outliers” and “predicted
outliers”: While the former are defined by experts, the latter are defined by distributions in feature-space.
Whenever the distinction between the two is important, we will use the longer, more explicit names. In real
world scenarios, the assumption that true outliers can be distinguished (easily or at all) from true inliers in
feature-space is sometimes violated, leading to cases where true outliers can be predicted inliers and true
inliers can be predicted outliers. What makes the detection of outliers an interesting use case is that an evalu-
ation of these data points (the predicted outliers) might reveal certain patterns or problems (the true outliers)
with a higher likelihood than when simply investigating a random sample of data points. This is particularly
pertinent when the number of data points is prohibitively high and the fraction of true outliers is very low.

In the following, we will briefly describe the common sub-classes of outlier detection (also see Goldstein
and Uchida (2016); Zhang et al. (2010)), based on the type of outliers of interest and the knowledge (if any) that
is available about the true outliers and true inliers.

2.1.1 Global versus local outliers

Global outliers are data points which are classifed as anomalous to due to being (far) outside the overall dis-
tribution of the data set (Khoa and Chawla, 2010; Ernst and Haesbroeck, 2017; Dang et al., 2013; Goldstein and
Uchida, 2016). An easy example for this class of outliers are points that are at least three standard deviations
outside of an interval of an n-dimensional Gaussian that has been fitted to the whole data set. Outliers of this
class are often data points that are orders of magnitude away from the others points and often caused by data
entry mistakes.

In contrast, local outliers are points which are not anomalous on a global, but on a local scale (Khoa and
Chawla, 2010; Ernst and Haesbroeck, 2017; Dang et al., 2013; Goldstein and Uchida, 2016). Such points deviate
from the distribution/regularities of their local neighborhood. By this, local outliers are directly related to

4

cluster analysis and account for the fact that many real world data sets can be better modelled as a composition
of multiple distributions. Local outliers are then those data points which are close to such clusters, but which
still behave different with respect to the local distribution of clustered points.

Figure 1: Example of local and global outliers in a 2D space

2 4 6 8 10 12
Feature1

2

0

2

4

6

8

Fe
at

ur
e2

C1

C2

P1

P2

P3

P4

P5

Notes: The figure shows an example for local and global outliers in a 2D space. C1 and C2 are two clusters of points. P1,
P2, P3 represents global outliers, and P4, P5 represents local outliers with reference to cluster C2.

Local and global outliers are illustrated in Figure 1. While the detection of global outliers is often relatively
trivial, it is typically much more difficult to detect local outliers, as such data points can reside well within the
normal distribution limit of the data set. Unlike our illustration, real-world data sets typically have hundreds
if not thousand of dimensions, making it challenging to find meaningful clusters and boundaries (Prieditis and
Russell, 1995; Kriegel et al., 2005). Also, the algorithms that are optimized to find local outliers, often rely on a
large variety of parameters to determine what is a “neighborhood” and what is “different”. Still, the detection
of not only global, but also local outliers is desired in many application areas. An overview of a variety of
outlier detection algorithms can be found in Section 5.

2.1.2 Available labels

Depending on the availability of knowledge (also called ground truth labels or simply labels) about data points,
outlier detection use cases can be divided into 3 main groups: unsupervised, supervised, and semi-supervised
(Chandola et al., 2009; Chalapathy and Chawla, 2019; Goldstein and Uchida, 2016). In order to evaluate the
outcomes of any algorithm and to compute the evaluation measures presented in Section 2.3, one needs at least
some labelled data independent of the following groups.

Unsupervised outlier detection Unsupervised outlier detection is the process of detecting outliers without
data labels, but solely by using density or distance measures of the data samples (Chalapathy and Chawla,
2019; Aytekin et al., 2018; Goldstein and Uchida, 2016). In this case the detection algorithm can only rely on
the intrinsic properties of the data in feature-space to distinguish the abnormal samples (outliers) from the
ordinary data (inliers). However, due to the advantage of not relying on often difficult or costly to acquire
labels of the true outliers or true inliers, unsupervised OD is often the first choice in any OD application.

5

Supervised outlier detection For supervised outlier detection data labels are essential. The data points (or
at least a subset of all points) have to be labelled as either true outlier or true inlier. A supervised outlier
detection method is essentially a (strongly imbalanced) binary classifier with the task to classify a given data
point into either an inlier or an outlier. The labelled data set is divided into at least training and test set so that
the supervised OD model can be trained on the training set and evaluated on the test set, in order to evaluate
its generalization to unseen data. In application oriented use-cases this approach is the least preferred one,
because it is often difficult (or costly) to acquire a large enough amount of labelled data. The imbalanced
nature of the data also complicates the acquisition of labels, as simple random sampling approaches often lead
to situations in which the true outlier class suffers from too few samples to be well represented. In general it is
debatable if the class of true outliers can be (or should be) well represented with examples, as focusing on such
representations might hinder the detection of completely novel outliers in the future. Hence, while helpful for
the detection of micro-clusters of outliers, it is advisable to combine fully supervised algorithms with those of
the other classes.

Semi-supervised outlier detection Unlike the supervised context, semi-supervised algorithms are only trained
on the true inlier labels. The underlying idea is that such an algorithm should model normality by learning the
distribution of features from true inliers. Everything sufficiently deviating from this normality is then labelled
as an outlier (Chalapathy and Chawla, 2019). In terms of classification, this is also called one-class classifica-
tion. In practical use-cases, the acquisition of true inlier labels is often much simpler than that of true outlier
labels. Especially based on previous unsupervised OD and a human review of the resulting predicted inliers, a
large set of true inliers can often be generated with minimal human effort, making semi-supervised algorithms
promising for practical applications.

2.2 On the importance of train-test splits

Splitting data between a train set for model estimation and a test set for validation is common practice in ma-
chine learning. In supervised learning, the goal is to avoid estimating a model that provides a tight fit to the
relationship between features and predicted labels in the training data, but, due to modeling spurious rela-
tionships that do not generalize, does not provide accurate predictions of the labels in the test data. However,
in unsupervised or semi-supervised learning applications, an algorithm cannot overfit on the prediction of a
specific label, therefore the question whether to split the data into a train and test sample is more subtle.

The argument for a train-test-split in an unsupervised context is that it can prevent the estimation of overly-
complex separation frontiers. If, for example, an unsupervised algorithm learns to distinguish clusters of
observations, an over-complex separation frontier would be unstable.2 Because overly-complex separation
frontiers are partly driven by random, rather than structural relationships in the data, a model that returns
different separation frontiers depending on random draws from the input data most likely suffers from over-
fitting. A resulting measure of over-fitting in unsupervised settings is the cluster stability of a model.

There are different ways to split data into a train and test sample and in many settings, a random split of
the data is sufficient to create proper train and test data sets. Many, if not most, data sets collected by central
banks have a panel structure. In the context of financial (panel) data, three aspects should be considered: (a)
the time-dimension of the data (b) the group structure of the data (i.e. holdings of bank A and holdings of
bank B) and (c) the rarity of the outlier label. The time dimension is most subtle because financial data often
contains features that reflect values from previous periods or changes across periods. If we split the data into
a train and test set along the time dimension, using the later periods for testing, there could be data leakage
from the train into the test set if features are serially correlated. Another source of data leakage are features that
allow the algorithm to model serial correlation by including data from different time periods. In time series or
panel data, we might include first differences as features. In this case, if we split the data randomly into train

2In our example, unstable separation frontiers result in different clusters if we train the unsupervised algorithm on different random
samples from the same population. Stability is a desirable feature of a separation frontier because it implies that the algorithm learned
structural and not spurious relationships in the data.

6

and test sets, information that we use in the train set can appear (e.g. in its lagged realization) in the test set.
This can result in data leakage between the train- and the test set.

In our data sets, empirically either using a random split or attributing all months below a threshold date
t to the train set and all months above the threshold to the test set does not have an effect on our findings
because the algorithms cannot exploit this link in the data. The fact that there might be time persistence of
outliers across time does not affect this logic. However, if there is a structural break in the data at some point
in time, the random split might be more stable and better to extrapolate. If one splits the data according to
some time threshold, it might happen that data before the structural break are the train set and the rest in the
test set. This could considerably affect the performance in the test data. In contrast, time persistence should
help to detect outliers more easily and should lead to a more stable algorithm if errors re-appear in new data
that are fed into the algorithm.

Besides the aforementioned aspects, one needs to take into account that financial data often has a panel
structure, with relationships within groups of time series. In our application, this group structure is relevant
because reporting errors could be highly correlated within a certain (reporting or economic) group. In general,
there are two ways to deal with the panel structure: First, it is possible to do a stratified split according to these
groups so that the distributions across the train and test data sets are the same. The disadvantage, however,
is that this could result in data leakage from the train to the test set. Second, it is possible to split the data
set according to the groups themselves so that one group with all its observations is either always in the train
or test data set. This, however, is only advisable if there are many small groups. However, since the data
sets collected by central banks are relatively large, random splitting is usually sufficient to ensure that the
distributions in the train and test data sets in terms of group belongings closely align. Still, it is advisable to
do stratified sampling across relative membership categories such as banks, funds or sectors to ensure proper
sample distribution by construction.

Another aspect that needs to be considered in the train-test split is that – by definition – the outlier label is
heavily imbalanced. To ensure that the train and test data set contain the same fraction of outliers, we stratify
the train-test-split according to the outlier label.3

Finally, the choice on the size of the test set should depend on the size of the data set and the fraction
of outliers in the data set. For evaluation purposes it is necessary that an appropriate number of outliers is
available in the test data set to avoid noise in the evaluation metrics due to the scarceness of the outlier label.
However, this is sometimes not easy to achieve if the data set is too small. For our data sets, we have picked
different test sizes.

To summarize, splitting and stratifying the data is important to properly evaluate the success of an outlier
detection model and to avoid over-fitting and noisy model selection. Therefore, we always split our data,
estimating the outlier detection model using train data and evaluating the model using test data.

2.3 How to evaluate the success of unsupervised models?

For the evaluation of our models, we largely use two measures: the receiver operating characteristic (ROC)
curve and the precision-recall (PR) curve. These two measures principally measure the trade-off between dif-
ferent competing ideas of model performance. Each model we estimate produces a score, whether an instance
is an outlier or not. An exception is One Class SVM that produces binary labels. However, here we can derive a
score from the distance of the observation of the hyperplane that separates the classes. The threshold at which
an instance is considered anomalous is often driven by the nature of the data and the problem to be solved.
In our case, we are concerned with measuring a model’s ability to detect rare and infrequent anomalies in our
data and thus, we are faced in most cases with a severe imbalance between labelled outliers and inliers. For
imbalanced data, the PR curve is often a fitting performance metric because it focuses more strongly on the
minority class (Davis and Goadrich, 2006) . Thus, we mainly rely on the PR-curve to evaluate our models.
Below is a brief description of the PR- and ROC curve.

3If no label is available in the data set, stratifying according to the label is, of course, not possible.

7

ROC curve The ROC curve plots the true positive rate (i.e. the recall) against the false positive rate. This
curve shows for different threshold values of what constitutes an outlier and the number of true positives
change versus the number of false positives. In Figure 2, we show a sample ROC-curve for an Isolation Forest
model. For a model that perfectly separates outliers from inliers, the orange line would make a right angle
to the upper left-hand corner, indicating that there is no trade-off because there are no false positives and all
true positives have been isolated. The blue line indicates the curve a random model should produce. The
area between the blue and orange lines (the area under the curve or AUC) measures the degree of the trade-off
between true positives and false positives. For this model, the ROC-AUC score is 0.93, which is relatively high.

Figure 2: Sample ROC-curve for an isolation forest

Notes: The figure shows a sample ROC-Curve for an isolation forest model. The orange line is the ROC-curve for an iso-
lation forest model, which shows the trade-off between the true positive and false positive rates for different thresholds of
outlierness. A perfect model would form a right angle at the top left of this figure, whereas a skill-less model is represented
by the diagonal blue line. Data source: WpInvest Aug-2017

PR curve However, we may not be interested in a model’s ability to correctly predict inliers, but rather how
well it predicts the much smaller outlier class. In this case, the PR-curve is much more useful, as it reflects
the fraction of true positives among all positive predictions. Figure 3, which shows the PR-curve for the
same model as above, makes clear that in the face of a class imbalance, PR-curves are a more appropriate
measurement because potentially we may overestimate the ability of our model to predict the minority class
on the basis of ROC AUC.

