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Introduction

How do markets evaluate monetary policy announcements and how large are the
shocks they convey? These are central questions for policy makers if they are interested
in evaluating their decisions and quantitatively assess the outcomes of different and

possibly alternative policies.

As we know, if markets were completely efficient and monetary policy was perfectly

communicated by central banks, market agents should have already priced in the
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decision of the monetary authority at the time of the announcement. On the contrary,
if the central banks are able to surprise the market, they might be able to generate real
effects after their policies. In this short paper, that is based on the methodology applied
in M. Ferrari, J. Kearns and A. Schrimpf “Monetary shocks at high-frequency and their
changing FX transmission around the globe™?, I will present a simple methodology to
identify monetary policy shocks using high frequency financial data. When the precise
moment of a shock is known, high frequency data allow us to pinpoint the exact
moment of the event and, therefore, to correctly identify the reaction of market
participants. This approach has the advantage to be fast and easily implementable but
has some relevant caveats. They can be divided in two main groups: on one hand there
are technical problems, connected to the size of the database used; on the other,

especially for illiquid markets, the data reporting process may be inaccurate.

Why using high frequency data?

Monetary policy transmission is one of the main concern for policy makers. However,
it is not always easy to understand how it works and, more interestingly, how large the

shock delivered by each announcement? is.

Aggregate variables are reported, in the best case scenario, at monthly basis while firms
data are update for listed corporations on a quarterly basis. In this setting it becomes
therefore quite complicate to pinpoint exactly the effect of a single monetary policy
announcement, to identify the effect of that announcement per se and to remove the

impact of market overreactions or other shocks taking place in the same time interval.

! In that paper we looked at the market response to conventional and unconventional policies, measuring monetary policy
surprises using bonds and overnight indexed swaps (OIS).
2 The importance of this question is testified also by the huge amount of literature on the topics. Contributions are many
and start from the early nineties, between them see (Bernanke & Gertler, 1995) and (Christiano, Eichenbaum, & Evans,
1999)
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On financial markets, on the contrary, securities are traded daily with end-of-day
guotes available on most data provider’s platforms. This appears to be a solution for
the previous problem reducing drastically the time interval of the analysis, and thus the
number of possible overlapping shocks. However that is not entirely true. In fact,
especially for the case of liquid markets such as the FX, observation at a daily basis
can suffer for problems similar to those outlined before. Many authors have called for
the necessity of a closer time interval to pinpoint exactly the impact of monetary policy

decisions®.

This approach has the clear advantage of focusing only on the exact moment of each
monetary policy announcement and of evaluating how market reacted to that particular
news. As follows from standard results of finance theory, a completely anticipated
shock should be already priced when it actually takes place. With high frequency data
researches can set a sufficiently narrow time window around each monetary policy
announcement to check if markets are surprised or not by a specific news. Measuring
the surprise on this limited time horizon allows to remove the noise deriving from other
events that might influence the instrument’s quote along the day and potential
crowding-in or out effects. This is true not only for large economies, such as the U.S.
or the euro area, but also for smaller countries. An example can clarify this point. On
the 39 of May 2016 the RBA announced a 25 bp cut in the target rate. The reaction of

the Australian dollar is reported in Figure 1.

3 See for example (Kearns & Manners, 2006), (Wright, 2012), (Rogers, Scotti, & Wright, 2015), (Gertler & Karadi, 2015)
and (Ferrari, Kearns, & Schrimpf, 2016)
3
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Figure 1: Market reaction to RBA decision of May 3 2016.
As it is clear from Figure 1 the monetary policy decision had an immediate and sharp
impact on the exchange rate, evident from the sharp devaluation around 6:30 CET.
However, if this policy shock is measured at the daily level, the result is quite different.
The end of day quote, in fact, incorporates other events that in the day have affected
the FX quote during the day leading to a much different and noisier measure of the FX
change due to the monetary shock. This case is a clear example of how setting a too

wide window around an event may lead to misperception of its size.

