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Introduction 

 

How do markets evaluate monetary policy announcements and how large are the 

shocks they convey? These are central questions for policy makers if they are interested 

in evaluating their decisions and quantitatively assess the outcomes of different and 

possibly alternative policies. 

As we know, if markets were completely efficient and monetary policy was perfectly 

communicated by central banks, market agents should have already priced in the 
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decision of the monetary authority at the time of the announcement. On the contrary, 

if the central banks are able to surprise the market, they might be able to generate real 

effects after their policies. In this short paper, that is based on the methodology applied 

in M. Ferrari, J. Kearns and A. Schrimpf “Monetary shocks at high-frequency and their 

changing FX transmission around the globe”1, I will present a simple methodology to 

identify monetary policy shocks using high frequency financial data. When the precise 

moment of a shock is known, high frequency data allow us to pinpoint the exact 

moment of the event and, therefore, to correctly identify the reaction of market 

participants. This approach has the advantage to be fast and easily implementable but 

has some relevant caveats. They can be divided in two main groups: on one hand there 

are technical problems, connected to the size of the database used; on the other, 

especially for illiquid markets, the data reporting process may be inaccurate. 

 

 Why using high frequency data? 

 

Monetary policy transmission is one of the main concern for policy makers. However, 

it is not always easy to understand how it works and, more interestingly, how large the 

shock delivered by each announcement2 is. 

Aggregate variables are reported, in the best case scenario, at monthly basis while firms 

data are update for listed corporations on a quarterly basis. In this setting it becomes 

therefore quite complicate to pinpoint exactly the effect of a single monetary policy 

announcement, to identify the effect of that announcement per se and to remove the 

impact of market overreactions or other shocks taking place in the same time interval. 

                                           
1 In that paper we looked at the market response to conventional and unconventional policies, measuring monetary policy 

surprises using bonds and overnight indexed swaps (OIS).   
2 The importance of this question is testified also by the huge amount of literature on the topics. Contributions are many 

and start from the early nineties, between them see (Bernanke & Gertler, 1995) and (Christiano, Eichenbaum, & Evans, 

1999) 
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On financial markets, on the contrary, securities are traded daily with end-of-day 

quotes available on most data provider’s platforms. This appears to be a solution for 

the previous problem reducing drastically the time interval of the analysis, and thus the 

number of possible overlapping shocks. However that is not entirely true. In fact, 

especially for the case of liquid markets such as the FX, observation at a daily basis 

can suffer for problems similar to those outlined before. Many authors have called for 

the necessity of a closer time interval to pinpoint exactly the impact of monetary policy 

decisions3.  

This approach has the clear advantage of focusing only on the exact moment of each 

monetary policy announcement and of evaluating how market reacted to that particular 

news. As follows from standard results of finance theory, a completely anticipated 

shock should be already priced when it actually takes place. With high frequency data 

researches can set a sufficiently narrow time window around each monetary policy 

announcement to check if markets are surprised or not by a specific news. Measuring 

the surprise on this limited time horizon allows to remove the noise deriving from other 

events that might influence the instrument’s quote along the day and potential 

crowding-in or out effects. This is true not only for large economies, such as the U.S. 

or the euro area, but also for smaller countries. An example can clarify this point. On 

the 3rd of May 2016 the RBA announced a 25 bp cut in the target rate. The reaction of 

the Australian dollar is reported in Figure 1. 

                                           
3 See for example (Kearns & Manners, 2006), (Wright, 2012), (Rogers, Scotti, & Wright, 2015), (Gertler & Karadi, 2015) 

and (Ferrari, Kearns, & Schrimpf, 2016) 



4 

 

 

Figure 1: Market reaction to RBA decision of May 3 2016. 

As it is clear from Figure 1 the monetary policy decision had an immediate and sharp 

impact on the exchange rate, evident from the sharp devaluation around 6:30 CET. 

However, if this policy shock is measured at the daily level, the result is quite different. 

The end of day quote, in fact, incorporates other events that in the day have affected 

the FX quote during the day leading to a much different and noisier measure of the FX 

change due to the monetary shock. This case is a clear example of how setting a too 

wide window around an event may lead to misperception of its size.  

