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Abstract 

Risk analysis depends to a large extent on the type of data.  Aggregate data can serve as a 
useful surrogate for individual data. However, in practice, there is uncertainty on the reliability 
and adequacy of aggregated data. In this paper we estimate the Herfindahl-Hirschman Index 
(HHI) for a loan portfolio using both aggregate data and individual data. Then, we compare 
both estimates to assess the reliability of the aggregated data. Concentration is a key driver 
of a portfolio credit risk and the HHI is a reliable standard for measuring concentration risk.  
Results for the Mexican banking system suggest that the estimated HHI based on aggregate 
data is a fairly good proxy for the actual concentration. This result suggests that aggregate 
data are useful to evaluate the underlying risk of the portfolio for regulatory purposes. 
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Introduction  

Banks and other financial intermediaries tend to specialize in market segments where they 
exercise a competitive advantage. Whereas specialization facilitates banks to benefit from 
market conditions or their expertise, specialization may be accompanied by concentration of 
resources in counterparties, regions, industry sectors, or business products, compromising 
banks’ diversification of their sources of business or income. This lack of diversification 
increases a bank’s exposure to losses arising from the concentrated portfolio. Therefore, 
Concentration could work as a magnifying mechanism of financial shocks which may lead an 
institution to insolvency In fact, the Basel Committee on Banking Supervision (2006) affirms 
that “concentration is arguably the most important cause of large losses on banks’ portfolios”. 
The BCBS exhorts financial authorities to supervise and measure the risks of the portfolios of 
their financial institutions, including concentration risk.  

The BCBS made an important effort at the beginning of the last decade to establish risk 
sensitive capital requirements for credit risk under Pillar I. It included a proposal to recognize 
concentration risk in a consistent manner. The main idea was to incorporate a Granularity 
Adjustment to the Asymptotic Single Risk Factor Model (ASRF) which is the base model for 
the IRB approach to compute capital requirements for credit risk. The ASRF computes the 
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asymptotic loss distribution of loans portfolios, which is based on the model proposed by 
Vasicek (1987). The ASFR assumes that all credits in the portfolios are of equal size, and 
hence, credit VaR is asymptotically a linear function of the exposures in the portfolio. 
Evidently, real portfolios are not perfectly granular, so Gordy (2002) proposed to add a 
Granularity Adjustment factor to the ASRF, to include the diversification effect in the credit 
risk capital requirements of Basel II. Many authors further explore this approach: Gürtler et 
al. (2009), Bonollo et al. (2009), Lütkebohmert (2009), and Ebert and Lütkerbohmert (2010).  

However, as Pillar I capital requirements for credit risk were intended to be derived from 
individual positions, the granularity adjustment introduced to capture concentration risk, 
dependent on the characteristics of the whole portfolio, was not compatible with the way 
overall capital requirements were computed. Indeed, credit risk capital requirements are 
obtained as the sum of the capital requirements applied to each exposure within the portfolio 
(see BCBS (2006b)). 

 As concentration risk, which is portfolio-based, is not yet considered under pillar I, Basel II 
permits additional capital requirements under Pillar II, subject to the discretion of local 
authorities. Pillar II explicitly states that regional authorities as well as banking institutions 
themselves “should supervise, measure, and control concentration risk in their credit 
portfolios” (see BCBS (2006), paragraph 773). To accomplish this task, banking supervisors 
and authorities should have their own models or estimates to monitor and measure the risk 
of banks’ portfolios. Hence, models used by supervisors should be sensitive to concentration, 
either implicitly or explicitly.  

To include concentration risk, supervisors may need information on the full set of exposures 
of banks. This information is rarely available for supervisors around the world, especially for 
those of financial systems with a large number of banks where reporting the whole portfolios 
to the authorities may be complicated. Such supervisors may be provided only with 
information of the largest counterparties of the banks, but not with the full detail of small 
credits in the banks’ portfolios, and thus, risks may be neglected. Even if small credits may 
not contribute individually in a large extent to the bank’s risks, these credits may be 
generating concentrations in a single sector, such as small and medium size enterprises 
(SMEs), consumer loans and credit cards, or mortgages.  

However supervisors may not need the full set of exposures of the banks: estimates of 
concentration may be enough. If, as in the case given above, supervisors are provided with 
aggregate information on the exposures of a bank, they will be able to compute estimates of 
the concentration, and then, additional capital requirements. 

Few studies in the literature have proposed measures of concentration. The most popular 
ones have been the Herfindahl-Hirschman Index (HHI) and the Gini-Coefficient (GC is an 
inequality measure rather than a concentration one). Most of these measures where 
proposed to study industry concentration and market competition during the 70’s and 80’s4. 
At the end of the 80’s and during the 90’s, some of these measures were extended to 
measure concentration risk on portfolios.  

Some methodologies to estimate concentration measures from aggregate data have been 
proposed in the literature. The main purpose of this paper is to review some of these 
methodologies and to assess their accuracy. To this end, information on the overall credit 
exposures of banks operating in Mexico is considered. This information is provided 
periodically by financial institutions to Mexican authorities and banking supervisors since the 
middle of the last decade. Before that, financial authorities and supervisors were only 
provided with information on the largest credits of each banks’ portfolios. Loans below a 
given threshold (200 thousand pesos or approximately 15 thousand US dollars) were 
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aggregated in sector-buckets, and only the total amount of the bucket was reported: not even 
the number of credits in the bucket was known by supervisors. Thus, using the overall credit 
exposures of the banks, the exact concentration measures can be computed and compared 
to the estimates furnished by approximation methodologies, assuming that small-size loans 
are aggregated and only limited information is available. 

