FAN CHART:
The art and science of communicating uncertainty

Dr Ahmad Razi and Loke Po Ling*

ipling@bnm.gov.my

8th Irving Fisher Committee Conference
8 – 9 September 2016

*The views expressed in this presentation and the corresponding paper belong to the authors and do not represent the views of Bank Negara Malaysia
Forecast uncertainty can be assessed in three ways

- Scenario analysis
- Sensitivity analysis
- Fan chart

Derivation
Assessment
Constructing the fan chart: Deriving the three key parameters of the fan chart

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Derivation method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Central projection</td>
<td>Baseline forecast of the variable ie GDP or inflation</td>
</tr>
<tr>
<td>2 Uncertainty (Width)</td>
<td>Historical forecast errors, adjusted for uncertainty of key assumptions (risks factors) affecting the baseline forecast eg ER, commodity prices, etc.</td>
</tr>
<tr>
<td></td>
<td>Historical forecast standard error</td>
</tr>
</tbody>
</table>
| | \[
| | \(\sigma_{infl} = \sigma_e \frac{\sum w_i x_i}{\sum w_i \bar{x}_i} \) \] |
| | **Uncertainty of forecast assumptions (now compared to past)** |
| | \(w_i = \text{elasticity of assumptions} \) |
| | \(x_i = \text{current volatility of assumptions} \) |
| | \(\bar{x}_i = \text{historical volatility of assumptions} \) |
| **3 Balance of risks (Skew)** | **Linear combination of the skew of risks factors**, obtained from subject matter experts |
| | \(\gamma_{infl} = \sum w_i \gamma_i \) |
| | where \(\gamma_i = \frac{\sqrt{2}}{\pi} (\sigma_u - \sigma_l) \) |

Assumptions:
1. Distribution of variable and risks factors are assumed to be TPN
2. Maximum of the analyst forecast represents the upper 90% confidence level and the minimum represent the lower 90%. This is used to compute the upper and lower standard deviation of TPN (\(\sigma_u, \sigma_l \) respectively)
Width: Forecast uncertainty incorporates the uncertainties of risk factors

- The adjustment to the overall forecast uncertainty is based on the volatility of the assumption relative to the historical value of volatility

\[\sigma_{\pi} = \sigma_e \frac{\text{Current USD/JPY volatility}}{\text{Historical USD/JPY volatility}} \]

Source: Bloomberg

\[\sigma_{\pi} = \sigma_e \frac{\text{Current oil volatility}}{\text{Historical oil volatility}} \]

Source: Bloomberg
Skew: Overall balance of risk also incorporates the skew of each risk factors

- Balance of risks of each risk factors are obtained from the respective subject matter specialists

Depreciation risks to the ringgit exchange rate

Downside risks to global oil prices
Information of risk factors are incorporated to compute the probability distribution

To construct the fan chart:
Combine three key parameters using the two-piece normal distribution

A. Deriving upper and lower bands of a fan chart

B. Computing probability of a given forecast range
Fan chart enables probabilistic analysis of risks surrounding the forecasts

A. Fan chart provides the balance of risks of the forecasts

1. Central projection: Baseline forecast
 - Represents the most probable outcome (mode)

2. Width: Level of uncertainty
 - The wider the fan chart, the more uncertain is the forecast

3. Skew: Balance of risks
 - Larger width below baseline indicate downward bias and larger probability of below baseline

B. Splicing the fan chart provides the probability distribution at any point in time

4. Level at each confidence intervals
 - Eg. Level of inflation at 60% confidence intervals
 - Help to form forecast range

5. Probability being within a certain range
 - To determine the downside risks/ upside risks to variable eg probability of inflation falling above a certain threshold
It contains abundant of information to support policy making

1. What level of uncertainty surrounding the forecasts?

2. Where does the balance of risks lie?

3. What contributes to the balance of risks?

4. What is the probability of being within(outside) the forecast range?

5. How has the balance of risks surrounding the forecast have evolved?
Thank you