 

High frequency data to measure exchange rate reactions 

 

The methodology outlined above was used in (Ferrari, Kearns, & Schrimpf, 2016). In 

this paper we look at the FX reaction to conventional and unconventional monetary 

policy decisions. In order to assess the impact of monetary policy on the exchange rate 

we used a minute tick database provided by Thomson Reuters. This dataset contains 

information on the FX, 2- and 10-year bonds and 1- and 6-month OIS for 7 countries 

of interest4 from 2000 to 2015, for every calendar day. Data are reported by market 
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participants, providing details from the number of trades to the bid/ask quote for each 

instrument at the minute frequency.  

The dataset contains a huge amount of information regarding quotes, prices and 

liquidity of each instruments with hundreds of millions of entries. Between all those 

information we were interested in identifying the monetary policy shock related to each 

monetary policy decision and the reaction to that shock in the exchange rate. 

To do so we developed a simple 

procedure to select only the 

relevant information in the 

database and compute the 

change in each instrument’s 

quote around each monetary 

policy decision. The time 

window we selected (20 

minutes around each 

announcement) is tight enough 

to ensure that every variation within that amount of time is entirely related to the 

monetary policy shock itself. Therefore the measure we compute is the market 

perceived surprise of each move of central banks, free from the (possible) noise 

deriving from other events and bounds. This procedure has the advantage to be simple 

to implement, neat in the results and constrained only by data availability and 

computing power. In fact it is only necessary to know when an event takes place, to 

extract the data on the desired time interval around each event and to compute a 

measure of the shock. 

There are, however, some caveats related to the nature of the dataset under 

consideration that will be tackled in the next section. 

Figure 2: Cumulative basis point change around each monetary policy 

decision, averaged between events and countries. Source: (Ferrari, 

Kearns, & Schrimpf, 2016). 
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Figure 3: Intra minute absolute basis point change in 2-year bonds (left) and 1-month OIS (right), averaged across events and 

countries. Source: (Ferrari, Kearns, & Schrimpf, 2016). 

 

Based on this methodology, we identify a strong response of the FX to monetary policy 

surprises and a sizable shock connected to each communication of central banks (see 

Table 1). We use these data to compute a target shock measure to the FX (using the 1-

month OIS) and the change in the yield curve related to each announcement. By 

measuring monetary policy shocks in this way we are able to identify the impact of 1 

bp monetary policy surprise on the exchange rate and how that the impact changes over 

time. 

 

 Policy Rate FX Spot Target Path 

U.S. 7.8 17.4 1.0 2.2 

Euro Area 5.5 12.6 0.9 1.1 

Japan 0.0 10.3 0.2 0.3 

U.K. 4.9 16.5 1.4 2.1 

Australia 9.5 21.8 2.9 2.8 

Switzerland 6.2 29.1 0.6 1.2 

Canada 7.9 31.9 1.9 3.1 
 

Table 1: Average absolute surprise by country. The second column reports the average absolute change in the policy rate at 

each monetary policy decision for each country, Column 3-5 report average absolute market surprise computed using a 20 

minutes window around each shock. Source: (Ferrari, Kearns, & Schrimpf, 2016). 
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Problems specific to high frequency data 

 

The procedure outlined before5 has, as pointed out, the advantages of simplicity and 

clearness, delivering at the same time high precision identification of the variable of 

interest. 

There are, however, two main sources of concerns related to its implementation. 

The first problem, which is common to all big data exercises, is merely technical and 

related to the size of the used database. Data are double compressed in order to be 

easily downloadable and each part of the dataset contains the information of an entire 

month of trading, about 700 thousands cells (for each instrument) that are a mixture of 

strings and numbers. This huge amount of information makes it unfeasible to load and 

save the entire tick history and requires a relative high amount of time to access each 

element of the database. Additionally there are limitations on the platform we used 

(Matlab) to the amount of data of mixed type that can be saved without using complex 

saving methods and which take hours to run also on high spec machines. To circumvent 

these problems we developed an algorithm that interacts as little as possible with the 

database and divides data into smaller objects allowing to save and load them fasters. 

