Capturing depositors' expectations with Google data

Patrick Weber, Falko Fecht and Stefan Thum,
Deutsche Bundesbank

1 This presentation was prepared for the meeting. The views expressed are those of the authors and do not necessarily reflect the views of the BIS, the IFC or the central banks and other institutions represented at the meeting.
Capturing depositors’ expectations with Google Data
Falko Fecht, Stefan Thum and Patrick Weber

IFC-BI Satellite Seminar on Big Data, 21 March 2017

DISCLAIMER
The views expressed in this presentation do not necessarily reflect the views of the Deutsche Bundesbank.
1. Motivation
Strategic complementarities and financial crises

Motivation

Can Google searches be used as a predictor for a deposit run on banks (time series and cross section)?

Many financial institutions exposed to self-fulfilling liquidity crises

- Financial institutions performing liquidity transformation are exposed to runs by depositors
- Worries that others excessively withdraw induce investors to withdraw
- Some empirical evidence…
 - Mutual funds: Chen, Goldstein, & Jiang (JFE 2010)
 - Open end real estate funds: Fecht & Wedow (JFI 2014)
2. Contribution
Capturing depositor’s expectations

How to measure investors’ expectations?

• Google searches might serve as a proxy for investors' worries
• Searches serve as an early warning indicator for liquidity crises

Exploit particularities of German banking system

• Savings banks de facto government-guaranteed
• Suitable reference group: Credit cooperative banks

Natural experiment: Blanket guarantee for German banks’ liabilities

• Public announcement on 5 October 2008 by Chancellor Merkel
• All retail deposits are safe: deposit insurance scheme
• Intention was to avoid possible bank run
We obtain Google Trends Data via www.google.com/trends

- **Relevant data:**
 Relative search interest in search terms related to deposit insurance in Germany at the local level

- **Breakdowns:**
 Web searches by federal state
3. Data
Augment the Google data set with central bank data sources

We augment Google data with…

1. Bundesbank Balance Sheet Items statistics
 - Outstanding Euro amounts of overnight deposits at a monthly frequency at bank level (census approach)

2. Bundesbank MFI Interest Rate statistic
 - Interest rates on outstanding amounts of overnight deposits at a monthly frequency at bank level for roughly 230 German banks (sample approach)
4. Key variables
Measuring deposit flows

Deposit shift variable

\[
\text{Deposit Shift}_{j,t} = \frac{\text{Volume Savings Banks}_{j,t}}{\text{Volume Cooperative Banks}_{j,t}}
\]

\[
\Delta \text{Deposit Shift}_{j,t} = \text{Deposit Shift}_{j,t} - \text{Deposit Shift}_{j,t-6}
\]

\(j \) Federal State
\(t \) Month

Control variable: Interest rate margin

\[
\text{Interest Margin}_{j,t} = \text{Interest Rate Savings Banks}_{j,t} - \text{Interest Rate Coop. Banks}_{j,t}
\]

\[
\Delta \text{Interest Margin}_{j,t} = \text{Interest Margin}_{j,t-1} - \text{Interest Margin}_{j,t-7}
\]
5. Descriptive Statistics

Google search interest versus deposit shifts

Google searches have a high correlation to 'deposit shifts'
6. Methodology
Model setup

Inter-temporal Analysis
1. VAR analysis and Granger causality (Perspective: Germany only)
2. Standard OLS Regression (Perspective: Germany only)

Panel Perspective
3. Analysis of impact of government guarantee (Perspective: State level)

\[
\Delta(\text{Deposit Shift}_{j,t}) \\
= \alpha_j + \alpha_t + \beta_1 \text{Guarantee}_t + \beta_2 \text{Google}_{f,j,t} + \beta_3 \text{Google}_{f,j,t} \times \text{Guarantee}_t \\
+ \beta_4 (\Delta \text{Interest Margin}_j) \times \text{Guarantee}_t + \beta_5 (\Delta \text{Interest Margin}_j) \times \text{NoGuarantee}_t + u_{j,t}
\]

\(\alpha_j\) Fixed effect of state \(j\)
\(\alpha_t\) Monthly time fixed effect

4. Bank-level panel analysis (Perspective: Individual banks)
7. Results
Granger Causality

<table>
<thead>
<tr>
<th>Equation</th>
<th>Factor</th>
<th>Chi2</th>
<th>df (lags)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google = Interest Spread</td>
<td>1.9922</td>
<td>2</td>
<td>0.369</td>
<td></td>
</tr>
<tr>
<td>Google = Deposit shift</td>
<td>0.40469</td>
<td>2</td>
<td>0.817</td>
<td></td>
</tr>
<tr>
<td>Interest Spread = Google</td>
<td>10.967</td>
<td>2</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Interest Spread = Deposit shift</td>
<td>2.9827</td>
<td>2</td>
<td>0.225</td>
<td></td>
</tr>
<tr>
<td>Deposit shift = Google</td>
<td>7.5309</td>
<td>2</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>Deposit shift = Interest Spread</td>
<td>13.643</td>
<td>2</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

Ordering: Google, Interest Spread, Deposit shift

Alternative Google searches also Granger cause the Interest Spread and, for most of the time, Deposit Shifts