Figure 3: Sample PR-curve for an isolation forest

Notes: The figure shows a sample PR-Curve for an isolation forest model. The orange line is the PR-curve for an isolation
forest model, which shows the trade-off between the precision and recall for different thresholds of outlierness. A perfect
model would form a right angle at the top right of this figure, whereas a skill-less model is represented by the horizontal
blue line. Data source: WpInvest Aug-2017

8

2.4 Computing environment

All experiments were conducted in Python 3.6. We used Jupyter notebooks during the evaluation phase as well
as for the data exploration. The scikit-learn (Pedregosa et al., 2011) and pyod (Zhao et al., 2019) machine learning
libraries were selected for training and evaluation of the models. The applicability of latter one was indeed
good as it was specifically designed for anomaly detection tasks. The efficient training of the Autoencoder
Neural Network was achieved by shifting expensive computations to GPUs (Nvidia V100). For such compu-
tations we used the pytorch (Paszke et al., 2019) deep learning library. In addition, the statsmodels (Seabold
and Perktold, 2010) package was used for the estimation of the statistical models as well as for conducting
statistical tests.

3 Data sets

The goal of our investigation is to apply the major classes of unsupervised algorithms to micro data sets which
differ significantly in their dimensionality, frequency of collection, and their inherent properties. We will
benchmark the performance of these unsupervised algorithm classes against information on all previously
detected errors and outliers and evaluate their potential usefulness in a central bank’s data quality manage-
ment process. For our study, we use four different micro data sets that are typically collected by a central bank
and for which we have the initially reported data set with all errors, next to a respective final data set where
the errors were corrected and the outliers were flagged. A short summary of the data sets can be found in
Table 1 and the following paragraphs.

The Investment Funds Statistics (IFS) collects all information about the individual holdings on a security-
by-security basis for all investment funds issued by investment companies and public limited investment
companies residing in Germany and subjected to the German Capital Investment Code. In addition to the
granular holdings of each fund, a wide range of general information on the fund level is collected as well as
the fund’s key assets and liabilities4. Each line in the data set for the purpose of this paper corresponds to an
asset or liability value submitted by the reporting entity at the end of each month.

The Securities Holdings Statistics (WpInvest) contains security-by-security information on all holdings of
financial institutions registered in Germany for their domestic and foreign customers as well as the institution’s
own holdings. For each security – identified by the International Securities Identification Number (ISIN) – the
nominal amount (or in some cases the number of units held) as well as the market value of the holding, the
currency of the holding and the country of the holder are reported. In addition, flags are reported for securities
repurchase and securities lending transactions. For the purpose of this paper, each line corresponds to a report
by a single financial intuition for all of its customers located in Germany, broken down by the customers’s
sectoral classification (e.g. household, government, non-financial corporation etc.) and the customer’s country
of origin.

The MFI interest rate statistics covers all interest rates and the corresponding outstanding amounts (vol-
umes) of existing and new business euro-denominated deposits and loans, broken down into the sectors house-
holds and non-financial corporations from the Euro area. The reporting is submitted by roughly 240 German
banks on a monthly basis with month-end reporting values. Each line in the data set corresponds to a reported
value by a bank for the interest rate or the corresponding outstanding amount, broken down by the aforemen-
tioned economic sectors for different (original) maturity buckets and loans and deposits respectively.5

Finally, the German part of the Money Market Statistical Reporting (MMSR) lists all transactions conducted
in the money market of around 115 reporting agents from Germany. For the purpose of this paper, we focus
only on the unsecured part of the MMSR which includes all unsecured transactions on a daily basis, covering

4Amongst others, this covers balance-sheet-like information on the total assets, the amount borrowed and loaned by the fund, the use
of derivatives, and cash holdings in bank accounts. General information on the fund level cover information such as the number of fund
shares outstanding, type of replication, assets under management and distributions.

5There a further breakdowns that are reported in the data set, for example the breakdown by the purpose of loans to households. For
the purpose of this paper, however, we do not discuss those details of the data set.

9

borrowing and lending transactions for various instruments and for both fixed and variable rate contracts.
Each row in our data set represents a single transaction of a bank with an eligible counterparty, including
information on the counterparty itself, the agreed interest rate, the amount borrowed or lent as well as the
maturity of the transaction and so forth.

Table 1: Overview of data sets
Name Description

Investment Funds Statistics (IFS)
10k rows, 150 features, 5% outliers,

Blaschke and Haupenthal (2020)

Monthly micro data on assets under management by German in-
vestment management and externally managed investment com-
panies. Among other things, data consist of every security held
by the respective investment fund on a security-by-security basis.

Security Holdings Statistics (WpInvest)
5M rows, 110 features, 0.001% outliers,

Blaschke et al. (2020)

Securities reported by financial institutions domiciled in Ger-
many which they hold for domestic or foreign customers. Fur-
thermore, domestic banks provide information about their own
holdings, irrespective of where the securities are held.

MFI Interest Rate Statistics (ZISTA)
40K rows, 12 features, 0.7% outliers,

Bade and Krueger (2019)

The MFI interest rate statistics is composed as a representative
sample of around 240 institutions. The MFI interest rate statistics
measure the interest rates applied by domestic banks (MFIs) and
the corresponding volumes for euro-denominated lending and
deposit business with households and non-financial corporations
domiciled in the euro area.

Money Market Statistics (MMSR)
25K rows, 33 features, 0.04% outliers,

Bade et al. (2019)

The MMSR statistics provides the information on transactions
carried out by monetary financial institutions on the euro money
market. MMSR covers transactions in the secured, unsecured,
foreign exchange swap and EONIA swap (euro overnight index
swaps or OIS) market segments.

4 Data pre-processing and recommendations

4.1 General considerations

4.1.1 Encoded categorical values

Mixed data consists of numerical and categorical attributes. In order to work with categorical data, usually
the non-ordinal categorical data is encoded with methods such as one-hot encoding or hashing (see Section 4.2
for a discussion of these approaches).6 This change in representation, which in the case of hashing is not
reversible, can lead to the generation of additional columns and different scaling. Because one-hot-encoding
of categorical variables creates additional features, it can inflate the number of (encoded) categorical features
relative to the number of (not encoded) numerical features. In financial data this can, for example, be the case
for a feature that holds a large number of different currency codes. Creating a large number of features from
categorical variables and keeping the number of numerical attributes unchanged can artificially increase the
influence of categorical variables. If we use feature bagging in an isolation forest, for example, inflating the
number of one-hot encoded categorical features increases the probability of drawing the categorical feature
relative to drawing a numerical feature.7 This problem is exacerbated by the fact that for each data point, there
is at most one column in the expanded feature space for the categorical attribute that is set to one. Hence,
the new feature space is quite sparse and data points are more likely to be equally far apart from one another
(curse of dimensionality).

How to cope with this issue depends on the learning method. Trees in isolation forests need to grow
deeper in order to capture the expansion of the feature space by a one-hot encoded column, more trees have
to be generated, or more weight can be assigned to numerical columns by repeating them in the data set.

6For ordinal categorical data, order-preserving numeric encodings can be used.
7We use feature bagging in ensembles to reduce the correlation between estimators by training them on random samples of features

instead of the entire feature set.

10

Alternatively, only a subset of the categories are encoded to keep the feature space small. For distance-based
methods, measures such as Gower distance that take the mixed data structure into account or a reweighting of
the individual columns are suitable.

4.1.2 Skewed and sparse distributions

This section will discuss how to deal with skewed and sparse data to detect outliers in the Bundesbank data.
In particular, this section only covers numerical data, for a discussion of how to handle categorical data we
refer the reader to Section 4.2.

Skewed data refer to data with long tails on either side of the distribution, which holds also true for multi-
variate distributions. One naı̈ve approach to handle long tails of distributions is to truncate/clip them appro-
priately at empirically specified thresholds. In light of the fact that we are aiming to detect outliers, this needs
to be handled with much caution in order to avoid truncating actual outliers. For the IFS data, we did some
experiments truncating large values to a pre-specified threshold. This had two effects: (a) the focus slightly
moved away from over-weighting large investment entities; however, (b) at the same time actual outliers were
“truncated away” and could not be detected anymore. In the end, to avoid truncating away actual outliers and
because most columns had no long tails, we did use truncation to deal with skewed data. The same applies to
the WpInvest and ZISTA data sets.

Sparse data refer to the fact that in finite samples, high dimensional feature spaces are sparsely populated
with data points. Because our data only provide us with a relatively small sample size, sparsity creates some
difficulties in detecting outliers when a large number of features are included in the estimation. In section
4.1.4 we will discuss concrete approaches to reduce the dimensionality of the feature space to avoid estimating
models in too sparsely populated feature spaces.

4.1.3 Missing values

The data sets used in this exercise are, relatively speaking, quite complete, as many of the values are required
fields and do not pass basic validation checks if not filled. In cases where information in the training data
is indeed missing, be it due to missing reference data or because the key is appearing for the first time (thus
leading to missing values in the lagged values columns), the missing data is filled with zero or, in the case of
categorical variables, assigned to a placeholder string. Additionally, for the ZISTA data, where continuous data
is indeed missing, a separate categorical variable is created, which indicates the amount type, either positive,
negative, or missing. The additional missing category had a negligible impact on the model’s performance.

4.1.4 High dimensional data

The following table provides an overview of different approaches to reduce the dimensionality of the data. Our
data sets have many categorical variables, and as such, are high dimensional following the aforementioned
preprocessing steps. Aside from the bucketing/binning approach mentioned below, we explored using PCA
and Autoencoders ways to reduce the dimensions prior to estimation, as well as bagging to reduce variance of
the base estimators. Table 2 describes these methods and our evaluation thereof.

11

Table 2: High dimensional data reduction methods

Approach Description Evaluation
PCA Linearly maps features into lower dimen-

sional space.
PCA is efficient and easy to understand.
However, it does not handle categorical
variables or nonlinear relationships be-
tween features well.

Autoencoder (AE) Uses a neural network architecture to
compress or encode features into a lower
dimensional space.

Is able to flexibly model nonlinearities be-
tween feature categories (unlike PCA). In
particular, using it as a means of vectoris-
ing a large number of categorical vari-
ables is promising. AE suffers from a high
degree of tuning parameters and long
training times.

Feature Bagging A meta estimator that combines (via
mean or max) a number of base detectors
on various sub-samples of the data set
to improve the predictive accuracy and
to control over-fitting. Features are ran-
domly sampled from a subset of the fea-
tures.

This is a useful technique we used dur-
ing the intermediate and model valida-
tion stages of model development.

Feature Selection Choosing or omitting features based on
domain knowledge or empirical develop-
ments.

We did very little manual feature selec-
tion, except to omit non-reported features
merged from reference data sets.

4.1.5 Large data sets

Large data sets may pose a problem for learning methods with high time and space complexity. Instance-based
methods such as k-nearest neighbour (Ramaswamy et al. (2000); Angiulli and Pizzuti (2002)) and local outlier
factor (Breunig et al. (2000)) have a time complexity of O(nd) (or O(log(n)d) when using an indexing structure)
in the testing phase, where n is the training set size and d is the number of features. Thus, large training sets
incur additional indexing structure construction cost in the training phase and query cost that depend on the
training set size in the testing phase. In addition, instance-based methods need to keep the whole training set
in memory during testing. Instead of working with the complete training data, a stratified subsample can used.
However, the subsample may have an insufficient number of outliers. Therefore, for the WpInvest data, for
example, we train on a subsample with a fixed normal-to-outlier class ratio of 10:1. In order to avoid inflated
performance metrics, we have to ensure that we perform the evaluation on the complete (testing) set and not
on the training data with over-sampled outliers.

4.1.6 Excluding extreme outliers

Exploratory analysis of the data has revealed a number of extreme outliers in the data. In particular, by simply
plotting the development of a particular position over time in the ZISTA data set, one may notice the spike(s)
in such series. It should be noted that such spikes are rare fluctuations of the business that do not represent
errors but correctly reported data. As a result, training the model on such data may negatively influence the
detection rate of the outliers on unseen data.