At the same time we implemented checks to identify missing observations or data 

errors. 

The second order of problem is, on the contrary, deeply related to the type of data under 

consideration. Tick databases are compiled by data providers such as Thomson or 

Bloomberg using quotes reported by market participants. Data providers, however, 

update quotes 

only if a 

sufficient number 

of trades take 

place within the 

time interval (in 

this case the 

minute) and the 

market 

participant 

monitored. If there 

                                           
5 It can be summarized in three steps: identify the exact timing of each shock, extract the data related to the interval around 

each shock and compute the shock. 

Figure 4: Example of sticky quotes from Australian 1-month OIS. Changes in one day 

interval around event (at time 0). 
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are not enough trades, the quote is not updated as if there were no trades at all. This is 

a potential downfall for the entire methodology. In that case in fact the change in the 

instrument is computed as zero, while, on the contrary, there is a non-zero monetary 

policy shock. This issue is particularly relevant for relatively illiquid markets (such as 

that in Figure 4), that are populated by few and possibly smaller players. 

To implement our methodology correctly it is crucial to separate those events for which 

monetary policy decisions are already priced in from those in which quotes are simply 

not updated. In the first case the observation needs to be included in the sample, 

because it conveys relevant policy information; on the contrary, in the second case we 

want to treat that observation as a missing datapoint to not dilute the sample. 

In order to distinguish between the two cases we construct a secondary dataset using 

daily data from an alternative provider (Bloomberg Analytics). This dataset has open 

and close quotes at daily frequency, computed independently from Thomson Reuters. 

In this way it is possible to compare open and close quotes based on Bloomberg data 

with our own dataset. If the shock is computed we check the daily change and compare 

it with the Bloomberg’s daily change. If the change computed out of our data is zero, 

while Bloomberg’s is positive, we consider the observation as a missing data. In this 

way we are sure to minimize the impact of sticky quotes in our sample, reducing them 

to a negligible number of data points. 

 

 

Figure 5: Daily open and close quotes from Bloomberg’s data and Thomson intraday database for Euro/Dollar exchange rate. 

Data points overlap if measurements coincide. Source: (Ferrari, Kearns, & Schrimpf, 2016). 
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Figure 6: Daily open and close quotes from Bloomberg’s data and Thomson intraday database for Euro Area 1-month OIS. 

Data points overlap if measurements coincide. Source: (Ferrari, Kearns, & Schrimpf, 2016). 

 

Conclusions 

 

High frequency data allow researchers to easily identify the impact of precisely timed 

shocks on market quotes. Shocks identified in this way can be used to easily assess the 

impact of monetary policy on market quotes.  

This approach shares some of the main problems related to big data concerning mainly 

memory space and computing power but presents also issues that are specific to the 

type of data under consideration. In this setting, in fact, it is critical to understand if a 

shock measured as zero is generated by the reporting mechanism or if it is indeed in 

the data.  

In the page above we have outlined a possible way to check the data quality against an 

independent source, in order to minimize the impact of data errors on the final 

estimation. With this methodology, in (Ferrari, Kearns, & Schrimpf, 2016), we were 

able to identify monetary policy shocks, to show the impact of monetary policy surprise 

on the exchange rate and how the sensitivity of markets to monetary policy increases 

trough time.   
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Case two: Intraday dynamics of euro area sovereign 

credit risk contagion  

Kristyna Ters† 

 

Introduction 

 

We analyse euro area sovereign credit risk contagion effects in GIIPS6 countries plus 

France and Germany from January 2008 to end-December 2011, which we split into a 

pre-crisis and crisis period. The use of intraday CDS and bond data lets us estimate 

credit risk contagion effects with substantially more accuracy than existing studies on 

sovereign credit markets have done. In addition, little is yet known about the 

transmission channels of credit risk contagion through the CDS and the bond market, 

and their relative importance in the euro area sovereign debt crisis. As we have data 

for both the CDS market and the bond market, we are able to assess the contagion 

impacts conditioned on the credit channel. The use of intraday data allows us to capture 

the intraday patterns of credit risk contagion. Indeed, shocks that may seem to affect 

several countries simultaneously when viewed at a daily or lower data frequency are 

revealed, through the lens of intraday data, to have possible origins in one particular 

country with clear contagion effects on other countries. Via the use of intraday data we 

are able to estimate the dynamics of sovereign credit risk much more accurately than 

in existing studies as no other empirical work so far has tested the intraday patterns of 

sovereign CDS and bond market credit spreads.  