Google searches Granger cause the Interest Spread and Deposit Shifts

The results hold independent of the ordering

English translation of search term

<table>
<thead>
<tr>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>banks deposit insurance</td>
</tr>
<tr>
<td>deposit insurance banks</td>
</tr>
<tr>
<td>how safe is my money</td>
</tr>
<tr>
<td>secure banks</td>
</tr>
<tr>
<td>state guarantee</td>
</tr>
<tr>
<td>bank bankruptcy</td>
</tr>
<tr>
<td>deposit insurance savings banks</td>
</tr>
<tr>
<td>dexia communal bank</td>
</tr>
<tr>
<td>money market saving</td>
</tr>
<tr>
<td>statutory deposit insurance</td>
</tr>
</tbody>
</table>
7. Results

Standard Panel Regression (Perspective: State level)

Table 1: Main Models I(quarterTFE) - Monthly differences of the ratio savings/cooperative banks (Δ(SPK/GEN) for households and corporates)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b/t</td>
<td>b/t</td>
<td>b/t</td>
<td>b/t</td>
<td>b/t</td>
<td>b/t</td>
<td>b/t</td>
<td>b/t</td>
<td>b/t</td>
</tr>
<tr>
<td>G.w3.fObs.ST1</td>
<td>0.001***</td>
<td>0.001**</td>
<td>0.001***</td>
<td>0.001***</td>
<td>0.001***</td>
<td>0.001**</td>
<td>0.001***</td>
<td>0.001***</td>
<td>0.002***</td>
</tr>
<tr>
<td></td>
<td>(2.99)</td>
<td>(3.13)</td>
<td>(4.32)</td>
<td>(4.77)</td>
<td>(3.19)</td>
<td>(2.87)</td>
<td>(3.95)</td>
<td>(3.45)</td>
<td>(2.89)</td>
</tr>
<tr>
<td>Dif_InRateDiff_Spk_Gen</td>
<td>0.107***</td>
<td>0.106**</td>
<td>0.089***</td>
<td>0.089***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.51)</td>
<td>(3.49)</td>
<td>(5.76)</td>
<td>(5.73)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guarantee=0xDif_InRateDiff_Spk_Gen</td>
<td>0.037</td>
<td>0.035</td>
<td>0.029</td>
<td>0.023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.38)</td>
<td>(1.27)</td>
<td>(1.15)</td>
<td>(0.73)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guarantee=1xDif_InRateDiff_Spk_Gen</td>
<td>0.093***</td>
<td>0.094***</td>
<td>0.093***</td>
<td>0.063***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5.17)</td>
<td>(5.11)</td>
<td>(5.23)</td>
<td>(5.09)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guarantee=1</td>
<td>0.022***</td>
<td>0.021***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.92)</td>
<td>(3.92)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guarantee=1xG.w3.fObs.ST1</td>
<td></td>
<td></td>
<td>-0.001</td>
<td>-0.001</td>
<td>-0.019***</td>
<td>-0.019**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-1.63)</td>
<td>(-1.30)</td>
<td>(-4.12)</td>
<td>(-3.14)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-0.014***</td>
<td>-0.014***</td>
<td>-0.014***</td>
<td>-0.014***</td>
<td>-0.014</td>
<td>-0.014***</td>
<td>-0.014</td>
<td>-0.014***</td>
<td>-0.014***</td>
</tr>
<tr>
<td></td>
<td>(-4.85)</td>
<td>(-7.88)</td>
<td>(-5.17)</td>
<td>(-11.19)</td>
<td>(-2.04)</td>
<td>(-1.81)</td>
<td>(-2.76)</td>
<td>(-2.33)</td>
<td>(-4.12)</td>
</tr>
<tr>
<td>N</td>
<td>693,000</td>
<td>693,000</td>
<td>686,000</td>
<td>686,000</td>
<td>686,000</td>
<td>686,000</td>
<td>686,000</td>
<td>686,000</td>
<td>686,000</td>
</tr>
<tr>
<td>r²</td>
<td>0.027</td>
<td>0.027</td>
<td>0.213</td>
<td>0.213</td>
<td>0.482</td>
<td>0.482</td>
<td>0.486</td>
<td>0.486</td>
<td>0.487</td>
</tr>
<tr>
<td>r²_w</td>
<td>0.027</td>
<td>0.027</td>
<td>0.213</td>
<td>0.213</td>
<td>0.482</td>
<td>0.482</td>
<td>0.486</td>
<td>0.486</td>
<td>0.487</td>
</tr>
<tr>
<td>r²_b</td>
<td>0.037</td>
<td>0.037</td>
<td>0.028</td>
<td>0.029</td>
<td>0.025</td>
<td>0.025</td>
<td>0.069</td>
<td>0.075</td>
<td>0.019</td>
</tr>
<tr>
<td>r²_c</td>
<td>0.017</td>
<td>0.017</td>
<td>0.200</td>
<td>0.199</td>
<td>0.462</td>
<td>0.461</td>
<td>0.463</td>
<td>0.463</td>
<td>0.466</td>
</tr>
</tbody>
</table>

Includes monthly time fixed effects
8. Conclusions

Google searches are a valuable measure for depositors’ expectations

Google searches can indeed be used as a measure for the concern of depositors

- Indication of run-type phenomena in local deposit markets
- Effect is more pronounced for private households than for non-financial corporations

Blanket guarantee during the crisis led to a level playing field between private and public banks

- Deposit flows became more sensitive to interest rate spreads
- Fiercer competition in the deposit market
- Potentially more excessive risk-taking

Next step: Augment our analysis by Twitter data