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Context and Motivations (1)

 Central Banks collect, process and disseminate a wide set of 
statistical data: Data Quality Management (DQM) is crucial to 
support decision making.

 DQM in Bank of Italy: automated checks to verify pre-
determined relationships in the data (e.g. accounting, logical 
and mathematical relationships).

 When deterministic relationships are weak DQM entails 
plausibility checks (trend-based) that rely on “acceptance 
regions” to isolate outliers.
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Context and Motivations (2)

 Shortcomings of plausibility checks:

• Calibration not straightforward
• Periodical revision and update needed
• Large number of acceptance thresholds.

 Complex and time-consuming system with highly granular data
and heterogeneous reporting patterns. 

 Aim: explore the use of ML techniques to improve plausibility 
checks in granular databases. 

 Approach: a supervised learning algorithm (Quantile Regression 
Forests) employed to detect potential outliers.
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Findings

 Application to payment services data reported by banks. 
Outliers cross-checked with reporting agents. 

 Empirical results: 

• New outliers detected (not identified by the current DQM 
system).

• High accuracy (77% precision; reduced “false positives”).

 Improvements:

• Thresholds tailored to the characteristics of banks and to the 
degree of granularity of the data.

• Dynamic thresholds that are automatically updated as new 
data are reported. Reduced involvement of analysts.
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Data

 Focus on debit cards issued:

• Unit of analysis = n. of cards issued by bank (i), at the end of 
the semester (t), for a given province (p).

• Data extracted from DWH. Period: Dec-2014 to Jun-2018.

 Additional data on bank features: 

• n. of customers by province of the counterparty,
• type of customer accounts,
• other payment services offered (business model).

 Final sample: 18,000 observations corresponding to 213 banks.
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The Algorithm (1)

 Analysis of the empirical distribution of the n. of debit cards (Y) 
conditional on bank characteristics (Xs). 

 Estimation of quantile functions 𝑞𝜏 (𝑌|𝑋) :

𝑃𝑟𝑜𝑏(𝑌 < 𝑞𝜏 𝑋 ) = 𝐹(𝑞𝜏 𝑋 ) = 𝜏

 Quantile functions combined to form prediction intervals
(acceptance thresholds) associated with a given probability (𝛼):

 Outliers: values outside the intervals; unlikely to occur (too
high/too low) given the reporting context.

𝑃𝐼 𝑋 = [𝑞 𝛼

2
𝑋 , 𝑞1−𝛼

2
𝑋 ] 
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The Algorithm (2)

 Sampling:

• Train set to estimate quantile functions 𝑞𝜏(𝑥) for different 𝜏s.

• Test set to compute intervals [ො𝑞𝜏1(𝑥), ො𝑞𝜏2(𝑥)] and detect 
outliers.

 Training:

• Algorithms: Quantile Regression Forest, Linear Quantile 
Model, Linear Quantile Model with Fixed-Effects.

• Model selection with 10-folds cross validation. 

 Testing:

• Rolling window with two snapshots of data. Last two 
semesters in each snapshot as test set.

• Outliers communicated to banks for cross-check.
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The Algorithm (3)

 Model:

 Predictors:

• 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑠𝑖𝑝𝑡= N. of depositors (of a bank in a given province)

• 𝑝𝑒𝑟𝑐_𝑐𝑎𝑖𝑝𝑡= % of depositors with current accounts

• 𝑠𝑖𝑧𝑒𝑖𝑡= Total transacted amounts (as an issuer and as an acquirer)
• 𝑖𝑠𝑠_𝑎𝑐𝑞_𝑟𝑎𝑡𝑖𝑜𝑖𝑡= Balance between issuing and acquiring services
• 𝑠𝑒𝑚 = Semester dummy
• 𝑡𝑟𝑒𝑛𝑑 = N. of semesters starting from the first period in the dataset 
• 𝛼𝑖= Bank fixed effects
• 𝜇𝑝 = Province fixed effects

𝑞𝜏 𝑥𝑖𝑝𝑡 = 𝛽0 + 𝛽1𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑜𝑟𝑠𝑖𝑝𝑡 + 𝛽2𝑝𝑒𝑟𝑐_𝑐𝑎𝑖𝑝𝑡 + 𝛽3𝑠𝑖𝑧𝑒𝑖𝑡 + 𝛽4𝑖𝑠𝑠_𝑎𝑐𝑞_𝑟𝑎𝑡𝑖𝑜𝑖𝑡
+𝛽5𝑡𝑟𝑒𝑛𝑑 + 𝛽6𝑠𝑒𝑚 + 𝛼𝑖 + 𝜇𝑝
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The Algorithm (4)

 Estimated acceptance thresholds:

 Observations falling outside any of the intervals flagged as 
potential outliers.

𝑃𝐼1 𝑥 = 𝑞0.01(𝑥), 𝑞0.99(𝑥)

𝑃𝐼2 𝑥 = 𝑞0.025(𝑥), 𝑞0.975(𝑥)

𝑃𝐼3 𝑥 = 𝑞0.25(𝑥) − 1.5 ∙ 𝑞0.75(𝑥) − 𝑞0.25(𝑥) , 𝑞0.75(𝑥) + 1.5 ∙ 𝑞0.75(𝑥) − 𝑞0.25(𝑥)
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Results

Cross check of outliers with banks

𝑷𝑰𝟏 𝑷𝑰𝟐 𝑷𝑰𝟑

Prediction intervals: [𝑞0.01, 𝑞0.99] [𝑞0.025, 𝑞0.975]
Inter-quartile 

range

a-Total number of potential 

outliers
373 489 457

b-Anomalies detected and 
revised (“true positives”) 289 312 292

c-Confirmed observations 
(“false positives”) 84 177 165

d-Precision b/a (%) 77.5% 63.8% 63.9%
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Concluding Remarks

 Potential to improve DQM: more precise quality checks to 
detect outliers at a fine grained level with reasonable level of 
accuracy.

 Maintanance of DQM system: dynamic thresholds and 
periodical training of the algorithm vs manual update of 
acceptance thresholds.

 Additional challanges:

• New processes and IT solutions for the production phase. 

• Communication of anomalies to banks becomes more 
complex.
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Future Work

 Extensions:

• Application to other payment services data (e.g. credit cards).

• Analysis of data at the collection stage (i.e. before delivery to 
the DWH).

• Classification algorithms (exploiting variations to reported
data).

• Unsupervised algorithms for outlier detection.

 In perspective: extend the ML approach to other granular data 
collections (in particular when current checks are weak).



Thank you for your attention!
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