High frequency data to measure exchange rate reactions

The methodology outlined above was used in (Ferrari, Kearns, & Schrimpf, 2016). In
this paper we look at the FX reaction to conventional and unconventional monetary
policy decisions. In order to assess the impact of monetary policy on the exchange rate
we used a minute tick database provided by Thomson Reuters. This dataset contains
information on the FX, 2- and 10-year bonds and 1- and 6-month OIS for 7 countries

of interest* from 2000 to 2015, for every calendar day. Data are reported by market

4 Australia, Canada, euro area, Japan, Switzerland, UK and US.



participants, providing details from the number of trades to the bid/ask quote for each

instrument at the minute frequency.

The dataset contains a huge amount of information regarding quotes, prices and
liquidity of each instruments with hundreds of millions of entries. Between all those
information we were interested in identifying the monetary policy shock related to each

monetary policy decision and the reaction to that shock in the exchange rate.
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Figure 2: Cumulative basis point change around each monetary policy
decision, averaged between events and countries. Source: (Ferrari,

Kearns, & Schrimpf, 2016). announcement) is tight enough
to ensure that every variation within that amount of time is entirely related to the
monetary policy shock itself. Therefore the measure we compute is the market
perceived surprise of each move of central banks, free from the (possible) noise
deriving from other events and bounds. This procedure has the advantage to be simple
to implement, neat in the results and constrained only by data availability and
computing power. In fact it is only necessary to know when an event takes place, to
extract the data on the desired time interval around each event and to compute a

measure of the shock.

There are, however, some caveats related to the nature of the dataset under

consideration that will be tackled in the next section.
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Figure 3: Intra minute absolute basis point change in 2-year bonds (left) and 1-month OIS (right), averaged across events and
countries. Source: (Ferrari, Kearns, & Schrimpf, 2016).

Based on this methodology, we identify a strong response of the FX to monetary policy
surprises and a sizable shock connected to each communication of central banks (see
Table 1). We use these data to compute a target shock measure to the FX (using the 1-
month OIS) and the change in the yield curve related to each announcement. By
measuring monetary policy shocks in this way we are able to identify the impact of 1
bp monetary policy surprise on the exchange rate and how that the impact changes over

time.

Policy Rate FX Spot Target Path
U.S. 7.8 17.4 1.0 2.2
Euro Area 55 12.6 0.9 1.1
Japan 0.0 10.3 0.2 0.3
U.K. 4.9 16.5 1.4 2.1
Australia 9.5 21.8 2.9 2.8
Switzerland 6.2 29.1 0.6 1.2
Canada 7.9 31.9 1.9 3.1

Table 1: Average absolute surprise by country. The second column reports the average absolute change in the policy rate at
each monetary policy decision for each country, Column 3-5 report average absolute market surprise computed using a 20
minutes window around each shock. Source: (Ferrari, Kearns, & Schrimpf, 2016).



Problems specific to high frequency data

The procedure outlined before® has, as pointed out, the advantages of simplicity and
clearness, delivering at the same time high precision identification of the variable of
interest.

There are, however, two main sources of concerns related to its implementation.

The first problem, which is common to all big data exercises, is merely technical and
related to the size of the used database. Data are double compressed in order to be
easily downloadable and each part of the dataset contains the information of an entire
month of trading, about 700 thousands cells (for each instrument) that are a mixture of
strings and numbers. This huge amount of information makes it unfeasible to load and
save the entire tick history and requires a relative high amount of time to access each
element of the database. Additionally there are limitations on the platform we used
(Matlab) to the amount of data of mixed type that can be saved without using complex
saving methods and which take hours to run also on high spec machines. To circumvent
these problems we developed an algorithm that interacts as little as possible with the
database and divides data into smaller objects allowing to save and load them fasters.
At the same time we implemented checks to identify missing observations or data
errors.

