

Developments in the residential mortgage market in Germany – What can Google data tell us? 9th IFC Conference, "Are post-crisis statistical initiatives completed?", Session 5 – Big Data

Simon Oehler, Deutsche Bundesbank

This presentation represents the author's personal opinions and does not necessarily reflect the views of the Deutsche Bundesbank or its staff.

Agenda

- 1. Motivation & Literature Review
- 2. Google Data
- 3. Econometric Approach
- 4. Results
- 5. Conclusion

1. Motivation & Literature Review

- In recent years interest in internet search data has increased & research has started to investigate the potential of this new data source.
- Examples comprise:
 - Choi, Varian (2011); Predicting the present with Google Trends
 - Schmidt, Vosen (2009); Forecasting Private Consumption, Survey-based Indicators vs.
 Google Trends
 - McLaren, Shanbhogue (2011); Using internet search data as economic indicators, BoE Quarterly Bulletin, Q2
 - Askitas, Zimmermann (2014); Detecting Mortgage Delinquencies with Google Trends
 - Chauvet, Gabriel, Lutz (2016); Mortgage default risk: New evidence from internet search queries
 - Saxa (2014); Forecasting Mortgages, CNB Working Paper

1. Motivation & Literature Review

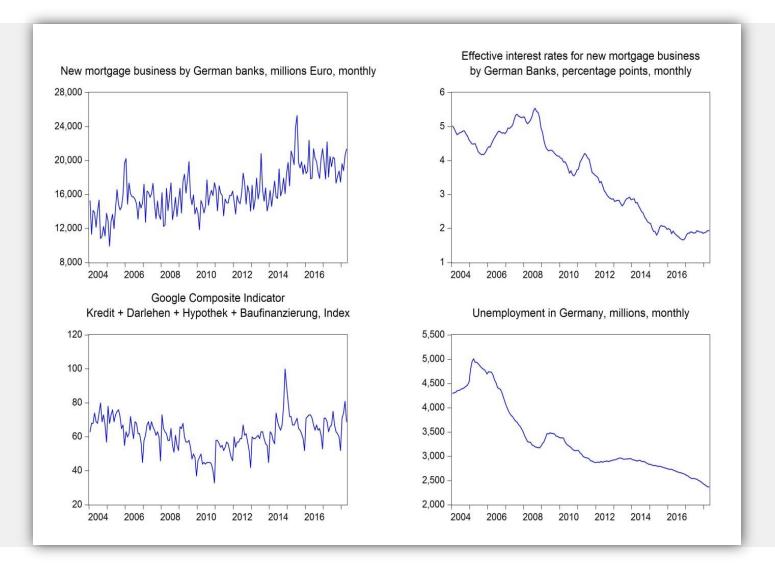
Why Google search data?

"An individual's **interest in certain documents** (and not in others) is a **function of the individual's state** and so are search queries which are used to locate them. These queries are therefore utterances worth being investigated [...]" - Askitas, Zimmermann (2014)

"We have found that [search] queries can be useful leading indicators for subsequent consumer purchases in situations where **consumers start planning purchases significantly in advance of their actual purchase decision**." - Choi, Varian (2011), Predicting the Present with Google Trends

Real estate & the financing thereof should meet this condition

Research question:


In how far can Google search data explain the variation in volumes of mortgage transactions at the federal level in Germany?

2. Google Data

- 37 Google series are downloaded from https://trends.google.de/trends
- Selection is not solely "data driven". A priori "economic/human reasoning" involved as selection of time series is restricted to search terms relating to "mortgage" or "housing".
- Geography: Germany
- Language: German
- Frequency: Monthly
- Period: 2004 April 2018
- Sampling: random sample of total searches is drawn by Google
- Index: no information about actual volumes or query shares

$$- I(Kredit_t) = \frac{R(Kredit_t)}{\max\{R(Kredit_t)\}} \times 100 \text{ with } R(Kredit_t) = \frac{Kredit_t}{Google_t}$$

2. Google Data

3. Econometric approach

- All time series are log-transformed and first differenced.
- Seasonal adjustment:
 - Response: New mortgage business with seasonal patterns, particularly in July
 - Controls:
 - Effective Interest rate: no seasonality
 - Unemployment: seasonally adjusted
 - Google:
 - Almost all Google series with (strong) seasonal pattern around the end of the year: large drop in December and sharp rise in January of the subsequent year.
- Modeling approach: Benchmark augmented by controls and Google data (stepwise forward selection procedure)
 - $\Delta mortgages_t = \beta_m L^m \Delta mortgages_t$
 - $\Delta mortgages_t = \beta_m L^m \Delta mortgages_t + \gamma_m L^m \Delta interest_t + \theta_m L^m \Delta unempl_t$
 - $\Delta mortgages_t = \beta_m L^m \Delta mortgages_t + \gamma_m L^m \Delta interest_t + \theta_m L^m \Delta unempl_t + \delta_m L^m \Delta Google_t$

