

Demystifying big data in official statistics – it's not rocket science!

Jens Mehrhoff, Eurostat 9th Biennial IFC Conference Basel, 30 – 31 August 2018

1. Definition of big data

- Four possible interpretations of *big data* at least:
 - 'Data science': e.g. linking micro data
 - New data sources: e.g. Google or social media
 - **IT architecture**: e.g. distributed computing
 - Large data sets: e.g. granular/administrative data
- More often than not, big data in official statistics are simply large data sets or the IT architecture handling them.

2. Use of big data in the production of official statistics

- Case study: Electronic transactions data ('scanner data') for measuring the average change in prices → large but structured data set
 - 1. Classification of individual products into homogeneous groups: supervised machine learning
 - 2. Treatment of *re-launches*: probabilistic record linkage (fuzzy matching)
 - **3. Index calculation**: multilateral methods (here: timeproduct dummy) – *time will not allow, please see*: <u>https://www.youtube.com/watch?v=4zHpD5jzMMM</u>

Example: Is a *yellow* and *firm* orange ripe?

Orange	Colour	Softness	Ripeness	Orange	Colour	Softness	Ripeness
1	Green	Firm	Unripe	9	Orange	Firm	Ripe
2	Green	Firm	Unripe	10	Orange	Firm	Ripe
3	Orange	Soft	Ripe	11	Orange	Soft	Unripe
4	Yellow	Firm	Unripe	12	Orange	Firm	Ripe
5	Yellow	Firm	Ripe	13	Green	Firm	Unripe
6	Orange	Soft	Ripe	14	Orange	Firm	Ripe
7	Green	Firm	Ripe	(end of tr	aining dat	a)	
8	Yellow	Soft	Ripe	15	Yellow	Firm	?

• Naïve Bayes classification:

 $P(ripe|yellow,firm) = \frac{P(yellow,firm|ripe) \cdot P(ripe)}{P(yellow,firm)}$ $= \frac{P(yellow|ripe) \cdot P(firm|ripe) \cdot P(ripe)}{P(yellow) \cdot P(firm)}$

• Relies on the **assumption** that every feature being classified is **independent of all other features**.

Cross-tabulation of colour and ripeness

Colour	Ripe	Unripe	Total
Green			
Yellow	P(yellow ripe)		P(yellow)
Orange			

NB: *P*(ripe) = proportion of ripe oranges (independent of colour and softness).

Cross-tabulation of softness and ripeness

Softness	Ripe	Unripe	Total
Soft			
Firm	P(firm ripe)		<i>P</i> (firm)

Cross-tabulation of colour and ripeness

Colour	Ripe	Unripe	Total
Green	1/9	3/5	4/14
Yellow	2/9	1/5	3/14
Orange	6/9	1/5	7/14

NB: *P*(ripe) = **9/14**.

Cross-tabulation of softness and ripeness

Softness	Ripe	Unripe	Total
Soft	3/9	1/5	4/14
Firm	6/9	4/5	10/14

• Naïve Bayes classification:

 $P(\text{ripe}|\text{yellow,firm}) = \frac{P(\text{yellow}|\text{ripe}) \cdot P(\text{firm}|\text{ripe}) \cdot P(\text{ripe})}{P(\text{yellow}) \cdot P(\text{firm})}$ $= \frac{(2/9) \cdot (6/9) \cdot (9/14)}{(3/14) \cdot (10/14)}$ $= \frac{28}{45} = 0.62$

- The accuracy of supervised machine learning, i.e. the proportion of automatically correctly classified products, is around 80% for supermarket scanner data. That means that one out of five products is misclassified.
- Hence, while machine learning can give reasonable suggestions for the classification, it eventually needs to be assisted by human beings; it is no panacea!

- Re-launch: A new attempt to sell a product or service, often by advertising it in a different way or making it available in a different form, e.g. different packaging → different GTIN.
- Record linkage: The task of finding records in a data set that refer to the same entity across entities that may not share a common identifier.
 - Entity: product or service; Identifier: GTIN ('barcode')

- Levenshtein (1965) distance: Minimum number of operations needed to turn one string into another.
 - **Operations**: insertion, deletion, or substitution of a character
- Examples:
 - 'car' \rightarrow 'scar' (insertion of 's' at the beginning)
 - 'scan' \rightarrow 'can' (**deletion** of 's' at the beginning)
 - 'sca**r**' \rightarrow 'sca**n**' (**substitution** of 'r' for 'n')

Product description (or GTIN text)	Size of the string	Levenshtein distance	Levenshtein similarity ¹
'Whole Milk 1L' (<i>original</i>)	13	0	100%
'whole milk 1L'	13	2	85%
'whole milk 1 liter'	18	8	56%
'whole milk 1 litre'	18	8	56%
'Whole milk 1 ltr'	26	15	42%
'Whole Milk 2L'	13	1	92%
'1L Whole Milk'	13	6	54%

¹ Calculated as $(1 - \text{Levenshtein distance / length of the longer string}) \cdot 100\%$.

- The last string leads to horrible results because language allows us to swap the order of words.
 - There are still **plenty of other ways to improve**: capitalisation, trimming, character encoding, et cetera.
- However, **1 litre of milk is different from 2 litres**; while '1L', '1 liter', '1 litre', and '1 ltr' are all the same.
 - Hence, do not trust the results blindly! They would be the input into a user interface, for a computerassisted classification – so use them as suggestions.

3. Other potential uses of big data

• A recent survey by the Irving Fisher Committee on Central Bank Statistics (IFC) showed that there is strong interest in big data in the central banking community.

(<u>http://www.bis.org/ifc/publ/ifc-report-bigdata.pdf</u>)

- The IFC Executive decided to select a few case studies for piloting the usefulness of big data:
 - 1. Administrative data; 2. Internet data;
 3. Commercial data; 4. Financial market data
- The **IFC / Bank Indonesia Satellite Seminar** to the ISI RSC 2017 explored the topic of big data from a central banking perspective (see *IFC Bulletin No 44*). (http://www.bis.org/ifc/publ/ifcb44.htm)

4. Discussion and outlook

- The future direction, after the hype, is more like big data will be supplementing rather than replacing official statistics; a genuine change in paradigm is rather doubtful in the short to medium term.
- This has to been seen not least against the background of the lower quality (keyword: coverage bias) of such experimental statistics.
- Just one question: Will the lower production costs outweigh the potentially considerably higher nonmonetary costs of misguided policy decisions? (Others include governance and resource issues.)

Contact

JENS MEHRHOFF

European Commission Directorate-General Eurostat Price statistics. Purchasing power parities. Housing statistics

BECH A2/038 5, Rue Alphonse Weicker L-2721 Luxembourg +352 4301-31405 Jens.MEHRHOFF@ec.europa.eu