The second order of problem is, on the contrary, deeply related to the type of data under
consideration. Tick databases are compiled by data providers such as Thomson or
Bloomberg using quotes reported by market participants. Data providers, however,
: , , update guotes
- only if a
1 sufficient number
of trades take

place within the

. time interval (in
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Figure 4: Example of sticky quotes from Australian 1-month OIS. Changes in one day participant
interval around event (at time 0). .
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5 It can be summarized in three steps: identify the exact timing of each shock, extract the data related to the interval around
each shock and compute the shock.
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are not enough trades, the quote is not updated as if there were no trades at all. This is
a potential downfall for the entire methodology. In that case in fact the change in the
instrument is computed as zero, while, on the contrary, there is a non-zero monetary
policy shock. This issue is particularly relevant for relatively illiquid markets (such as
that in Figure 4), that are populated by few and possibly smaller players.

To implement our methodology correctly it is crucial to separate those events for which
monetary policy decisions are already priced in from those in which quotes are simply
not updated. In the first case the observation needs to be included in the sample,
because it conveys relevant policy information; on the contrary, in the second case we
want to treat that observation as a missing datapoint to not dilute the sample.

In order to distinguish between the two cases we construct a secondary dataset using
daily data from an alternative provider (Bloomberg Analytics). This dataset has open
and close quotes at daily frequency, computed independently from Thomson Reuters.
In this way it is possible to compare open and close quotes based on Bloomberg data
with our own dataset. If the shock is computed we check the daily change and compare
it with the Bloomberg’s daily change. If the change computed out of our data is zero,
while Bloomberg’s is positive, we consider the observation as a missing data. In this
way we are sure to minimize the impact of sticky quotes in our sample, reducing them
to a negligible number of data points.

Figure 5: Daily open and close quotes from Bloomberg’s data and Thomson intraday database for Euro/Dollar exchange rate.
Data points overlap if measurements coincide. Source: (Ferrari, Kearns, & Schrimpf, 2016).



Figure 6: Daily open and close quotes from Bloomberg’s data and Thomson intraday database for Euro Area 1-month OIS.
Data points overlap if measurements coincide. Source: (Ferrari, Kearns, & Schrimpf, 2016).

Conclusions

High frequency data allow researchers to easily identify the impact of precisely timed
shocks on market quotes. Shocks identified in this way can be used to easily assess the

impact of monetary policy on market quotes.

This approach shares some of the main problems related to big data concerning mainly
memory space and computing power but presents also issues that are specific to the
type of data under consideration. In this setting, in fact, it is critical to understand if a
shock measured as zero is generated by the reporting mechanism or if it is indeed in
the data.

In the page above we have outlined a possible way to check the data quality against an
independent source, in order to minimize the impact of data errors on the final
estimation. With this methodology, in (Ferrari, Kearns, & Schrimpf, 2016), we were
able to identify monetary policy shocks, to show the impact of monetary policy surprise
on the exchange rate and how the sensitivity of markets to monetary policy increases
trough time.



Case two: Intraday dynamics of euro area sovereign
credit risk contagion

Kristyna Terst

Introduction

We analyse euro area sovereign credit risk contagion effects in GIIPS® countries plus
France and Germany from January 2008 to end-December 2011, which we split into a
pre-crisis and crisis period. The use of intraday CDS and bond data lets us estimate
credit risk contagion effects with substantially more accuracy than existing studies on
sovereign credit markets have done. In addition, little is yet known about the
transmission channels of credit risk contagion through the CDS and the bond market,
and their relative importance in the euro area sovereign debt crisis. As we have data
for both the CDS market and the bond market, we are able to assess the contagion
impacts conditioned on the credit channel. The use of intraday data allows us to capture
the intraday patterns of credit risk contagion. Indeed, shocks that may seem to affect
several countries simultaneously when viewed at a daily or lower data frequency are
revealed, through the lens of intraday data, to have possible origins in one particular
country with clear contagion effects on other countries. Via the use of intraday data we
are able to estimate the dynamics of sovereign credit risk much more accurately than
in existing studies as no other empirical work so far has tested the intraday patterns of
sovereign CDS and bond market credit spreads.