Our findings suggest that, prior to the crisis, the CDS and bond markets were similarly 

important in the transmission of sovereign risk contagion, but that the importance of 

                                           
† University of Basel and BIS Research Fellow 
6 Greece, Ireland, Italy, Portugal and Spain. 
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the bond market waned during the crisis. We find flight-to-safety effects during the 

crisis in the German bond market that are not present in the pre-crisis sample. Our 

estimated sovereign risk contagion was greater during the crisis, with an average 

timeline of one to two hours in GIIPS countries. By using an exogenous 

macroeconomic news shock, we can show that, during the crisis period, increased 

credit risk was not related to economic fundamentals. Further, we find that central 

European countries were not affected by sovereign credit risk contagion, independent 

of their debt level and currency. 

 

Data 

The core data we use in our empirical analysis consists of USD-denominated five-year 

maturity intraday quotes on CDS contracts and government bonds for France, 

Germany, Greece, Ireland, Italy, Portugal and Spain. We choose this group of countries 

as it includes the countries most affected by the euro sovereign debt crisis, as well as 

Germany, which serves as the near-risk-free reference country, and France, which we 

consider as a low-risk control country. According to (Gyntelberg, Hoerdahl, Ters, & 

Urban, 2013) when one considers the number of quotes of CDS contracts at the peak 

of the sovereign debt crisis in 2010, the five-year segment is the most liquid. The use 

of intraday data in our empirical analysis enables us to obtain much sharper estimates 

and clearer results with respect to market mechanisms as also shown in (Gyntelberg, 

Hoerdahl, Ters, & Urban, 2013). Further, (Gyntelberg, Hoerdahl, Ters, & Urban, 2013) 

show that sovereign credit risk dynamics follow an intraday pattern. Our sovereign 

bond price data is provided by MTS (Mercato Telematico dei Titoli di Stato7). The 

MTS data comprise both actual transaction prices and binding bid-offer quotes. The 

number of transactions of sovereign bonds on the MTS platform is, however, 

insufficient to allow us to undertake any meaningful intraday analysis. Therefore, we 

                                           
7 The Italian secondary market for sovereign bonds, created by the Ministry of Treasury in 1988 and privatized in 1997. 



12 

 

use the trading book from the respective domestic MTS markets. The MTS market is 

open from 8:15 to 17:30 local Milan time, preceded by a pre-market phase (7.30 to 

8.00) and an offer-market phase (8:00 to 8:15). We use data from 8:30 to 17:30. The 

CDS data consist of price quotes provided by CMA (Credit Market Analysis Ltd.) 

Datavision. CMA continuously gathers information on executable and indicative CDS 

prices directly from the largest and most active credit investors. After cleaning and 

checking the individual quotes, CMA applies a time- and liquidity-weighted 

aggregation so that each reported bid and offer price is based on the most recent and 

liquid quotes. The CDS market, which is an OTC market, is open 24 hours a day. 

However, most of the activity in the CMA database is concentrated between around 

7:00 and 17:00 London time. As we want to match the CDS data with the bond market 

data, we restrict our attention to the period from 8:30 to 17:30 CET (CEST during 

summer). We construct our intraday data on a 30-minute sampling frequency on our 

data set, which spans from January 2008 to end-December 2011. The available number 

of indicative quotes for CDS does not allow a data frequency higher than 30 minutes. 