Considering the above-mentioned findings, we have added a pre-processing step where a subset of extreme
outliers was removed from the data before the execution of the training cycle. The set of candidate samples for
removal was selected according to the following criteria: the data point has to reside outside of three standard
deviations from the mean of the distribution.8

Such pre-processing steps resulted in a higher detection rate and an overall positive outcome in terms of
the defined performance metrics. We believe this step mainly affected the decision boundary of the model and

8There is a number of other techniques (like an Inter Quantile Range or Mean Absolute Deviation instead of the Standard Deviation)
for removing the extreme outliers in the pre-processing step.

12

subsequently increased the generalization capabilities of the model. We found that this approach was a useful,
computationally cheap method to improve the quality of the trained model.

4.2 Categorical variables

The variables in many financial data sets are of mixed types. Besides continuous variables, the data often
include categorical variables. If the data set has a panel structure, for example, the cross-sectional and time
dimension trivially correspond to categorical variables. We discuss four approaches to deal with categorical
variables: One-hot Encoding, one-hot encoding a subset of categories, hierarchies, and hashing.

One-hot encoding One common approach to dealing with categorical variables is One-Hot Encoding. For
each category, we create a binary variable that takes the value one if the categorical variable is equal to the
category and zero otherwise. One advantage of this approach is its simplicity. A downside is that for categor-
ical variables with many categories, the resulting number of binary variables is large. This can lead to a very
sparsely populated feature space, especially if only small numbers of observations are part of each category.
We can furthermore run into performance issues for algorithms whose computational cost increases with the
number of features in the model. Another downside of one-hot encoding is that we lose the information that
for a given categorical variable, the realizations of the binary (one-hot encoded) variables are not independent
from each other. Because each observation belongs to one category, only one binary variable out of the group
of one-hot encoded categories can take the value one. Although a model can learn this type of structure, we
make the task of the model harder by not encoding information on the dependence between binary variables
that stem from the same categorical variable.

One-hot encoding a subset of categories One way to counteract the large number of sparse features resulting
from one-hot encoding is to one-hot encode only a subset of categories. Encoding only a subset can improve
the performance metrics by counteracting overfitting to categories with a small number of observations. By
resulting in a smaller number of encoded variables, we can also reduce the training time by selecting categories.
A disadvantage is that the approaches require the selection of additional hyperparameters (e.g., a variance
threshold of number of variables k). The approaches furthermore remove the distinction between non-encoded
categories, which may pose problems for explainability. For the main part of our project, we used two ways to
select a subset for encoding. The first approach is the selection of top-k groups. Instead of introducing a binary
variable for each value of a categorical feature, we only create a binary variable for the top-k values, where
the top-k values refer to the categories with the largest number of observations. Residual categories that are
not in the top-k values are mapped to a separate binary variable. A special case of this approach is encoding
the mode of the categorical variable. The second approach is using a variance threshold. Here, we calculate
the variance of each one-hot vector and only include those with a variance above a certain threshold. Because
the ranking of categories is identical if we use the variance or count the number of observations in a category,
the variance threshold and the selection of top-k groups yield the same results as if we select an adequate
threshold (value of k).

Hierarchies For many of the categorical variables in financial data, a grouping is possible. Because the num-
ber of groups is smaller than the number of categories, one-hot encoding groups results in a smaller number
of binary variables than simple one-hot encoding. The approach preserves the information on the group level.
For country codes, for example, we can group categories by larger geographic regions (Europe, Asia, . . .)
and one-hot encode these groups. This corresponds to mapping the categories to higher levels in hierarchical
categorizations.

Hashing Another approach to encode categorical variables that results in a lower number of features than
one-hot encoding is hashing. A hash function maps a categorical attribute with domain size k to a domain

13

with size k′ � k, thereby keeping the feature space small. However, relationships between categories are not
preserved. Because the size of the target space of the categorical attributes can be set via the hyperparameter
k′, the feature space does not become uncontrollably large. Since hashing maps categorical values uniformly
to the target space, collisions prohibit a one-to-one mapping from the feature space back to the original space.

Findings We find that one-hot encoding a subset of variables and using hierarchies improved the perfor-
mance in terms of the success of the models in isolating outliers and running times of the training as compared
to simple one-hot encoding. Out of the outlined approaches, hashing had the worst performance regarding
the models’ ability to isolate outliers.9

4.3 Numeric variables

4.3.1 Scaling

Independent scaling Here we scale features independently, i.e. without taking information from other fea-
tures into account. For continuous variables, we apply min-max scaling to rescale variables between zero and
one (one-hot-encoded categorical-type variables are naturally already scaled between zero and one). We also
applied standard scaling, which has the effect of centring all inputs with a mean of zero and a variance of one.
Scaling is essential for distance-based methods (such as LOF) to ensure equal weighting of features, and gen-
erally for efficient optimization of the cost function. For the particular case of the ZISTA data, we log-scaled
features to normalized skewed distributions. In addition to global scaling, we also explored several stratified
scaling approaches, described in the following section.

Scaling that captures dependencies The observations in our data sets are not independent. For example,
own securities holdings that banks report in WpInvest data belong to reporting the banks’ portfolio. If we feed
the raw data to an algorithm, we do not exploit the domain knowledge on potential interdependencies between
observations, i.e. positions in the same portfolio. To incorporate this information, we can scale numerical
variables with aggregates by groups. For example, we can divide all own holdings of a bank in WpInvest by
the aggregate size of own holdings of the bank. An alternative to scaling is to incorporate additional features
that capture interdependencies. In the WpInvest example, we can include indicator variables for banks that
allow the algorithm to model relationships between all own holdings of a bank, such as a larger average size
of the holdings of the bank compared to the other banks.

For the IFS data we can normalize with the own-fund volume of investment funds. This gives an indication
of the relative importance of funds positions and avoids a too large weight on large positions in absolute
value. When we re-scale the numerical features in the IFS data, we do not find improvements in the overall
performance of the outlier detection algorithms. However, the flagged outliers focused less on large funds and
more on funds with relatively large positions in specific asset classes.

4.3.2 Binning

Binning is a method to discretize or smooth numerical data. Usually the continuous data is discretized in
a fixed number of bins of equal width or by using quantiles to generate bins with an approximately equal
number of observations. Then, for discretization, the result can be encoded in one-hot or in an ordinal format.
For smoothing, values can be replaced, e.g., by their bin means.

For the WpInvest data, we observed that the performance of the quantile strategy was superior to equal-
width binning. However, omitting the binning step altogether led to the best performance. One-hot encoding

9For the IFS data, some categorical classifications can be directly inferred from some of the numerical attributes. Hence, the information
gain associated with these features might be small. Indeed, the results without categorical features are almost as good as with categorical
features. In addition, because most outlier detection models are only properly specified for numerical data only this might be the cleanest
approach for IFS data without losing much in terms of detecting outliers.

14

was inferior to ordinal encoding because of the increased size of the feature space and the loss of ordinal
information.

4.4 Feature engineering

As for other types of data, feature engineering can have a large impact on the performance of algorithms that
learn the structure of the data. We discuss three types to features that we can engineer in many financial data
sets.

Past realizations In time series analysis, we commonly include lags to account for the influence of past real-
izations of a variable on future realizations. In outlier detection with unsupervised machine learning methods,
past realizations provide context to the algorithm that can help to distinguish common from unusual data
points. Large values of numerical variables, for example, can seem anomalous if we do not account for past
realizations of the same variable in the previous period. A common method to account for past realizations is
to calculate first differences. For a data generating process with

yt = µ + yt−1 + εt, (1)

first differencing leaves us with
yt − yt−1 = εt − εt−1. (2)

We eliminate the fixed component µ from the data, which our model then does not have to explain to model
the structure of the data. We also make the implicit assumption that the previous realization’s marginal effect
on future realizations is one. If we want to leave the choice of the marginal effect size to the model or allow
for different marginal effects for different groups of observations, we can include the previous realization as a
feature, instead of calculating the first difference.

Aggregates Including aggregates also allows for a contextual evaluation by the model. For example, we can
include the overall issued nominal value of a security as a yardstick for the model to compare to the size of
the holdings. Because most algorithms can flexibly learn interactions between variables but cannot learn to
aggregate values across rows, aggregation should be part of the feature engineering if we believe that it adds
useful information to the data.

Context from other statistics Another source of contextual information can be other statistics. If we model
banks’ interest rates in the ZISTA data, for example, we can include interest rates, set by the Governing Council
of the ECB.

Findings For all data sets, we find that first differencing and adding lagged features only slightly improved
the performance of the algorithms. Adding aggregated interest rates per maturity and reporting period, led to
a slight improvement for ZISTA data. In the IFS data and for the WpInvest data, the inclusion of aggregates
also resulted in small improvements of the performance. Adding reference interest rates to the ZISTA data
did not improve the performance of the model. One reason for the absence of a gain in performance is that
the inclusion of one-hot encoded periods (time fixed effects), already allows the model to take into account
contextual changes at time t. Therefore, additional information on changes in the interest rates, set by the
ECB, do not add explanatory value. However, because they can allow for better explainability of the results by
having a clear interpretation, the interest rates are superior to one-hot encoded time periods.

15

5 Approaches to detect outliers and recommendations

In this section, we strive to provide a broad overview of algorithms that allow for the unsupervised detection of
anomalies.10 Because of the abundance of resources on the methodology of the algorithms, we do not provide
a detailed description of their inner workings in this paper. Instead, Table 3 refers the reader to the original
paper that introduced the algorithm and further resources.

Table 3: Resources on the methodology of the anomaly detection algorithms

Algorithm Original Paper Further Reading

Isolation Forest Liu et al. (2008)
kNN Ramaswamy et al. (2000); Angiulli and Pizzuti (2002)
DBSCAN Ester et al. (1996)
LOF Breunig et al. (2000)
FINCH Sarfraz et al. (2019)
One Class SVM Schölkopf et al. (1999)
Autoencoder Rumelhart et al. (1986) Schreyer et al. (2017)
PCA & rPCA
HBOS Goldstein and Dengel (2012)
ARIMA Junttila (2001)

Table 4 shows a short intuition behind the algorithm and conceptual differences between the anomaly
detection algorithms that we evaluated. Here, we distinguish between five groups of algorithms on the basis
of their methodological approach. The first algorithm uses decision trees to isolate outliers. Algorithms in the
second group use notions of distance or estimates density functions. Cluster based approaches use clustering
algorithms, whereas SVM based algorithms rely on Support Vector Machines for classifying observations as
outliers. Reconstruction based methods map the data to a lower dimensional space and then reconstruct
the higher dimensional representation of the data. They then flag observations as outliers that have a high
reconstruction error. Finally, we also discuss more classical statistical approaches.

10For a taxonomy and discussion of different anomaly detection algorithms, see, e.g., Goldstein and Uchida (2016) and Zhang et al.
(2007).

16

Table 4: Overview of anomaly detection algorithms

Intuition Strengths Weaknesses Global vs. Local Assessment

Tr
ee

Ba
se

d

Is
ol

at
io

n
Fo

re
st Anomalous instances in a data set

are easier to separate from the rest
of the sample (isolate), compared
to normal data points. In order
to isolate a data point, the algo-
rithm recursively generates parti-
tions on the sample by randomly
selecting an attribute and then ran-
domly selecting a split value for the
attribute. When the iTree is fully
grown, each data point is isolated
at one of the external nodes. In-
tuitively, the anomalous points are
those (easier to isolate, hence) with
the smaller path length in the tree,
i.e. points that are earlier separated
at nodes of the tree.

• Fast to estimate
• Easy to implement
• Intuition of approach is

easy to understand and
certain degree of ex-
plainability (allows us
to look at individual
trees)

• Few hyperparameters
• Results are relatively

robust to hyperparame-
ter tuning

• Not tuned towards detecting
local anomalies

• Standadrd implementations
of isolation forest cannot han-
dle categorical data. One-hot
vectors are treated equally
to numerical data. This is
problematic in the same way
as for decision tree classifiers
with random splits between
categoricals

Global The algorithm is well suited for
our (mixed) data and a very
good baseline model for com-
parison with other algorithms.
IForests are also a very good
starting point when implement-
ing alternative models, feature
spaces etc, because they are easy
to implement, have few hyper-
parameters, fast to estimate, and
are relatively robust.