Our findings suggest that, prior to the crisis, the CDS and bond markets were similarly

Important in the transmission of sovereign risk contagion, but that the importance of

¥ University of Basel and BIS Research Fellow
& Greece, Ireland, Italy, Portugal and Spain.

10



the bond market waned during the crisis. We find flight-to-safety effects during the
crisis in the German bond market that are not present in the pre-crisis sample. Our
estimated sovereign risk contagion was greater during the crisis, with an average
timeline of one to two hours in GIIPS countries. By using an exogenous
macroeconomic news shock, we can show that, during the crisis period, increased
credit risk was not related to economic fundamentals. Further, we find that central
European countries were not affected by sovereign credit risk contagion, independent

of their debt level and currency.

Data

The core data we use in our empirical analysis consists of USD-denominated five-year
maturity intraday quotes on CDS contracts and government bonds for France,
Germany, Greece, Ireland, Italy, Portugal and Spain. We choose this group of countries
as it includes the countries most affected by the euro sovereign debt crisis, as well as
Germany, which serves as the near-risk-free reference country, and France, which we
consider as a low-risk control country. According to (Gyntelberg, Hoerdahl, Ters, &
Urban, 2013) when one considers the number of quotes of CDS contracts at the peak
of the sovereign debt crisis in 2010, the five-year segment is the most liquid. The use
of intraday data in our empirical analysis enables us to obtain much sharper estimates
and clearer results with respect to market mechanisms as also shown in (Gyntelberg,
Hoerdahl, Ters, & Urban, 2013). Further, (Gyntelberg, Hoerdahl, Ters, & Urban, 2013)
show that sovereign credit risk dynamics follow an intraday pattern. Our sovereign
bond price data is provided by MTS (Mercato Telematico dei Titoli di Stato?). The
MTS data comprise both actual transaction prices and binding bid-offer quotes. The
number of transactions of sovereign bonds on the MTS platform is, however,

insufficient to allow us to undertake any meaningful intraday analysis. Therefore, we

" The Italian secondary market for sovereign bonds, created by the Ministry of Treasury in 1988 and privatized in 1997.
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use the trading book from the respective domestic MTS markets. The MTS market is
open from 8:15 to 17:30 local Milan time, preceded by a pre-market phase (7.30 to
8.00) and an offer-market phase (8:00 to 8:15). We use data from 8:30 to 17:30. The
CDS data consist of price quotes provided by CMA (Credit Market Analysis Ltd.)
Datavision. CMA continuously gathers information on executable and indicative CDS
prices directly from the largest and most active credit investors. After cleaning and
checking the individual quotes, CMA applies a time- and liquidity-weighted
aggregation so that each reported bid and offer price is based on the most recent and
liquid quotes. The CDS market, which is an OTC market, is open 24 hours a day.
However, most of the activity in the CMA database is concentrated between around
7:00 and 17:00 London time. As we want to match the CDS data with the bond market
data, we restrict our attention to the period from 8:30 to 17:30 CET (CEST during
summer). We construct our intraday data on a 30-minute sampling frequency on our
data set, which spans from January 2008 to end-December 2011. The available number
of indicative quotes for CDS does not allow a data frequency higher than 30 minutes.
The euro area sovereign CDS markets were very thin prior to 2008, which makes any
type of intraday analysis before 2008 impossible. Microstructural noise effects may
come into play when high frequency data is used. However, this does not apply to our
data based on a 30-minute sampling frequency because we average the reported quotes
over each 30-minute interval as shown in Figure 6 (for tests, robustness checks and for
a more detailed discussion please refer to (Gyntelberg, Hoerdahl, Ters, & Urban,
2013)).