4. Results Out-of-sample forecasts

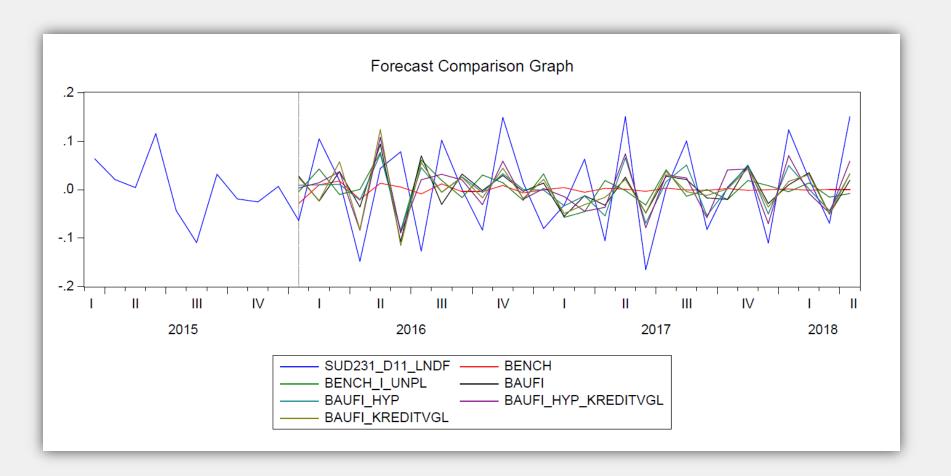
Forecast Evaluation

Date: 08/14/18 Time: 16:41 Sample: 2016M01 2018M04 Included observations: 28

Evaluation sample: 2016M01 2018M04

Number of forecasts: 6

Combination tests

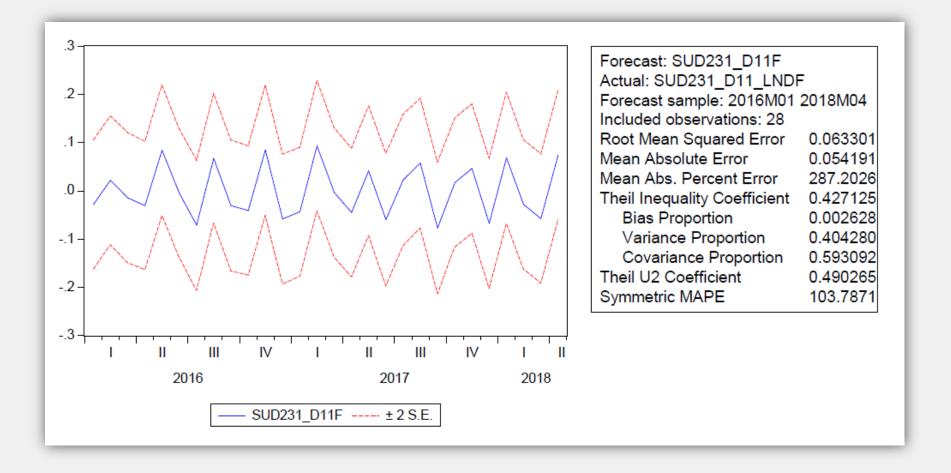

Null hypothesis: Forecast i includes all information contained in others

Equation	F-stat	F-prob
BENCH	9.892147	0.0000
BENCH I UNPL	7.354970	0.0003
BAUFI	13.18475	0.0000
BAUFI HYP	8.076732	0.0002
BAUFI HYP KREDIT	5.965349	0.0012
BAUFI_KREDITVGL	12.60686	0.0000