D
is

ta
nc

e
an

d
D

en
si

ty
Ba

se
d

kN
N To determine the outlyingness of a

data point, determine the (average)
distance to its k(th)-nearest neigh-
bour(s). Outliers are far away from
their nearest neighbours, whereas
inliers are similar(=close) to their
nearest neighbors.

• Conceptually simple
• Explainability
• Distance metric takes

information of the com-
plete row into account

• Hyperparameters (number of
neighbors and distance met-
ric) make tuning more difficult

• Not tuned towards detecting
local anomalies

• Standard implementations do
not scale well for large or
high-dimensional data sets

• Suffers from curse of dimen-
sionality

Global The method is well suited for
small to medium-sized data
sets of low/medium dimen-
sion. For high dimensions both
outlier-detection and computa-
tional performance suffer. Due
to its conceptual simplicity, this
algorithm serves as a good base-
line model for benchmarking

... continued on next page

17

Table 4: Overview of Anomaly Detection Algorithms (continued)

Intuition Strengths Weaknesses Global vs. Local Assessment
D

BS
C

A
N Density-Based Spatial Clustering

of Applications with Noise deter-
mines core samples that are in a
neighbourhood with high density.
A neighbourhood is dense for a
sample if there are at least a cer-
tain number of samples within a
given distance. Data points that are
close to a core sample form a clus-
ter. Data points that are neither core
samples nor close to them are con-
sidered outliers.

Can handle clusters of ar-
bitrary shapes

• Does not provide anomaly
scores out of the box (but bi-
nary labels)

• Possibly slow training with
high memory usage

Tendency to-
wards detecting
global outliers,
but depending
on the choice of
hyperparame-
ters DBSCAN
can detect local
outliers as well

The algorithm performs for out-
lier detection relatively well.
However, the delicate interplay
of hyperparameters and the fea-
ture space complicates the usage
of this method. Incorrectly set-
ting the hyperparameters leads
to large training times and high
memory usage. In addition, the
calculation of anomaly scores
has to be implemented sepa-
rately.

LO
F Anomalies are not located in

densely populated neighbour-
hoods. The algorithm calculates
the LOF score of an instance as the
ratio of the average distance of the
instance to its k-nearest neighbours
over the average distances of the
k-nearest neighbours to their re-
spective neighbors. Anomalies will
obtain large scores as they have low
local density compared to normal
observations.

Easy to implement • Not very robust estimates
• Slow to estimate with large

number of neighbours

Depending on
the number of
neighbours (hy-
perparameter),
the LOF can
detect local as
well as global
outliers in the
data

Like kNN the method works
well with small and low-
dimensional data. Large data
sets and high-dimensionality
pose a challenge to the al-
gorithm that then becomes
intractably slow.

... continued on next page

18

Table 4: Overview of Anomaly Detection Algorithms (continued)

Intuition Strengths Weaknesses Global vs. Local Assessment

C
lu

st
er

Ba
se

d

FI
N

C
H Forms chains by linking data points

to their nearest neighbour. If data
points have the same first neigh-
bour, it links them to each other.
The connected components of this
graph form a cluster. To gen-
erate additional clusters,the algo-
rithm performs the previous steps
recursively on computed average
data points.

• Conceptually simple
• Few hyperparameters
• Fast training and esti-

mation, so it can be
used for large and high
dimensional data set

• Not designed as an anomaly
detection method

• Multiple solutions
• No singleton clusters

– The method was not considered
due to related scalability issues
in the reference implementation
of the authors of this method.

K
er

ne
lB

as
ed

O
ne

C
la

ss
SV

M One-Class SVM is a special case
of the traditional SVM algorithm
that is used for unsupervised sce-
narios. The main property of the
traditional SVM is the ability to
build a non-linear decision bound-
ary by projecting the data to a high-
dimensional (feature) space. The
“Kernel trick” is used to perform
the projection. In the feature space
a “straight” hyperplane is built to
separate the data to classes (posi-
tive / negative). The goal is to find
the function that is positive for re-
gions with high density and nega-
tive for low density.

• Ability to learn com-
plex decision boundary.

• Provides an “anomaly
score” per sample
(distance to the hyper-
plane)

• Compute and storage require-
ments increases rapidly with
the number of training sam-
ples, due to the expensive ker-
nel computation.

• Might become sensitive to hy-
perparameters. Selection of
the kernel, rejection rate, soft
margin etc. have to be ad-
justed according to the data
set structure.

• Difficult interpretability of the
model for high-dimensional
data sets.

• Cannot handle categorical
data.

Captures global
outliers almost
always. For
detection of
local outliers
tuning of model
hyperparame-
ters might be
required.

OCSVM does not scale well
to larger data sets (although
more computionally efficient
implementations are being
developed). It can require a cer-
tain degree of hyperparameter
tuning to achieve an acceptable
performance.

... continued on next page

19

Table 4: Overview of Anomaly Detection Algorithms (continued)

Intuition Strengths Weaknesses Global vs. Local Assessment

R
ec

on
st

ru
ct

io
n

Ba
se

d

A
ut

oe
nc

od
er Performs non-linear data transfor-

mations by reducing the dimen-
sionality to a lower level and then
transforming it back to the origi-
nal data space. The transformation
may consist of multiple steps (hid-
den layers). Anomalies are those
samples that performed worst in
the reconstruction phase.

• Ability to capture non-
linear relations in com-
plex data structure

• Multiple assessment of
errors: reconstruction
error, latent representa-
tion

• Computationally expensive
• Lots of hyperparameters for

tuning
• Interpretation of the results is

difficult
• Sensitive to the attributes se-

lected

Captures global
outliers bet-
ter than local
outliers

The algorithm performs well de-
tecting the global outliers.

PC
A

an
d

rP
C

A Performs linear data transforma-
tion by reducing the dimensional-
ity to a lower level and then trans-
forming it back to the original data
space. Anomalies are those samples
that performed worst at the recon-
struction phase.

• Not many hyper-
parameters

• Relatively fast
• Level of explainability

is relatively high
• Multiple assessment of

errors: reconstruction
error, latent representa-
tion

• Poorly performs capturing
nonlinear relationships

• Sensitive to the attributes se-
lected

Captures global
outliers better
than local

The algorithm showed a rel-
atively good performance and
could be well suited as a base-
line model for comparison.

St
at

is
ti

ca
l

H
BO

S Uses the histogram approach for
calculating the outlier score. The
frequency (relative amount) of sam-
ples in a bin is used as density es-
timation. In multivariate anomaly
detection, the scores obtained from
each histogram are computed indi-
vidually and combined afterwards.

• High level of explain-
ability

• Extremely fast
• Small number of hyper-

parameters
• Good interpretability

Does not capture (unusual) re-
lationships between the features
and is sensitive to the feature se-
lection

Captures global
outliers bet-
ter than local
outliers

The algorithm showed good
performance only for a particu-
lar set of feature combinations.
Therefore, for successful model
selection, the set of features
must be done carefully.

... continued on next page

20

Table 4: Overview of Anomaly Detection Algorithms (continued)

Intuition Strengths Weaknesses Global vs. Local Assessment
A

R
IM

A Forecasting the time series data us-
ing the historical observations of
the series.

• Good explainability
• Few hyperparameters

• Each model has to be built
separately for individual time
series

• Scaling of the anomaly scores
across multiple series has to be
done carefully

Captures global
outliers bet-
ter than local
outliers

The algorithm showed a big
potential for time series data.
However, it needs to be cali-
brated carefully. We can imag-
ine that some models need to be
retrained/-calibrated from time
to time because trends for some
of individual time series change
over time.

21

6 Combination of detectors and recommendations

In this section, we discuss how to detect outliers by combining the output of multiple outlier detection algo-
rithms. These so called ensemble methods are meta-algorithms that combine several machine learning algo-
rithms into one predictive model and thereby aim to improve/boost the performance of the final model (Opitz
and Maclin, 1999; Rokach, 2010; Polikar, 2006). The outlier detection algorithms that are used to construct
the ensemble are known as components. Outlier detection ensembles have many advantages over individual
outlier detection algorithms. Often there are cases where a model that was trained on a data set will work
well for the particular subset of the data and will fail when applied to other parts of the data. Also, in some
instances, a trained model can perform well solving a task in one data set and fail performing the same task
in other data sets. An ensemble model helps to leverage the different strengths of algorithms by not relying
on a single model that could work well on only a particular data set. If one component under-performs in de-
tecting outliers in a specific scenario, it is likely that this doesn’t strongly impact the overall ensemble model’s
performance, as other components can work well for the same data points and thereby compensate. Hence,
overall it can be observed that ensemble models often provide more stable / robust results when compared to
individual models (Aggarwal, 2012; Aggarwal and Sathe, 2017). Generally, the design of an outlier detection
ensemble model follows three steps (Aggarwal and Sathe, 2017):

1. Model creation: This step includes methodology or algorithms used to create the components.

2. Normalization: Ensemble models may consist of multiple heterogeneous components and the output from
each component can be in different ranges. Therefore it is important to normalize the different scales of
outlier scores from different components.

3. Model combination: We refer to the algorithm that combines individual components’ outputs as fusion
method. We have utilized and implemented different fusion methods (see below).

Outlier detection ensembles can be categorized into multiple groups, depending on either the type/class
of components used or based on dependency within the components in the ensemble model (Aggarwal, 2012).
We designed an ensemble model that is a hybrid (independent and model-centered) of different outlier ensem-
ble groups. Drawing on Aggarwal (2012); Zhao and Hryniewicki (2018); Pasillas-Dı́az and Ratté (2016); Zimek
et al. (2014), we implemented different model combination functions. In the following, we distinguish three
approaches.

6.1 Simple fusion methods

As the name suggests, simple fusion methods combine different components’ outputs by using simple mathe-
matical operations as combination functions. Among others, these functions are: maximum, average, damped
averaging, pruned averaging, majority voting, normalized to one per component max, normalized to one per
component average. Apart from their simplicity, advantages of simple fusion methods are that they are easy
to implement, allow for easy interpretability, and are less computationally intensive. On the other hand, they
exhibit limitations. The functions are not capable to learn the patterns in the component output, and the per-
formance improvement depends on the diversity of the components’ output. Further limitations are that max
has a tendency to overestimate the outlierness and average tends to dilute the outlierness due to irrelevant
components (Zimek et al., 2014; Aggarwal and Sathe, 2015). We recommend starting with these methods in
the ensemble due to their simplicity, even though in our tests, they were not able to outperform individual
components.

22

Figure 4: Flowchart of DCSO algorithm

Notes: The figure shows a flowchart of DCSO algorithm with an explanation for each step. The figure was adapted from
Zhao et al. (2018).

6.2 Unsupervised fusion methods

In an outlier ensemble, multiple outlier detection algorithms are used as the components which are applied
on the input data for the outlier prediction. Later, these components output are used as input to the ensemble
model for fusion. If labels are available (supervised learning) the optimization in the fusion-step can be based
on the predictive performance of the labels. If labels are not available, wich usually is the case in outlier de-
tection, we need to rely on an unsupervised fusion method. We implemented two unsupervised combination
methods: Dynamic Combination of Detector Scores (Zhao and Hryniewicki, 2018) and Ensemble of detectors
with correlation votes / Ensemble of detectors with variability votes (Pasillas-Dı́az and Ratté, 2016).

Dynamic Combination of Detector Scores (DCSO) consists of two main steps: generation and combination.
In the generation step, different and diverse base detector algorithms are selected. These base detectors can
contain any outlier detection algorithm. In the combination step, a local region is defined for each observation
by selecting the top-n most similar neighbors. Then, the base detector which delivered the best performance
in the defined local neighborhood is selected as the competent detector for the observation. This competent
detector is used to predict the outlier score for the selected test instance. DCSO focuses on local regions in
the data for the computation of outlier scores, hence it can detect local outliers. All the steps and complete
flowchart of DCSO are shown in Figure 4.