The euro area sovereign CDS markets were very thin prior to 2008, which makes any 

type of intraday analysis before 2008 impossible. Microstructural noise effects may 

come into play when high frequency data is used. However, this does not apply to our 

data based on a 30-minute sampling frequency because we average the reported quotes 

over each 30-minute interval as shown in Figure 6 (for tests, robustness checks and for 

a more detailed discussion please refer to (Gyntelberg, Hoerdahl, Ters, & Urban, 

2013)).  
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Figure 6: Sample of intraday CDS and ASW spreads. Intraday movements of CDS (right-hand axis) and ASW (left-hand axis) 

spreads in basis points for an arbitrary sampling period (Monday 9 August to Friday 13 August 2010). The figures show data 

for a 30 minutes sampling frequency, i.e. 18 time intervals per trading day. 

 

When implementing our analysis we split the data into two subsamples. The first covers 

the period January 2008 to 19 October 2009 and, as such, represents the period prior 

to the euro area sovereign debt crisis. While this period includes the most severe phase 

of the financial crisis, including the default of Lehman Brothers, it is relatively 

unaffected by market distortions stemming from concerns about the sustainability of 

public finances in view of rising government deficits and therefore represents the pre-

sovereign debt crisis period. The second subsample covers the euro area sovereign debt 

crisis period and runs from 20 October 2009 to end-December 2011. As the beginning 

of the crisis period, we designate 20 October 2009, when the new Greek government 

announced that official statistics on Greek debt had previously been fabricated. Instead 

of a public deficit estimated at 6% of GDP for 2009, the government now expected a 

figure at least twice as high. We employ CDS and bond data in our analysis in order to 
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be able to differentiate between the transmission of sovereign risk contagion according 

to the credit risk channel from one country to another. Based on the no arbitrage theory 

the CDS and the bond yield spread both price the same default of a given reference 

entity, their price should be equal if markets are perfect and frictionless. Thus, in a 

perfect market, due to arbitrage, the CDS spread equals the bond yield over the risk-

free rate. However, for this parity to hold, a number of specific conditions must be met, 

including that markets are perfect and frictionless, that bonds can be shorted without 

restrictions or cost and that there are no tax effects, etc. A further complication linked 

to the use of fixed-rate or plain vanilla bonds as substitutes is that it is unlikely that the 

maturity of these instruments exactly matches that of standard CDS contracts. To 

ensure proper comparability with CDS, (Gyntelberg, Hoerdahl, Ters, & Urban, 2013) 

employ synthetic par asset swap spreads (ASW) for the bond leg of the basis. The use 

of ASW is in line with the practice used in commercial banks when trading the CDS-

bond basis. By calculating ASW for our empirical analysis, we ensure an accurate cash 

flow matching, as opposed to studies that use simple “constant maturity” yield 

differences for credit risk. An asset swap is a financial instrument that exchanges the 

cash flows from a given security - e.g. a particular government bond - for a floating 

market rate. This floating rate is typically a reference rate such as Euribor for a given 

maturity plus a fixed spread, the ASW. This spread is determined such that the net 

value of the transaction is zero at inception. The ASW allows the investor to maintain 

the original credit exposure to the fixed rate bond without being exposed to interest 

rate risk. Hence, an asset swap on a credit risky bond is similar to a floating rate note 

with identical credit exposure, and the ASW is similar to the floating-rate spread that 

theoretically should be equivalent to a corresponding CDS spread on the same 

reference entity. Specifically, the ASW is the fixed value A required for the following 

equation to hold: 
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where P is the full (dirty) price of the bond, C is the bond coupon, Li is the floating 

reference rate (e.g. Euribor) at time ti and d(ti) is the discount factor applicable to the 

corresponding cash flow at time ti. In order to compute the ASW A, several 

observations and simplifications have to be made. First, in practice it is almost 

impossible to find bonds outstanding with maturities that exactly match those of the 

CDS contracts and second, the cash-flows of the bonds and the CDS will not coincide. 

To overcome these issues, in what follows we use synthetic asset swap spreads based 

on estimated intraday zero-coupon sovereign bond prices. Specifically, for each 

interval and each country, we estimate a zero-coupon curve based on all available bond 

price quotes during that time interval using the Nelson and Siegel method. With this 

procedure, we are able to price synthetic bonds with maturities that exactly match those 

of the CDS contracts, and we can use these bond prices to back out the corresponding 

ASW. As this results in zero coupon bond prices, we can set C in Equation (1) to zero. 