12
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Figure 6: Sample of intraday CDS and ASW spreads. Intraday movements of CDS (right-hand axis) and ASW (left-hand axis)
spreads in basis points for an arbitrary sampling period (Monday 9 August to Friday 13 August 2010). The figures show data
for a 30 minutes sampling frequency, i.e. 18 time intervals per trading day.

When implementing our analysis we split the data into two subsamples. The first covers
the period January 2008 to 19 October 2009 and, as such, represents the period prior
to the euro area sovereign debt crisis. While this period includes the most severe phase
of the financial crisis, including the default of Lehman Brothers, it is relatively
unaffected by market distortions stemming from concerns about the sustainability of
public finances in view of rising government deficits and therefore represents the pre-
sovereign debt crisis period. The second subsample covers the euro area sovereign debt
crisis period and runs from 20 October 2009 to end-December 2011. As the beginning
of the crisis period, we designate 20 October 2009, when the new Greek government
announced that official statistics on Greek debt had previously been fabricated. Instead
of a public deficit estimated at 6% of GDP for 2009, the government now expected a

figure at least twice as high. We employ CDS and bond data in our analysis in order to
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be able to differentiate between the transmission of sovereign risk contagion according
to the credit risk channel from one country to another. Based on the no arbitrage theory
the CDS and the bond yield spread both price the same default of a given reference
entity, their price should be equal if markets are perfect and frictionless. Thus, in a
perfect market, due to arbitrage, the CDS spread equals the bond yield over the risk-
free rate. However, for this parity to hold, a number of specific conditions must be met,
including that markets are perfect and frictionless, that bonds can be shorted without
restrictions or cost and that there are no tax effects, etc. A further complication linked
to the use of fixed-rate or plain vanilla bonds as substitutes is that it is unlikely that the
maturity of these instruments exactly matches that of standard CDS contracts. To
ensure proper comparability with CDS, (Gyntelberg, Hoerdahl, Ters, & Urban, 2013)
employ synthetic par asset swap spreads (ASW) for the bond leg of the basis. The use
of ASW is in line with the practice used in commercial banks when trading the CDS-
bond basis. By calculating ASW for our empirical analysis, we ensure an accurate cash
flow matching, as opposed to studies that use simple “constant maturity” yield
differences for credit risk. An asset swap is a financial instrument that exchanges the
cash flows from a given security - e.g. a particular government bond - for a floating
market rate. This floating rate is typically a reference rate such as Euribor for a given
maturity plus a fixed spread, the ASW. This spread is determined such that the net
value of the transaction is zero at inception. The ASW allows the investor to maintain
the original credit exposure to the fixed rate bond without being exposed to interest
rate risk. Hence, an asset swap on a credit risky bond is similar to a floating rate note
with identical credit exposure, and the ASW is similar to the floating-rate spread that
theoretically should be equivalent to a corresponding CDS spread on the same
reference entity. Specifically, the ASW is the fixed value A required for the following
equation to hold:

14



Interest rate swap

Nﬁxed Nﬂoat
100 — P i Z = (Li+ A) -d(ts), (1)
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where P is the full (dirty) price of the bond, C is the bond coupon, Li is the floating
reference rate (e.g. Euribor) at time ti and d(ti) is the discount factor applicable to the
corresponding cash flow at time ti. In order to compute the ASW A, several
observations and simplifications have to be made. First, in practice it is almost
impossible to find bonds outstanding with maturities that exactly match those of the
CDS contracts and second, the cash-flows of the bonds and the CDS will not coincide.
To overcome these issues, in what follows we use synthetic asset swap spreads based
on estimated intraday zero-coupon sovereign bond prices. Specifically, for each
interval and each country, we estimate a zero-coupon curve based on all available bond
price quotes during that time interval using the Nelson and Siegel method. With this
procedure, we are able to price synthetic bonds with maturities that exactly match those
of the CDS contracts, and we can use these bond prices to back out the corresponding
ASW. As this results in zero coupon bond prices, we can set C in Equation (1) to zero.
A CDS contract with a maturity of m years for country j in time interval k of day t,
denoted as Sj (tk, m), has a corresponding ASW Aj (tk, m):