In the case of EDCV (Ensemble of detectors with correlation votes) and EDVV (Ensemble of detectors with
variability votes), the outlier scores of all the algorithms for input samples are stored in a matrix F of size
m× T where m is the number of samples and T is the number of algorithms (components). In the first step,
vote matrix V of size m× T is calculated which contains the number of votes assigned by each algorithm for
each data sample. A modified boxplot technique is used for the calculation of votes where a sample gets a vote
if its score is greater than 150% of the Inter Quartile Range. In the next step, a weight matrix W is computed
based on EDCV and EDVV approaches. In the EDCV method, a correlation coefficient matrix C between the
output score F is calculated, and then by using the matrix C the corresponding weights of each component are
calculated using the equation

Wn =
(∑T

m=1 Cmn)− 1
T − 1

. (3)

Similarly in EDVV, a matrix D of mean absolute deviations (MAD) between output scores F is calculated, and
later, weights of each component are calculated using

23

Wn =
∑T

m=1 Dmn
T − 1

. (4)

In the last step, the final score of each sample is calculated using the corresponding votes from V and weights
from W. So ECVV and EDVV use the correlation and variability between individual components respectively
to compute the final ensemble output.

Especially in the early stages of analyses, when labels are often missing, these methods can help to fuse the
outputs of multiple components. However, due to large execution times, these methods sometimes have to be
run on sub-sampled data sets. In our application, both methods were able to provide slight improvements in
the results compared to the best output provided by any single outlier detection algorithm. However, because
the performance improvements in our tests were not substantial, we opted to also investigate more complex
fusion methods.

6.3 Complex fusion

In this approach, a supervised machine learning model is used as a fusion or combination function. In order
to apply this approach, we need information on which observations are actual outliers as targets. We can
then apply the fusion method to data, even if we have no information on the targets to isolate outliers. This
method is similar to stacking or stacked generalization (Wolpert, 1992; Smyth and Wolpert, 1999; Breiman,
1996). The intuition behind this approach is that the outputs from several components (outlier detection al-
gorithms) for an input sample are fed into another machine learning model to combine them into a single
output. Here, the output of each component can be considered as a derived feature. So the derived feature
can be a binary output (outlier/inlier), the outlierness score, or both. This fusion model can hence be seen as a
meta-classifier/regressor that can use dependencies or identify patterns in prior components output. Figure 5
shows how this approach works. The figure illustrates that the input data is fed into different components of
the ensemble, i.e. different outlier detection algorithms. The output prediction of each component takes the
form of a binary output and an outlierness score. These outputs (features) are the input data for the ML classi-
fier/regressor in the next stage. Here, the ML classifier/regressor is used for fusion by training the output from
the previous step with given labels and predicts the final outlier score for the input sample. The advantage of
this approach is that the ensemble methods are capable of learning from component outputs. Any supervised
machine learning algorithm can be used as fusion method. Also, these algorithms do not rely on the diversity
in previous components output but can identify patterns. Due to their learning capabilities, these methods
were able to outperform all previous approaches substantially.

Figure 5: Complex fusion method

Final	
Outlier
Score

Data
Input	Features
(Binary	scores,

Outlierness,	Count)
Component-2

Component-1

Component-n

ML	Classifier	or
Regressor

Notes: The figure illustrates the complex fusion method which takes prediction and outlier score output from each com-
ponent as input. Then it fuses the input and learns the features to predict the final output from the ensemble model.

24

7 Active learning for outlier detection

Active learning is a unique type of machine learning where a learning model will frequently query the user/-
expert for labels of selected samples for better performance (Settles, 2009; Rubens et al., 2011; Das et al., 2020).
This method falls into the category of supervised learning in which only a small part of the data is labelled.
In this method, human involvement in data labelling is treated as more valuable. This technique is used in
cases where a large amount of unlabelled data is available and labelling is expensive (Settles, 2009). Figure 6
explains the advantages of this approach. Furthermore, with this approach, the outlier detection problem is
started as unsupervised learning and then can gradually turn it into a supervised learning method.

Figure 6: Active learning

1 2 3 4 5 6 7

2

1

0

1

2

(a)
1 2 3 4 5 6 7

2

1

0

1

2

(b)
1 2 3 4 5 6 7

2

1

0

1

2

(c)

Notes: The figure shows an illustration of active learning. (a) Input unlabelled data consists of two clusters represented
by colors green and red. (b) Classification result of active learning model on unlabelled data at the early stages. This
approach is an iterative process where each iteration includes selecting few samples from unlabelled data based on the
query strategies for the expert query, then labelling the selected samples by experts’ feedback and later training the post-
processing model (learner) on the labelled samples. These labelled samples are represented as squares. Here the decision
boundary is represented as a blue line and is not optimal. (c) Result of active learning model on the unlabelled input
data after few iterations. Here the decision boundary is more accurate in separating two clusters in the unlabelled data
compared to the previous result due to the iterative learning process.

We designed active learning for outlier detection as an iterative process. In our case each iteration corre-
sponds to a reporting period and is split into two steps (except in first iteration which includes only the first
step). During the first step, an unsupervised outlier detection algorithm is applied on a new data set to detect
potential outliers. We applied this approach on IFS data. Then, from the predicted output, the top 5% outliers
are selected based on the outlierness score of each input sample. In the second step, a pre-trained supervised
machine learning model is used which is also called as a post-processing model or a learner. The output from
the first step is fed into the post-processing model that selects a number of (e.g.: top 30 or top 100 by output
score of the post-processing model) samples to be reviewed by domain experts. The selection of samples for
expert feedback depends on the scenario and on the implemented query strategies. We applied active learning
in two scenarios and implemented two query strategies which we will discuss below.

• Stream-Based Selective Sampling (Lewis and Gale, 1994; Settles, 2009): Each unlabelled sample from a
large corpus is drawn one at a time and fed to the learner. Then, the learner will decide whether to
request the label of this sample from the expert or to discard it. We implemented this approach with
a small modification that if the post-processing model can classify an unlabelled input sample with a
score greater than some threshold then the learner itself can assign a label to such a sample, otherwise
the sample will be dispatched for the expert query. We set the threshold to 90%. However, we couldn’t
find much progress with this approach due to the poor performance by the post-processing model in
labelling the input samples.

25

• Pool-Based Sampling (Settles, 2009): This is a scenario that is more commonly studied in active learning.
In this type, a filter (in our case, an unsupervised model) is applied on a pool of unlabelled data and
the samples are ranked based on the returned results. Then from the ranked list the top n samples are
selected for the query, where n is a parameter. This parameter is application-specific and reflects the
amount of resources that are available for labelling tasks. We tried n with values 30, 100, and 300. The
filter is accompanied by a query strategy which we will discuss next.

The two query strategies used for this work are:

• Certainty sampling (Settles, 2009): In this query strategy, the samples for which the post-processing model
is most certain in its outlier classification are selected for the expert query. Consequently, samples with
the highest outlierness score are selected in each iteration (green zone in Figure 7).

• Uncertainty Sampling (Settles, 2009; Lewis and Gale, 1994; Pelleg and Moore, 2005): Here, the post-
processing model selects such samples for the query for which it is least confident or least certain on
how to label. The motivation behind this method is that having expert feedback / labels for the hardest
samples will help the learner to improve its performance in the next iteration. Samples selected by this
strategy are represented by the blue zone in Figure 7.

The selected samples by the post-processing model are queried for labels. Next, the post-processing model is
trained using the new labelled samples and this two-step process is then repeated in each iteration.

Figure 7: Certainty sampling

outlier	probability

C
er
ta
in
ty
	V
al
ue

Data	Samples	
with	Score	>	90
Data	Samples	
with	Score:	40	-	60

0 1

0.6

0.4

0.2
Score	*	(1	-	Score)

Notes: The figure shows certainty sampling. Samples in the green zone are the ones for which the post-processing model
scores above 90% and the blue zone represents the samples for which the model is least certain about its class.

8 Results and evaluation

The success of the algorithms and their relative performance is, of course, highly domain specific. Depending
on the working definition of an outlier in financial data, the performance of the algorithms will differ. We still
report detailed results for all algorithms. What is more, we show the performance with and without feature
engineering and parameter tuning. The reason is that conditional on a data set and our definition of outliers,
the results provide suggestive evidence on the necessity and benefits of feature engineering and parameter
tuning as well as an indication of the heterogeneity in performance between different algorithms.

Tables 5 and 6 and Tables 7 and 8 present the evaluation results based on ROC-AUC and PR-AUC for the
securities holdings statistics (WpInvest), the investment funds statistics (IFS), the interest rate statistics (ZISTA)
and the money market statistics (MMSR) respectively. For each data set, we depcit the baseline results in the
first column, the results with feature engineering in the second column, the results with parameter tuning in the
third column and - where applicable – the results with feature bagging in the forth column. The table provides

26

three main insights. First, we find that there is profound heterogeneity regarding the success of algorithms in
isolating outliers. Second, an algorithm that, in our application, showed a good performance across different
data sets is the Isolation Forest. Even without time consuming feature engineering and parameter tuning, the
isolation forest provided a good performance relative to other approaches. Without a prior intuition which
algorithm successfully isolates outliers in financial data, our findings suggest that Isolation Forests are a good
starting point. Third, the importance of feature engineering, parameter tuning and (if applicable) feature
bagging for the performance depends on the algorithm and data set. Even for Autoencoders that, due to their
complex structure, can discover features, we find that feature engineering can provide sizeable improvements.

27

Table 5: Results (ROC-AUC) for unsupervised outlier detection algorithms and combination of detectors (WpInvest & IFS)
Evaluation Results (ROC AUC)

WpInvest
Total 3.9M samples and Outliers 0.001%

IFS
Total 120000 samples and Outliers 4.6%

Baseline +Feature
Engineering

+Parameter
Tuning

+Feature
Bagging Baseline +Feature

Engineering
+Parameter
Tuning

+Feature
Bagging

Ensemble
(Homogeneous
Learners)

Isolation
Forest 0.965 0.963 0.982 – 0.597 0.641 0.652 0.638

Distance/Density
Based kNN 0.805 0.882 0.882 – 0.599 0.628 0.628 0.623

DBSCAN 0.880 0.945 0.945 – 0.554 0.609 0.617 –
LOF 0.626 0.740 0.740 – 0.570 0.569 0.570 0.652
OCSVM – – – – – – – –

Cluster Based Autoencoder 0.516 0.552 0.595 – 0.607 0.608 0.665 0.652
PCA and rPCA 0.780 0.632 0.632 0.591 0.607 0.665 0.669 0.651
HBOS – – – – – – – –
ARIMA

Combination of
Detectors

(Simple
Fusion)
0.9832

(Unsupervised
Fusion)
0.954

(Complex
Fusion)
0.9877

–
(Simple
Fusion)
0.6429

(Unsupervised
Fusion)
0.6473

(Complex
Fusion)
0.7648

–

Notes: The table shows results (ROC-AUC) of all the unsupervised outlier detection algorithms and Combination of Detectors method for WpInvest and IFS data sets.

28

Table 6: Results (ROC-AUC) for unsupervised outlier detection algorithms and combination of detectors (ZISTA & MMSR)
Evaluation Results (ROC AUC)

ZISTA
Total 4.3M samples and Outliers 0.7%

MMSR
Total 2.2M samples and Outliers 0.04%

Baseline +Feature
Engineering

+Parameter
Tuning

+Feature
Bagging Baseline +Feature

Engineering
+Parameter
Tuning

+Feature
Bagging

Ensemble
(Homogeneous
Learners)

Isolation
Forest 0.499 0.637 0.639 – 0.925 0.935 0.935 –

Distance/Density
Based kNN 0.702 0.733 0.738 – 0.894 0.905 0.905 –

DBSCAN – – – – – – – –
LOF 0.576 0.733 0.736 – 0.901 0.908 0.908 –
OCSVM 0.506 0.625 0.626 – 0.921 0.928 0.928 –

Cluster Based Autoencoder 0.701 0.704 0.708 – – – – –
PCA and rPCA 0.714 0.744 0.745 – 0.844 0.865 0.865 –
HBOS 0.695 0.735 0.735 – 0.915 0.928 0.929 –
ARIMA 0.665 0.665 0.691

Combination of
Detectors

(Simple
Fusion)
–

(Unsupervised
Fusion)
–

(Complex
Fusion)
–

–
(Simple
Fusion)
–

(Unsupervised
Fusion)
–

(Complex
Fusion)
–

–

Notes: Result (ROC-AUC) of all the unsupervised outlier detection algorithms and Combination of Detectors method for ZISTA and MMSR data sets.