A CDS contract with a maturity of m years for country j in time interval k of day t, 

denoted as Sj (tk, m), has a corresponding ASW Aj (tk, m):  

with Pj (tk, m) as our synthetic zero coupon bond price. For the reference rate Li in 

Equation (2), we use the 3-month Euribor forward curve to match as accurately as 

possible the quarterly cash flows of sovereign CDS contracts. We construct the forward 

curve using forward rate agreements (FRAs) and euro interest rate swaps. We collect 

the FRA and swap data from Bloomberg, which provides daily (end-of-day) data. 3-

month FRAs are available with quarterly settlement dates up to 21 months ahead, i.e. 

up to 21 × 24. From two years onwards, we bootstrap zero-coupon swap rates from 
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swap interest rates available on Bloomberg and back out the corresponding implied 

forward rates. Because the swaps have annual maturities, we use a cubic spline to 

generate the full implied forward curve, thereby enabling us to obtain the quarterly 

forward rates needed in Equation (2). Given our interest in intraday dynamics, we 

follow (Gyntelberg, Hoerdahl, Ters, & Urban, 2013) and generate estimated intraday 

Euribor forward rates by assuming that the intraday movements of the Euribor forward 

curve are proportional to the intraday movements of the German government forward 

curve. To be precise, for each day, we calculate the difference between our Euribor 

forward curve and the forward curve implied by the end-of-day Nelson-Siegel curve 

for Germany. We then keep this difference across the entire curve fixed throughout 

that same day and add it to the estimated intraday forward curves for Germany earlier 

on that day to generate the approximate intraday Euribor forward curves. This approach 

makes the, in our view, reasonable assumption that the intraday variability in Euribor 

forward rates will largely mirror movements in corresponding German forward rates. 

Finally, we need to specify the discount rates d(tk, ti) in Equation (2). The market has 

increasingly moved to essentially risk-free discounting using the overnight index swap 

(OIS) curve. We therefore take d(tk, ti) to be the euro OIS discount curve, which is 

constructed in a way similar to the Euribor forward curve. For OIS contracts with 

maturities longer than one year, we bootstrap out zero-coupon OIS rates from interest 

rates on long-term OIS contracts. Thereafter, we construct the entire OIS curve using 

a cubic spline. We use the same technique as described above to generate approximate 

intraday OIS discount curves based on the intraday movements of the German 

government curve. To gauge the potential impact of this assumption on our empirical 

results, we reestimate our model using an alternative assumption that the Euribor and 

OIS curves are fixed throughout the day at their observed end-of-day values. Under 

this alternative assumption, we obviously fail to capture any movements in money 

market rates within the day when we price our synthetic asset swaps. Our results remain 

robust. Please refer to (Gyntelberg, Hoerdahl, Ters, & Urban, 2013) for an in-depth 

discussion of the construction of our intraday ASW. According to different panel unit 



17 

 

root tests (see Appendix C in (Komarek, Ters, & Urban, 2016)) our CDS and ASW 

price data (displayed in Figure 7) is I(1). Therefore, we estimate our subsequent models 

(panel VAR and panel VARX) in first differences. For in depth results and tests please 

refer to (Komarek, Ters, & Urban, 2016). 

 

Figure 7: The figure is based on a 30-minute sampling frequency. Our split into the pre- and the crisis period is indicated by 

the vertical line in each figure. Due to the Greek debt restructuring the data for Greece ends in September 2011. 

 

Our empirical analysis of the intraday CDS and bond spread dynamics will be based 

on a panel and time-series methodology, which means that we need to construct 

equally-spaced time series of spreads. After extensive initial analysis of the amount 

and distribution of our intraday quotes, both for sovereign CDS and bonds, we 

conclude that a 30-minute time interval gives us a satisfactory trade-off between data 

frequency and the occurrence of missing observations. In practice, this means that we 

use the average of the mid-quotes reported for both bonds and CDS within each half-

hour interval. Figure A.2 shows that using a 30-minute sampling frequency, between 

75% and 90% of the half hour intervals contain a price for 5-year CDS from 2009 
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onwards. The proportion of non-empty intervals is somewhat lower for the 10-year 

contracts, in particular towards the end of the sample. Figure 8 shows that using a 30-

minute sampling interval for bonds we have in almost all cases more than 90% non-

empty time intervals. 