Ny,
100 — Pj(tr,m) = > (Lslts) + Aj(tr, m)) - dlte, t:), (2)

1=l
with Pj (tk, m) as our synthetic zero coupon bond price. For the reference rate Li in
Equation (2), we use the 3-month Euribor forward curve to match as accurately as
possible the quarterly cash flows of sovereign CDS contracts. We construct the forward
curve using forward rate agreements (FRAS) and euro interest rate swaps. We collect
the FRA and swap data from Bloomberg, which provides daily (end-of-day) data. 3-
month FRAs are available with quarterly settlement dates up to 21 months ahead, i.e.

up to 21 x 24. From two years onwards, we bootstrap zero-coupon swap rates from
15



swap interest rates available on Bloomberg and back out the corresponding implied
forward rates. Because the swaps have annual maturities, we use a cubic spline to
generate the full implied forward curve, thereby enabling us to obtain the quarterly
forward rates needed in Equation (2). Given our interest in intraday dynamics, we
follow (Gyntelberg, Hoerdahl, Ters, & Urban, 2013) and generate estimated intraday
Euribor forward rates by assuming that the intraday movements of the Euribor forward
curve are proportional to the intraday movements of the German government forward
curve. To be precise, for each day, we calculate the difference between our Euribor
forward curve and the forward curve implied by the end-of-day Nelson-Siegel curve
for Germany. We then keep this difference across the entire curve fixed throughout
that same day and add it to the estimated intraday forward curves for Germany earlier
on that day to generate the approximate intraday Euribor forward curves. This approach
makes the, in our view, reasonable assumption that the intraday variability in Euribor

forward rates will largely mirror movements in corresponding German forward rates.

Finally, we need to specify the discount rates d(tk, ti) in Equation (2). The market has
increasingly moved to essentially risk-free discounting using the overnight index swap
(OIS) curve. We therefore take d(tk, ti) to be the euro OIS discount curve, which is
constructed in a way similar to the Euribor forward curve. For OIS contracts with
maturities longer than one year, we bootstrap out zero-coupon OIS rates from interest
rates on long-term OIS contracts. Thereafter, we construct the entire OIS curve using
a cubic spline. We use the same technique as described above to generate approximate
intraday OIS discount curves based on the intraday movements of the German
government curve. To gauge the potential impact of this assumption on our empirical
results, we reestimate our model using an alternative assumption that the Euribor and
OIS curves are fixed throughout the day at their observed end-of-day values. Under
this alternative assumption, we obviously fail to capture any movements in money
market rates within the day when we price our synthetic asset swaps. Our results remain
robust. Please refer to (Gyntelberg, Hoerdahl, Ters, & Urban, 2013) for an in-depth

discussion of the construction of our intraday ASW. According to different panel unit
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root tests (see Appendix C in (Komarek, Ters, & Urban, 2016)) our CDS and ASW
price data (displayed in Figure 7) is 1(1). Therefore, we estimate our subsequent models
(panel VAR and panel VARX) in first differences. For in depth results and tests please
refer to (Komarek, Ters, & Urban, 2016).
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Figure 7: The figure is based on a 30-minute sampling frequency. Our split into the pre- and the crisis period is indicated by
the vertical line in each figure. Due to the Greek debt restructuring the data for Greece ends in September 2011.

Our empirical analysis of the intraday CDS and bond spread dynamics will be based
on a panel and time-series methodology, which means that we need to construct
equally-spaced time series of spreads. After extensive initial analysis of the amount
and distribution of our intraday quotes, both for sovereign CDS and bonds, we
conclude that a 30-minute time interval gives us a satisfactory trade-off between data
frequency and the occurrence of missing observations. In practice, this means that we
use the average of the mid-quotes reported for both bonds and CDS within each half-
hour interval. Figure A.2 shows that using a 30-minute sampling frequency, between

75% and 90% of the half hour intervals contain a price for 5-year CDS from 2009
17



onwards. The proportion of non-empty intervals is somewhat lower for the 10-year
contracts, in particular towards the end of the sample. Figure 8 shows that using a 30-
minute sampling interval for bonds we have in almost all cases more than 90% non-

empty time intervals.
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Figure 8: The figure is based on a 30-minute sampling frequency. Our split into the pre- and the crisis period is indicated by
the vertical line in each figure. Due to the Greek debt restructuring the data for Greece ends in September 2011.