29

Table 7: Results (PR-AUC) for unsupervised outlier detection algorithms and combination of detectors (WpInvest & IFS)
Evaluation Results (PR AUC)

WpInvest
Total 3.9M samples and Outliers 0.001%

IFS
Total 120000 samples and Outliers 4.6%

Baseline +Feature
Engineering

+Parameter
Tuning

+Feature
Bagging Baseline +Feature

Engineering
+Parameter
Tuning

+Feature
Bagging

Ensemble
(Homogeneous
Learners)

Isolation
Forest 0.0008 0.0009 0.0013 – 0.048 0.055 0.056 0.054

Distance/Density
Based kNN 0.0002 0.001 0.001 – 0.064 0.097 0.097 0.082

DBSCAN 0.0001 0.0007 0.0007 – 0.052 0.092 0.092 –
LOF 0.00004 0.00006 0.00006 – 0.055 0.057 0.057 0.073
OCSVM – – – – – – – –

Cluster Based Autoencoder 0.0001 0.0001 0.0002 – 0.063 0.064 0.085 0.082
PCA and rPCA 0.023 0.0004 0.0004 0.0002 0.063 0.085 0.086 0.082
HBOS – – – – – – – –
ARIMA – – –

Combination of
Detectors

(Simple
Fusion)
0.001

(Unsupervised
Fusion)
0.0009

(Complex
Fusion)
0.003

–
(Simple
Fusion)
0.065

(Unsupervised
Fusion)
0.056

(Complex
Fusion)
0.3441

Notes: The table shows results (PR-AUC) of all the unsupervised outlier detection algorithms and Combination of Detectors method for WpInvest and IFS data sets.

30

Table 8: Results (PR-AUC) for unsupervised outlier detection algorithms and combination of detectors (ZISTA & MMSR)
Evaluation Results (PR AUC)

ZISTA
Total 4.3M samples and Outliers 0.7%

MMSR
Total 2.2M samples and Outliers 0.04%

Baseline +Feature
Engineering

+Parameter
Tuning

+Feature
Bagging Baseline +Feature

Engineering
+Parameter
Tuning

+Feature
Bagging

Ensemble
(Homogeneous
Learners)

Isolation
Forest 0.013 0.018 0.019 – 0.012 0.015 0.015 –

Distance/Density
Based kNN 0.012 0.023 0.024 – 0.012 0.015 0.015 –

DBSCAN – – – – – – – –
LOF 0.014 0.026 0.027 – 0.015 0.017 0.017 –
OCSVM – – – – – – – –

Cluster Based Autoencoder 0.071 0.078 0.079 – – – – –
PCA and rPCA 0.013 0.070 0.072 – 0.013 0.016 0.016 –
HBOS 0.013 0.022 0.028 – 0.012 0.018 0.019 –
ARIMA 0.015 0.016 0.019 – – – – –

Combination of
Detectors

(Simple
Fusion)
–

(Unsupervised
Fusion)
–

(Complex
Fusion)
–

–
(Simple
Fusion)
–

(Unsupervised
Fusion)
–

(Complex
Fusion)
–

Notes: The table shows results (PR-AUC) of all the unsupervised outlier detection algorithms and Combination of Detectors method for ZISTA and MMSR data sets.

31

As mentioned in Section 6, we also applied different combination functions in outlier detection ensembles.
We evaluated a total of 16 different combination functions, mainly categorized into three categories. The per-
formance across the three categories and all the methods on the IFS data set are summarized in Table 9. There
were some glimpses of performance improvement by simple and unsupervised methods but the difference
was not large. Simple and unsupervised fusion methods couldn’t outperform the best individual component
result at a significant level which might be due to the lack of diversity in output between the individual com-
ponents used as input to the combination functions. However, the performance of complex fusion methods
were promising as they clearly outperformed all other methods by a large margin. The complex fusion meth-
ods were able to learn the patterns and relation between each component output for the prediction of output.
So there were sizeable improvements in the ROC-AUC and PR-AUC values by complex fusion methods.

Table 9: Comparison of different fusion methods
Combination functions F1-Score PR-AUC ROC-AUC
Best individual component 0.1021 0.0857 0.6643

Simple fusion
method Min 0.1195 0.056 0.5804

Max 0.0834 0.0828 0.6539
Avg 0.0834 0.0673 0.6601
Normalize-one-per-Component-Max 0.0991 0.0696 0.6539
Normalize-one-per-Component-Avg 0.0834 0.0655 0.6598
Majority Voting 0.0834 NA NA

Unsupervised fusion
method DCSO-AVG 0.1092 0.063 0.588

DCSO-MAX 0.115 0.0799 0.6273
DCSO-AOM 0.0913 0.0629 0.6389
DCSO-MOA 0.1109 0.0889 0.6336
EDCV 0.0834 0.0650 0.6591
EDVV 0.0834 0.0676 0.6595

Complex fusion
method SVM-Model 0.1123 0.074 0.6412

LR-Model 0.1068 0.0923 0.6494
KNN-Model 0.2912 0.3042 0.7045
RFC-Model 0.3515 0.3148 0.7734

Notes: The table shows a comparison of results if we apply different fusion methods to a combination of detectors using
the IFS data set. Complex fusion method outperformed the other fusion methods as well as best individual component
used for outlier ensemble.

Regarding active learning, for the IFS data set, we observed slight improvements using either query strate-
gies (see Table 10). Uncertainty sampling outperformed certainty sampling in all considered performance
metrics.

Table 10: Comparison of query strategies
Query strategy Avg PR-AUC AVG ROC-AUC Avg Precision Avg Recall
Certainty sampling 0.3131 0.6077 0.1372 0.4772
Uncertainty sampling 0.379 0.7221 0.3278 0.5925

Notes: The table shows a comparison of query strategies using IFS data set.

Taken together, we find that there is no “one size fits all” solution to outlier detection in the financial data
sets that we evaluated. Complex fusion can help to overcome the necessity of selecting a single approach by
rendering the selection of an algorithm an empirical exercise. Therefore, although fusion did not dramatically
improve the performance relative to the best single algorithm, combination of detectors with a fusion method
can be helpful in some contexts. To go beyond a strictly data-driven isolation of outliers, active learning
provides possibilities to take domain knowledge into account that goes beyond the detection capabilities of
the algorithms.

32

9 Explainable AI

If our sole interest lies in successfully flagging outliers and we are confident that optimization with cross
validation (see Section 2.2) leads to internally and externally valid results, we can treat the outlier detection
algorithms as a black box.11 However, in many business applications, we need a better explanation of our de-
cision. If we apply outlier detection in DQM, we often need an explanation for data users why an observation
was excluded that goes beyond referring to the decision of an algorithm. The same holds if we make inquiries
at reporting agents regarding data points that were flagged as outliers by an algorithm. Likewise, to use outlier
detection algorithms to uncover – economically meaningful – unusual structures in the data, we need better
insight into what distinguishes an outlier from an inlier.

To provide such explanations, we can either use a transparent model that we can interpret directly to
detect outliers, such as a histogram, or we can use a surrogate model that provides an explanation for a more
complex algorithm’s classification12. The idea of a surrogate model is to treat the prediction of a more complex
algorithm as an outcome and use an algorithm to model the relationship between the outcome and the input
features. We discuss methods that are applied globally in Section 9.1 and techniques that are applied locally
in Section 9.2. Then. we further develop ways to explain the results of outlier detection with Autoencoders in
Section 9.3.

To motivate the need for local explanations, the following briefly explains the difference between local and
global explanations in the context of our use case.

9.1 Global methods

Global methods are applied to the full data set and include linear regressions and decision trees on which we
elaborate below.

9.1.1 Linear regression

One method for approximating the decision function of a ‘black box’ model is to approximate it linearly; that
is, to estimate the output of the non-linear model as a linear function of the inputs. To do this, we can estimate
a linear regression, with the original model input as the independent variables and the model’s output (either
a probability score or class based on the probability score) as the dependent variable. We can then make
inferences about the model’s decision function based on the coefficients of the linear surrogate model. The
r-squared, or explained variance, of the surrogate model tells us how well the surrogate model approximates
the original model.

While this approach has the advantage that it is highly flexible and easily interpretable via the estimated
coefficients, the disadvantages are manifold. First, if the surrogate model does a very good job of explaining
the original model – for example with an R-squared of 98 percent – then it would behove us simply to use
the linear model in the first place. If it does not explain the surrogate model well, then we cannot rely on the
explanations it provides us with. Especially for our use case, where we want to explain rare and anomalous
instances, they must necessarily not be able to be well-explained by a linear model.

It is important to reiterate that the estimates from a linear regression surrogate model, and any other surro-
gate model for that matter, are making inferences about the model, not about the data itself. Thus, unlike the
original black box model itself which is an abstraction of the real data-generating process, the surrogate model
is in turn an abstraction of the black box model.

11Following Patino and Ferreira (2018), internal validity is defined as the extent to which the observed results represent the truth in the
population we are studying and, thus, are not due to methodological errors. Once the internal validity of the study is established, the
researcher can proceed to make a judgment regarding its external validity by asking whether the study results apply to similar patients in
a different setting or not.

12For a discussion of common approaches to explainable AI, see e.g., Molnar (2019)

33

9.1.2 Decision trees

One simple and intuitive method to understand the outlier scores of outlier detection algorithms is to estimate
and visualize a decision tree.

An advantage of the decision tree over linear regression is that it is more flexible, i.e., it can capture non-
linear relationships in the data and can model interactions between input variables that are not additive sep-
arable. To implement this method, the outlierness score and the data features are used to estimate a decision
tree regressor where the outlierness score serves as the label.

A decision tree highlights the most important features (in terms of entropy) for the outlier detection algo-
rithm. In other words, a decision tree highlights those features that are most relevant for the attribution of a
high or low outlierness score of a certain data point. It further delivers interpretable decision rules for these
features that can be understood by applying some domain knowledge.

Alternatively, one can estimate a decision tree classifier using the predicted outliers as labels. The tree
should be specified relatively simple, with only a small depth, so that it can be interpreted and visualized
more easily.

To illustrate this method we apply it to the WpInvest data. Each observation in this data set consists of the
aggregate amount that a bank holds for a client in custody for each security, holder sector, and holder area. Let
A be a classifier that has been trained to detect reporting errors. Given a set of prediction scores for a reporting
period by classifier A, we estimate a decision tree (see Figure 8 for a simplified representation). With the help
of the decision tree, one could say that the trained classifier A assigns higher outlierness scores to observations
where Holder sector = Financials and the reported values are large both in the previous and in the current
period.

The illustration in Figure 8 can therefore be interpreted as follows: Since we normalized the outlierness
scores to the interval [0, 1] the numbers at the end of the tree can be interpreted as probabilities. Hence, if the
notation is percentage notation and the reported value is larger than the respective cutoff values, then in 80%
of cases the data point is classified as an outlier by the outlier detection algorithm (right most path in Figure 8).
If the notation is unit notation, the holder sector is financials and the holder area is EU, then the data point is
only in 15% of cases an outlier according to the outlier detection algorithm. This logic applies equally to all
leafs of the tree.

Figure 8: Decision trees for Explainable AI
Notation

Holder sector

Instrument class

0.05 0.1

Holder area

0.15 0.15

Reported value

Reported value

0.2 0.4

Reported value

0.6 0.8

Unit

Nonfinancials

Equity Debt

Financials

EU non-EU

Percentage

< x

< y ≥ y

≥ x

< z ≥ z

Notes: The figure illustrates the use of decision trees for explainable AI. A stylized representation of a decision tree that
was estimated using outlierness score and the data features. A leaf node gives the outlierness score that the classifier likely
assigns to an instance. x, y and z represent cutoff values in the decision tree in case of continuous features.