 

Figure 8: The figure is based on a 30-minute sampling frequency. Our split into the pre- and the crisis period is indicated by 

the vertical line in each figure. Due to the Greek debt restructuring the data for Greece ends in September 2011. 

 

Conclusions 

 

The CDS market was the main venue for the transmission of sovereign credit risk 

contagion during the euro area sovereign debt crisis. In contrast, we find that, prior to 

the crisis, the two markets (CDS and bond) were similarly important in the transmission 

of financial contagion, while the importance of the bond market decreased relative to 

the CDS market during the crisis period. We find evidence for sovereign credit risk 

contagion during the euro area sovereign debt crisis period, as our results show more 

drastic reactions to shocks in terms of magnitude and absorption compared to the pre-

crisis period. Thus, our results on the responses to sovereign credit risk shocks during 

the crisis period confirm the contagion across euro area countries, as they result from 

extreme negative, systemic effects and are much larger in magnitude compared to the 

pre-crisis period, a fact which cannot be explained by macroeconomic fundamentals. 
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We find comovement effects rather than contagion during the pre-crisis period, as 

markets react rationally to economic fundamentals, while the responses to sovereign 

credit risk shocks remain moderate in magnitude. The use of intraday data substantially 

increases the precision of the results, as we find average timelines of financial shock 

contagion of one to two hours during the crisis period and 30 minutes to one hour prior 

to the crisis. We find a flight to safety during the crisis period in the German bond 

market. This is not present prior to the crisis and, interestingly, is also not visible in the 

French bond market. The flight-to-safety effect can be explained by market 

participants’ lack of belief in the future path of public finances (a self-fulfilling crisis), 

which cannot be explained by macroeconomic news. Our results using an unexpected 

exogenous macroeconomic news shock suggest that, during the pre-crisis period, 

markets for sovereign credit risk were driven by macroeconomic news. Positive news 

led to a decrease in credit spreads and negative news to an increase. Using the same 

experiment for the euro area sovereign debt crisis period, our results show that 

movements in sovereign credit spreads did not respond to macroeconomic news but 

were rather driven by either monetary policy or exaggerations in financial markets due 

to lack of belief (a self-fulfilling crisis). We find that central European countries were 

practically unaffected by sovereign risk contagion during the crisis. Our model further 

indicates no difference in the responses to shocks according to debt levels or whether 

the country belongs to the monetary union or not. This implies that, in general, 

countries that lie geographically outside of the crisis region were much less affected by 

sovereign risk contagion. As stated by (Gyntelberg, Hoerdahl, Ters, & Urban, 2013), 

the fact that CDS premia are more responsive to new information may reflect the fact 

that the market participants in these markets on average are more highly leveraged, are 

more aggressive in taking positions and hence respond more quickly to new 

information. Thus it is crucial for policy makers and regulators to understand the 

dynamics in the market for sovereign credit risk, especially in the derivative market, 

where contagion effects are more severe during our analysed crisis sample. 
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In our empirical paper (Komarek, Ters, & Urban, 2016) we make use of intraday data 

which allows us to capture the intraday patterns of credit risk contagion. Indeed, shocks 

that may seem to affect several countries simultaneously when viewed at a daily or 

lower data frequency are revealed, through the lens of intraday data, to have possible 

origins in one particular country with clear contagion effects on other countries. Also, 

(Gyntelberg, Hoerdahl, Ters, & Urban, 2013) discuss the advantages of using intraday 

data due to the higher accuracy of the results as compared with lower-frequency data. 

(Gyntelberg, Hoerdahl, Ters, & Urban, 2013) report that the use of daily data yields 

mixed results with no clear evidence in contrast to the use of intraday data. They state 

that they find a drastic decrease in the precision of their results with very wide 

confidence bands the lower the sampling frequency gets.   
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