Conclusions

The CDS market was the main venue for the transmission of sovereign credit risk
contagion during the euro area sovereign debt crisis. In contrast, we find that, prior to
the crisis, the two markets (CDS and bond) were similarly important in the transmission
of financial contagion, while the importance of the bond market decreased relative to
the CDS market during the crisis period. We find evidence for sovereign credit risk
contagion during the euro area sovereign debt crisis period, as our results show more
drastic reactions to shocks in terms of magnitude and absorption compared to the pre-
crisis period. Thus, our results on the responses to sovereign credit risk shocks during
the crisis period confirm the contagion across euro area countries, as they result from
extreme negative, systemic effects and are much larger in magnitude compared to the

pre-crisis period, a fact which cannot be explained by macroeconomic fundamentals.
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We find comovement effects rather than contagion during the pre-crisis period, as
markets react rationally to economic fundamentals, while the responses to sovereign
credit risk shocks remain moderate in magnitude. The use of intraday data substantially
increases the precision of the results, as we find average timelines of financial shock
contagion of one to two hours during the crisis period and 30 minutes to one hour prior
to the crisis. We find a flight to safety during the crisis period in the German bond
market. This is not present prior to the crisis and, interestingly, is also not visible in the
French bond market. The flight-to-safety effect can be explained by market
participants’ lack of belief in the future path of public finances (a self-fulfilling crisis),
which cannot be explained by macroeconomic news. Our results using an unexpected
exogenous macroeconomic news shock suggest that, during the pre-crisis period,
markets for sovereign credit risk were driven by macroeconomic news. Positive news
led to a decrease in credit spreads and negative news to an increase. Using the same
experiment for the euro area sovereign debt crisis period, our results show that
movements in sovereign credit spreads did not respond to macroeconomic news but
were rather driven by either monetary policy or exaggerations in financial markets due
to lack of belief (a self-fulfilling crisis). We find that central European countries were
practically unaffected by sovereign risk contagion during the crisis. Our model further
indicates no difference in the responses to shocks according to debt levels or whether
the country belongs to the monetary union or not. This implies that, in general,
countries that lie geographically outside of the crisis region were much less affected by
sovereign risk contagion. As stated by (Gyntelberg, Hoerdahl, Ters, & Urban, 2013),
the fact that CDS premia are more responsive to new information may reflect the fact
that the market participants in these markets on average are more highly leveraged, are
more aggressive in taking positions and hence respond more quickly to new
information. Thus it is crucial for policy makers and regulators to understand the
dynamics in the market for sovereign credit risk, especially in the derivative market,

where contagion effects are more severe during our analysed crisis sample.
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In our empirical paper (Komarek, Ters, & Urban, 2016) we make use of intraday data
which allows us to capture the intraday patterns of credit risk contagion. Indeed, shocks
that may seem to affect several countries simultaneously when viewed at a daily or
lower data frequency are revealed, through the lens of intraday data, to have possible
origins in one particular country with clear contagion effects on other countries. Also,
(Gyntelberg, Hoerdahl, Ters, & Urban, 2013) discuss the advantages of using intraday
data due to the higher accuracy of the results as compared with lower-frequency data.
(Gyntelberg, Hoerdahl, Ters, & Urban, 2013) report that the use of daily data yields
mixed results with no clear evidence in contrast to the use of intraday data. They state
that they find a drastic decrease in the precision of their results with very wide

confidence bands the lower the sampling frequency gets.
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