Next, we apply decision trees to the IFS data to better understand the results of the outlier detection algo-

34

Figure 9: Example of a decision tree using IFS data

Notes: The figure shows an example of a decision tree using IFS data13. Underlying outlier detection model is baseline
isolation forest.

rithm. In Figure 9, we plot the decision tree for our baseline Isolation Forest algorithm in the IFS data. The
interpretation of the tree is the same as discussed earlier in this section. We find that in the IFS data funds
with unusually large non-standard balance sheet positions like other equity and (other) liabilities (VERM and
DARLG, VERBL SONST) are more likely to be classified as outliers by the algorithm. This can be seen on the
right side of the figure where funds with other equity positions greater than 0.757 and other liabilities greater
than 0.777 get assigned a very high probability of being classified as outliers by the algorithm. This is an
interesting economic relation that the algorithm detects because funds with large liabilities or non-standard
equity positions are relatively uncommon. The result also suggests that outlier detection in the IFS is capable
of detecting economically anomalous data points and that this particular model is less focused on data quality
issues concerning funds. As one can see from this example, the decision tree is a very helpful tool to under-
stand the estimated model and on which aspects of the data the algorithm is focused. With different input
features or alternative models, the result could be very different leading to alternative insights about the data.

9.2 Local methods

If we have estimated a well-performing model which indicates that a particular instance is anomalous, the
model has likely detected that this instance is meaningfully different from similar instances. For example, if a
security has a market value in euros of €10 billion and is nominally denominated in Egyptian pounds, whilst
all other securities of €10 billion are denominated in euros, the model might predict that this instance is an
outlier; given the neighbourhood (market value in euros), the reported nominal currency is anomalous. This
simplified example illustrates the need to estimate a surrogate model with input instances that are similar to
the instance that is to be explained.

This need to have an explanatory method which is locally valid is one component of a more general frame-
work for instance-specific explanatory methods. Although there is no single agreed-upon definition of what
constitutes a good explanation, Table 11 summarises commonly used standards for valid local explanatory
models. 14

13VERM is other equity, ANZAHL WP ISIN denotes the number of ISIN-securities in the portfolio, VERBL SONST is the amount of other
liabilities, UMLAUF gives the units outstanding, and DARLG are loans to property companies.

14For a broader discussion, see Alvarez-Melis and Jaakkola (2018), Antwarg et al. (2019), and Lundberg and Lee (2017)

35

Table 11: Summary of common characteristics of a valid explanation
Local accuracy /
faithfulness

An explanation should be accurate within the local proximity of
the instance in question

Missingness If a feature value is missing, it should receive a weight of zero in
the explanation model

Explicitness / in-
telligibility

If a model changes, and the contribution of a feature in the new
model increase relative to the old model, the surrogate model’s
attribution to that feature should not decrease. In other words,
the explanation is consistent with human intuition.

There are only two (related) methods that satisfy at least two of these axioms. These methods two are
described below.

9.2.1 Local interpretable model-agnostic explanations (LIME)

Following up on the idea that a linear regression provides a good linear approximation, even for nonlinear re-
lationships in the data, LIME aims to estimate a regression in the local area around an instance to approximate
the contribution of input features to the output value for that instance. The idea is very similar to that of a
kernel regression.

For a given instance, LIME takes random samples of instances from the input space and perturbs them.
These perturbed instances are plugged into the model and a linear regression is estimated on the resulting
output. Importantly, the weight that each perturbed instance received in the regression is based on exponential
smoothing kernel.

The choice of kernel is a major drawback for LIME, as with tabular data with possibly many binary vari-
ables, different distance kernels can lead to very different explanations (see Molnar (2019)). This drawback is
addressed with the second method.

9.2.2 Shapley additive explanations (SHAP)

Directly picking up on drawbacks inherent in LIME’s weighting function, SHAP uses a concept from game
theory -– Shapley values -– to attribute to each feature their “fair” weight in local surrogate regression model.

Originally used to fairly attribute payoffs to players in a multiplayer game, Shapley values are a permutation-
based method repurposed to provide explanations that satisfy the conditions stated above. Briefly sum-
marised, Shapley values are the average marginal contribution of each player to the output in a multiplayer
game as they are present or absent in all possible coalitions with other players, therefore rendering its com-
putation expensive. Yet a sufficient estimation of Shapley values can be obtained by focusing on small and
large coalitions. SHAP uses this insight to create the SHAP Kernel, which uses the weights that each coalition
would receive in the Shapley value calculation to weight the perturbed instances for the local surrogate regres-
sion model. Thus, SHAP provides us with an explanation method with strong theoretical grounding and all
the desirable properties outlined in Table 11.

9.2.3 Applications of local explanations

Having local explanations of individual instances is useful in many parts of the machine learning pipeline.
Below we identify two use cases in which we found local explanations to be helpful.

Use case 1: Individual explanations for business experts and end users This is one of the most common uses
for individual explanations, and one we encountered often during the model validation phase. For example,
after we had a working model that was showing good results on the partially labelled data we had available,
we obtained predicted outliers on unlabelled validation data and wanted to have domain experts evaluate our
predictions. Given the large number of features in the data set, there are many ways in which a particular

36

data point may be anomalous. We wanted to be able to provide guidance on what – in particular – our model
found anomalous with a particular instance. To this end, we applied SHAP to obtain instance-level feature
attribution for a sample of highly anomalous instances. Figure 10 shows the Shapley values for one particularly
anomalous instance.

Figure 10: SHAP explanations for a single instance

Notes: The figure shows SHAP explanations for a single instance. On the x-axis are the SHAP values, and on the y-axis are
the input features into the original model. The figure shows how the features contribute (across all alternative “coalitions”
of feature values) to the outlier score of the instance. Thereby, SHAP allows us to interpret a single feature’s importance not
only in the relation to the realization of other features’ values that characterize the instance but also for alternative values
of the remainder of features.

The Shapley values clearly point to three features as contributing most to the outlieredness of the in-
stance: INITIAL MARKET VALUE, INITIAL RAW VALUE, and INITIAL NOMINAL VALUE. After consult-
ing with business experts, this instance was indeed anomalous due to an incorrect reporting of the INI-
TIAL RAW VALUE feature. This exercise also pointed out a limitation of the model: in so far as the input
features are correlated15, as is the case with all three of these features, the SHAP and LIME will not be able to
distinguish between them.

Providing this additional information to domain experts is an improvement over a simple outlier-inlier
indicator, and additionally help researchers understand the behaviour and edges of their model.

Use case 2: Feature influence During the development of the model, it is often illuminating to understand
how the model’s output is influenced by certain input features. This in turns can help developers with further
tuning and feature engineering. Feature dependence plots on feature values and their corresponding Shapley
values from the model help to do this.

Figure 11 shows the SHAP explanations for two features in a model, and along with their respective feature
values. The left panel shows that the feature, VERWP, is unimportant for this model’s predictions. The right
panel on the other hand indicates that this feature, VERM, is moderately important for the model, where
values of zero are also meaningful for some instances. Without these explanation methods, researchers are
often left to deduce which features are important by observing the models post-hoc performance with and
with a particular set of features. In the unsupervised setting, this is not possible and thus such explanations
are very useful for model comparison and diagnostics.

9.2.4 Evaluation

Although these methods are very useful additions to the unsupervised toolbox, they are both costly in terms
of computation time, and in the case of LIME as discussed above, considerable practical downsides when
working with tabular data.

15MARKET VALUE is the market value of the holdings; NOMINAL VALUE is nominal or book value of the holdings; RAW VALUE is
the originally reported book value of holdings (i.e. original currency, etc). The INITIAL means that this was the value of the first reporting
of the bank, which may have been subsequently changed. See Blaschke et al. (2020) for more details on the data.

37

Figure 11: Individual model explanations and corresponding feature values

Notes: The figure shows individual model explanations and corresponding feature values. Both figures show the SHAP
values on the y-axis and their corresponding feature values on the x-axis. On the left, the SHAP values are not meaningfully
different than zero, whereas for the subfigure on the right, larger values of the feature are associated with larger SHAP
values. Data source: IFS Jan-2019

In terms of runtime, Table 12 summarises an experiment computing local explanations for the top one
hundred instances of a data set by predicted outlier score using LIME and SHAP.

Table 12: Test runtimes for 100 individual local explanations
Method Runtime

LIME 3m31s +/- 13s
KernelSHAP 11m22 +/- 44s

That KernelSHAP is computationally expensive is certainly an important consideration when deciding at
what point in the model development process such explanations warrant the time to compute them. For early
stages of model development, global surrogate models may suffice to give researchers rough intuition as to
feature importance. For later stages, such as interfacing with business experts or regulatory stakeholders,
SHAP and to a lesser extent LIME are a worthwhile tool to reach for.

9.3 Autoencoder neural network

In the last decades, neural-network-type models have shown a remarkable progress in various domains. How-
ever, understanding the decision making process of such complex models remains a challenging task for do-
main experts. In the following, we outline our approach to providing explanations for outliers that were
detected with an autoencoder.

The goal of the Autoencoder Neural Network is to perform a lossy compression of the data into a lower
dimensional space (encoder) and to reconstruct the data in its original dimensionality as accurately as possible
(decoder). Because reconstruction is imperfect, the deviation of the reconstructed data from the original data
– the reconstruction error – reflects the success of the model in reconstructing a sample. Because the recon-
struction error is tightly linked to how well a sample fits into the structure of the data that is preserved in the
lower-dimensional space, it provides us with a measure of the outlyingness of a sample. Consequently, we
can use the reconstruction error to separate inliers that follow a common pattern (low reconstruction error)
from outliers that deviate from the common structure of the data (high reconstruction error). One challenge of
this approach is that the reconstruction error – a single scalar – is not sufficient to answer the question why a
sample is flagged as an outlier. To provide an explanation why an observation was flagged as an outlier we

38

study the reconstruction error and its properties in more detail. Instead of collecting the reconstruction errors
on the instance level we collect them on the attribute level. In particular, we unfold the reconstruction error of
an instance and study corresponding reconstruction errors per individual attribute. This way we are able to
identify whether a particular field was reconstructed or not. The subset of fields that were not reconstructed
trigger high reconstruction error of an instance. As a result this subset of entries are most likely contain struc-
turally unusual pattern. Figure 12 depicts a schematic overview of the reconstruction on the attribute level.
In this example two attributes (CURRENCY and INSTRUMENT) were reconstructed incorrectly. Moreover,
given the values of the other attributes the model predicts that the CURRENCY should be ’EURO’ instead of
’GBP’ and INSTRUMENT should be ’F 32’ instead of ’F 52’. Therefore, there is a high chance that these two
fields contain an error and as a result have to be screened. Technically this is achieved by applying the softmax
function on the final/output layer of the decoder network per categorical attribute. Since we use the one-hot
encoded representation of a categorical attribute the result of the softmax provides the normalized scores for
all categories of an attribute which can be used as a probability estimates. Finally the element with the high-
est probability score is selected as the prediction category. If such category differs from the corresponding
category of the input instance then the field is flagged as incorrectly reconstructed. Such methodology also
provides an opportunity to the domain expert to order potential reporting errors correspondingly and start
the auditing process from such field(s) that most-likely contain the most severe error(s).

Figure 12: Correct and incorrect reconstructions

Notes: The figure provides a schematic overview of the correct and incorrect reconstructions on attribute level of the
Autoencoder Neural Network. Each field is flagged correspondingly based on the reconstruction errors collected per
attribute field.

Such technique allows us to flag a set of attribute fields that affect the reconstruction quality of an instance
at most. In other words, the combination of attributes that were reconstructed incorrectly appears to become
an anomaly pattern. Most likely this set of attribute values is what makes the sample anomalous and as a
result some of these fields might contain an error. We believe that such features provide more detailed expla-
nation of a particular decision(s) made by the Autoencoder Neural Network and could serve as an important
supplement to the domain experts’ toolbox.

10 Conclusion

Steadily rising data volumes and an increasing complexity of statistical reporting of micro data led to a surge
in the interest of statistics departments to employ statistical learning methods from the fields of data science
and machine learning to provide data user with the highest possible data quality. Reducing the burden on the
reporting agents in the data quality management process and achieving an overall higher operational efficiency
of statistics departments with minimal (costly) human input are equally important goals when moving to data
science and machine learning methods.