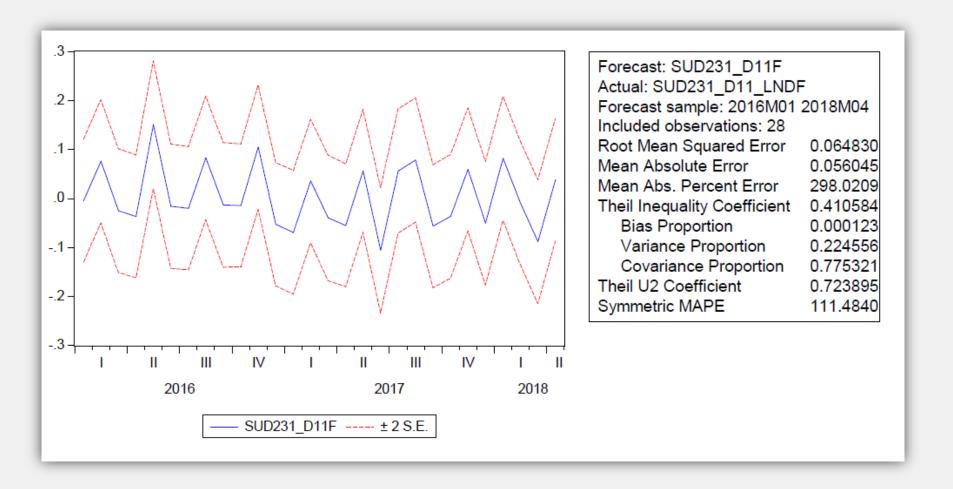
Evaluation statistics

Forecast	RMSE	MAE	MAPE	SMAPE	Theil U1	Theil U2
BENCH BENCH_I_UNPL BAUFI BAUFI_HYP BAUFI_HYP_KREDIT BAUFI_KREDITVGL	0.090353	0.076160	112.5150	167.2447	0.874054	0.957484
	0.102884	0.088681	282.8204	166.0138	0.803323	1.298619
	0.095041	0.079783	306.7584	141.2235	0.698204	0.927898
	0.079904	0.064154	222.1042	120.8835	0.590645	0.839572
	0.072731	0.061808	252.6928	116.4031	0.498878	0.658610
	0.093064	0.078871	290.7800	136.7531	0.656967	0.857488

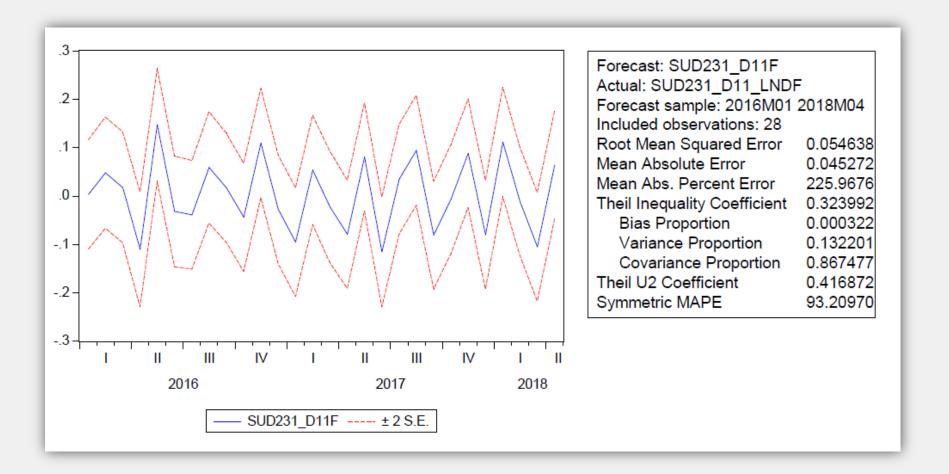
4. Results Out-of-sample forecasts


5. Conclusion

- Results suggest that Google data contain (short term) cyclicality which can be exploited for forecasting/nowcasting.
- -In particular the search terms "Baufinanzierung", "Hypothek", "Kreditvergleich", "Kreditrechner" proved to be significant and relevant indicators for the change in growth rates of mortgage business in Germany under the tested model specifications.
- -Thus far, the models presented here control for mortgage market interest rates and unemployment as a macroeconomic indicator.
- Further robustness checks are needed. In particular:
 - → Evaluate GoogleTrends relative to survey indicators
 - → Further variable selection procedures to be applied


Thank you for your attention!

E-mail: simon.oehler@bundesbank.de


Backup I Static Forecasts Benchmark

Backup II Static Forecasts Benchmark with interest rate

Backup III Static Forecast Google augmented II

Backup IV Regression Output BAUFI_HYP_KREDITVGL

Dependent Variable: SUD231_D11_LNDF

Method: Least Squares Date: 08/10/18 Time: 17:43

Sample (adjusted): 2004M09 2015M12

Included observations: 136 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
SUD231_D11_LNDF(-2)	-0.387154	0.067556	-5.730879	0.0000
SUD231_D11_LNDF(-1)	-0.503458	0.068513	-7.348352	0.0000
SUD231_D11_LNDF(-7)	-0.270081	0.063962	-4.222515	0.0000
SUD131_LNDF(-2)	-0.991662	0.204519	-4.848749	0.0000
GOOGLE_BAUFI_D11_LNDF(-3)	0.119307	0.044107	2.704970	0.0078
GOOGLE_HYP_D11_LNDF(-3)	-0.083612	0.020631	-4.052762	0.0001
GOOGLE_BAUFI_D11_LNDF(-1)	0.155329	0.043875	3.540303	0.0006
GOOGLE_KREDITVGL_D11_LNDF(-	0.086669	0.027745	3.123732	0.0022
GOOGLE_HYP_D11_LNDF(-1)	-0.042178	0.019847	-2.125220	0.0355
R-squared	0.558962	Mean dependent var		0.004244
Adjusted R-squared	0.531180	S.D. dependent var		0.080372
S.E. of regression	0.055031	Akaike info criterion		-2.897948
Sum squared resid	0.384611	Schwarz criterion		-2.705199
Log likelihood	206.0605	Hannan-Quinn criter.		-2.819619
Durbin-Watson stat	1.996244			