39

In this paper, we outlined the steps that we took to implement a prototype that is capable (i) to detect
outliers on an unsupervised basis (ii) to provide explanations of data points that seems suspicious, and (iii) to
incorporate the feedback of domain experts in the process. We apply our pipeline to data sets that are collected
by the Bundesbank and cover the structure and format of a wide range of financial data, including interest
rates, money market statistics, sectoral securities holdings, and investment fund holdings. In addition, since
we had information on previous reporting errors of all the aforementioned statistics, we were able to evaluate
the performance of the various unsupervised algorithms in detecting unusual data points.

We conclude that unsupervised learning algorithms, applied to granular financial data that was collected
by a central bank, are not only suitable to detect incorrect reporting and thereby improve the data quality, but,
in conjunction with explainable AI, can also provide explanations for what distinguishes outliers from inliers.
However, our work also stresses that a production pipeline that is largely automated and that provides the
possibility to actively incorporate (human) feedback is at least as important as a proper selection of algorithms.

40

References

Aggarwal, C. C. (2012). Outlier ensembles: position paper. SIGKDD Explorations, 14(2):49–58.

Aggarwal, C. C. (2015). Outlier analysis. In Data mining, pages 237–263. Springer.

Aggarwal, C. C. and Sathe, S. (2015). Theoretical foundations and algorithms for outlier ensembles. SIGKDD
Explor. Newsl., 17(1):24–47.

Aggarwal, C. C. and Sathe, S. (2017). Outlier Ensembles: An Introduction. Springer Publishing Company, Incor-
porated, 1st edition.

Ahmed, M., Naser Mahmood, A., and Hu, J. (2016). A survey of network anomaly detection techniques. J.
Netw. Comput. Appl., 60(C):19–31.

Alvarez-Melis, D. and Jaakkola, T. S. (2018). Towards robust interpretability with self-explaining neural net-
works. CoRR, abs/1806.07538.

Angiulli, F. and Pizzuti, C. (2002). Fast outlier detection in high dimensional spaces. In European conference on
principles of data mining and knowledge discovery, pages 15–27. Springer.

Antwarg, L., Shapira, B., and Rokach, L. (2019). Explaining anomalies detected by autoencoders using SHAP.
CoRR, abs/1903.02407.

Aytekin, C., Ni, X., Cricri, F., and Aksu, E. (2018). Clustering and unsupervised anomaly detection with l2
normalized deep auto-encoder representations. In Proceedings of the 2018 International Joint Conference on
Neural Networks (IJCNN), pages 1–6.

Bade, M., Doll, H. C., Hirsch, C., Hubrich, A., and Schulz, F. (2019). Money Market Statistical Reporting, Data
Report 2019-08 – Metadata Version MMSR-Data-Doc-v1-0. Deutsche Bundesbank, Research Data and Service
Centre.

Bade, M. and Krueger, M. (2019). MFI interest rate statistics, Data Report 2019-05 – Metadata Version 3.
Deutsche Bundesbank, Research Data and Service Centre.

Bhuyan, M. H., Bhattacharyya, D. K., and Kalita, J. K. (2014). Network anomaly detection: Methods, systems
and tools. IEEE Communications Surveys Tutorials, 16(1):303–336.

Blaschke, J. and Haupenthal, H. (2020). Investment Funds Statistics Base, Data Report 2020-05 – Metadata
Version 3-1. Deutsche Bundesbank, Research Data and Service Centre.

Blaschke, J., Sachs, K., and Yalcin, E. (2020). Securities Holdings Statistics Base plus, Data Report 2020-14 –
Metadata Version 3-1. Deutsche Bundesbank, Research Data and Service Centre.

Breiman, L. (1996). Stacked regressions. Mach. Learn., 24(1):49–64.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). LOF: identifying density-based local outliers. In
Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pages 93–104.

Chalapathy, R. and Chawla, S. (2019). Deep Learning for Anomaly Detection: A Survey. CoRR, abs/1901.03407.

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys
(CSUR), 41(3):15.

Dang, X. H., Micenková, B., Assent, I., and Ng, R. T. (2013). Local outlier detection with interpretation. In
Blockeel, H., Kersting, K., Nijssen, S., and Železný, F., editors, Machine Learning and Knowledge Discovery in
Databases, pages 304–320, Berlin, Heidelberg. Springer Berlin Heidelberg.

41

Das, S., Wong, W.-K., Dietterich, T., Fern, A., and Emmott, A. (2020). Discovering anomalies by incorporating
feedback from an expert. ACM Trans. Knowl. Discov. Data, 14(4).

Davis, J. and Goadrich, M. (2006). The relationship between precision-recall and roc curves. In Proceedings of
the 23rd international conference on Machine learning, pages 233–240.

Ernst, M. and Haesbroeck, G. (2017). Comparison of local outlier detection techniques in spatial multivariate
data. Data Min. Knowl. Discov., 31(2):371–399.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining, volume 96, pages 226–231.

Goldstein, M. and Dengel, A. (2012). Histogram-based Outlier Score (HBOS): A Fast Unsupervised Anomaly
Detection Algorithm. Poster and Demo Track of the 35th German Conference on Artificial Intelligence (KI-2012),
pages 59–63.

Goldstein, M. and Uchida, S. (2016). A comparative evaluation of unsupervised anomaly detection algorithms
for multivariate data. PloS one, 11(4):e0152173.

Hodge, V. and Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review,
22:85–126.

Junttila, J. (2001). Structural breaks, arima model and finnish inflation forecasts. International Journal of Fore-
casting, 17(2):203–230.

Khoa, N. L. D. and Chawla, S. (2010). Robust outlier detection using commute time and eigenspace embedding.
In Zaki, M. J., Yu, J. X., Ravindran, B., and Pudi, V., editors, Advances in Knowledge Discovery and Data Mining,
pages 422–434, Berlin, Heidelberg. Springer Berlin Heidelberg.

Kriegel, H. ., Kroger, P., Renz, M., and Wurst, S. (2005). A generic framework for efficient subspace clustering
of high-dimensional data. In Fifth IEEE International Conference on Data Mining (ICDM’05), pages 8 pp.–.

Lewis, D. D. and Gale, W. A. (1994). A sequential algorithm for training text classifiers. CoRR, abs/cmp-
lg/9407020.

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation forest. In Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining, pages 413–422. IEEE.

Lundberg, S. and Lee, S. (2017). A unified approach to interpreting model predictions. CoRR, abs/1705.07874.

Molnar, C. (2019). Interpretable Machine Learning. lulu.com. https://christophm.github.io/

interpretable-ml-book/.

Opitz, D. and Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal of Artificial Intelligence
Research, 11:169–198.

Pasillas-Dı́az, J. and Ratté, S. (2016). An unsupervised approach for combining scores of outlier detection
techniques, based on similarity measures. Electronic Notes in Theoretical Computer Science, 329:61–77.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning library. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in
Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

42

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

Patino, C. M. and Ferreira, J. C. (2018). Internal and external validity: can you apply research study results to
your patients? Jornal brasileiro de pneumologia, 44:183–183.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay,
E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Pelleg, D. and Moore, A. W. (2005). Active learning for anomaly and rare-category detection. In Saul, L. K.,
Weiss, Y., and Bottou, L., editors, Advances in Neural Information Processing Systems 17, pages 1073–1080. MIT
Press.

Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6(3):21–45.

Prieditis, A. and Russell, S. J., editors (1995). Machine Learning, Proceedings of the Twelfth International Conference
on Machine Learning, Tahoe City, California, USA, July 9-12, 1995. Morgan Kaufmann.

Ramaswamy, S., Rastogi, R., and Shim, K. (2000). Efficient algorithms for mining outliers from large data sets.
In Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pages 427–438.

Rokach, L. (2010). Ensemble-based classifiers. Artif. Intell. Rev., 33(1–2):1–39.

Rubens, N., Kaplan, D., and Sugiyama, M. (2011). Active Learning in Recommender Systems, pages 735–767.
Springer US, Boston, MA.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning Internal Representations by Error Propagation,
page 318–362. MIT Press, Cambridge, MA, USA.

Sarfraz, M. S., Sharma, V., and Stiefelhagen, R. (2019). Efficient parameter-free clustering using first neighbor
relations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 8934–8943.

Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., and Platt, J. (1999). Support vector method for
novelty detection. In Proceedings of the 12th International Conference on Neural Information Processing Systems,
NIPS’99, page 582–588, Cambridge, MA, USA. MIT Press.

Schreyer, M., Sattarov, T., Borth, D., Dengel, A., and Reimer, B. (2017). Detection of anomalies in large scale
accounting data using deep autoencoder networks. CoRR, abs/1709.05254.

Seabold, S. and Perktold, J. (2010). statsmodels: Econometric and statistical modeling with python. In 9th
Python in Science Conference.

Settles, B. (2009). Active learning literature survey. Computer Sciences Technical Report 1648, University of
Wisconsin–Madison.

Smyth, P. and Wolpert, D. (1999). Linearly combining density estimators via stacking. Machine Learning - ML,
36:59–83.

Tissot, B., Widjanarti, A., Zulen, A. A., Ari, H. D., and Wibisono, O. (2018). The use of big data analytics and
artificial intelligence in central banking. IFC Bulletin, 50.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2):241 – 259.

Zhang, Y., Meratnia, N., and Havinga, P. (2007). A taxonomy framework for unsupervised outlier detection
techniques for multi-type data sets. Rap. tech., Centre for Telematics and Information Technology University of
Twente.

Zhang, Y., Meratnia, N., and Havinga, P. (2010). Outlier detection techniques for wireless sensor networks: A
survey. Communications Surveys and Tutorials, IEEE, 12:159 – 170.

43

Zhao, Y. and Hryniewicki, M. K. (2018). DCSO: Dynamic Combination of Detector Scores for Outlier Ensem-
bles. In Proceedings of the ACM SIGKDD Workshop on Outlier Detection De-constructed (ODD v5.0).

Zhao, Y., Hryniewicki, M. K., Nasrullah, Z., and Li, Z. (2018). LSCP: locally selective combination in parallel
outlier ensembles. CoRR, abs/1812.01528.

Zhao, Y., Nasrullah, Z., and Li, Z. (2019). Pyod: A python toolbox for scalable outlier detection. Journal of
Machine Learning Research, 20(96):1–7.

Zimek, A., Campello, R. J., and Sander, J. (2014). Ensembles for unsupervised outlier detection: Challenges
and research questions a position paper. SIGKDD Explor. Newsl., 15(1):11–22.

44

	Cover S4.2.4 DE
	Unsupervised outlier detection: a prototype for granular financial data0F
	Nhan-Tam Nguyen, Deutsche Bundesbank, and co-authors from the Deutsche Bundesbank and the German Research Center for Artificial Intelligence

	S4.2_Paper DE (Nguyen et al)
	Introduction
	Background
	What constitutes an outlier?
	Global versus local outliers
	Available labels

	On the importance of train-test splits
	How to evaluate the success of unsupervised models?
	Computing environment

	Data sets
	Data pre-processing and recommendations
	General considerations
	Encoded categorical values
	Skewed and sparse distributions
	Missing values
	High dimensional data
	Large data sets
	Excluding extreme outliers

	Categorical variables
	Numeric variables
	Scaling
	Binning

	Feature engineering

	Approaches to detect outliers and recommendations
	Combination of detectors and recommendations
	Simple fusion methods
	Unsupervised fusion methods
	Complex fusion

	Active learning for outlier detection
	Results and evaluation
	Explainable AI
	Global methods
	Linear regression
	Decision trees

	Local methods
	Local interpretable model-agnostic explanations (LIME)
	Shapley additive explanations (SHAP)
	Applications of local explanations
	Evaluation

	Autoencoder neural network

	Conclusion

	S4.2_Presentation DE (Nguyen)
	Unsupervised Outlier Detection: A Prototype for Granular Financial Data�
	Backround & Contribution
	Data
	Which data points are anomalous?
	How to generate explanations?
	How to generate explanations?
	Which data points should be part of the inquiry?
	Which data points should be part of the inquiry?
	Summary & Way Forward

	Cover S4.2.4 DE.pdf
	Unsupervised outlier detection in official statistics0F
	Nhan-Tam Nguyen, Deutsche Bundesbank, and co-authors from the Deutsche Bundesbank and the German Research Center for Artificial Intelligence

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /SymbolMT
 /Wingdings-Regular
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