The article proceeds as follows. Section 1 reviews some of the most popular measures of 
concentration proposed in the literature. From data on the portfolios of corporate loans and 
mortgages of banks operating in Mexico, these measures are estimated. Section 2 reviews 
some methodologies to estimate concentration measures, especially the HHI, when 
aggregate data is furnished. These methodologies are applied to the portfolios considered in 
section 1. Section 3 concludes. 

1. Review of Concentration and Inequality Measures proposed in the 
literature 

Concentration and Inequality are related concepts which have been historically confused. In 
a credit portfolio context, inequality refers to the distribution of the loans’ exposures within a 
portfolio, while concentration is related to the value of the portfolio which is held by a small 
number of debtors, as defined by Hoffman (1984). Both concepts are related as 
concentration incorporates both the size inequality of the exposures and the number of loans 
within the portfolio5,6. 

The most common measure of concentration has historically been the Herfindhal-Hirschman 
Index (HHI), which is defined as: 
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where n is the number of credits in the portfolio and ξi is the exposure of credit i relative to 
the portfolio’s total value. Meanwhile, the most popular measure of inequality has been the 
Concentration Ratio (CR) defined as the aggregate share of the k-largest credits on the 
portfolio: 
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where ξ(1),… , ξ(n) are the relative exposures of the credits ordered from the smallest to the 
largest. 

Hall and Tideman (1967) compare estimates of concentration from both measures and found 
that they produce similar results. However, they remarked that, even if the CR may be a 
good proxy for concentration and inequality, it has the main issue that it depends only on the 
k largest firms, neglecting the contribution of the smaller credits, and hence, changing k 
changes the accuracy of the CR. Moreover, given that when k→n the CR tends to 1, the 
value of k which provides more information should be estimated; but there is not a universal 
optimal value of k, because it depends on the structure of the portfolio. 

                                                
5 See Bajo and Salas (1999). 
6 In the case of concentration risk in credit portfolios, regulators should monitor concentration rather than 

inequality. Actually, as will be shown later, there may be banks with highly unequal portfolios but well 
diversified, for example a bank which allocates a few credits to large size enterprises but a large number of 
loans to small debtors may have low concentration but high inequality. 
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A solution was given by the Gini-Coefficient (GC) which is the area between the Lorenz 
Curve7 of the portfolio and the Lorenz Curve of a perfectly diversified portfolio, represented 
by a 45 degree line. Further studies stress the idea that the CR and the GC are in fact 
measures of inequality and not measures of concentration. This last point becomes evident 
for the case where all credits are of equal size, then the GC is zero independently of the 
number of credits in the portfolio, while it is known that the more credits are on the portfolio, 
the more diversified it will be.  

Other alternative measures of concentration were proposed during the 60’s and 70’s. Among 
those we have the one proposed by Hall and Tideman (1967) and defined as: 
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and the Entropy Concentration Index (ECI) proposed by Jacquemin (1975) and defined as8: 
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According to their proponents, these two measures are not different from the popular HHI, 
but the THI has the property of emphasizing the absolute number of credits composing the 
portfolio, while the ECI is more sensitive to small credits. 

In order to compare these measures of concentration and inequality, figure 1 shows the 
scatter matrix plot between the HHI, the EDI, the THI and the GC for the corporate loans and 
mortgages portfolios of banks operating in Mexico. It is observed that the HHI and the ECI 
present a linear relation (i.e. its scatter plot could be described by a linear function), which 
implies that these two measures give similar information regarding the portfolios’ 
concentration. In view of the THI, which is the other measure of concentration, a slight 
deviation from linearity is observed, which may indicate that the THI may give different 
information than the other two indexes. Finally, no linear relationship between the GC and 
the other concentration measures is observed, because as Hall and Tideman (1967) stated, 
concentration and inequality are different concepts. 

It should be noticed that, regarding concentration and inequality measures, mortgage 
portfolios and corporate loans portfolios behave in completely different ways. Figure 2a 
clearly shows this difference. It shows a scatter plot between the HHI and the GC for 
corporates and mortgages, where it can be observed that the scatter plots for both sectors 
are separate; corporate loan portfolios are more concentrated and exhibit higher inequalities 
than mortgages. Mortgage portfolios tend to have a greater number of loans, which reduces 
its concentration, and with more homogeneous exposures, which reduces inequality. 

                                                
7 The Lorenz Curve is a representation of the cumulative distribution of the relative exposures of the credits in the 

portfolio, starting from the highest credit to the lowest. 
8 In fact, Jacquemin defined an Entropy Diversification Index (EDI) which is computed as: 
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Therefore, we transform this measure of diversification into a concentration measure by following the method of 
Hall and Tideman (1967). 
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On the other hand, corporate loans tend to have more heterogeneous exposures due to the 
different sectors and sizes of the enterprises and may differ significantly between banks, 
depending on the sectors and the size of the enterprises to which they allocate credits. The 
differences between banks when allocating credits impact directly their measures of 
concentration and inequality. In fact, banks’ portfolios may be classified into 4 groups 
depending on whether they are more or less concentrated, and whether they have high or 
low inequality.  This is shown in figure 2b which plots the HHI against the GC for corporate 
loan portfolios. In this figure, the vertical-black line represents the median of the HHI, so that 
portfolios at the left side of the line are less concentrated, while portfolios at the right side are 
more concentrated. Similarly, the horizontal-black line represents the median of the GC: 
portfolios below the line have a lower measure of inequality, while portfolios over this line 
have higher levels of inequality. 

Figure 1. Comparison between concentration measures – Herfindahl-Hirschman Index 
(HHI), Entropy Concentration Index (ECI), Tideman-Hall Index (THI) – and inequality 
measures – Gini Coefficient (GC). 

 
* Concentration and inequality measures calculated for all Banks in the Mexican Financial System. 
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Therefore, banks in group 1 have low concentration but a high level of inequality. Banks 
falling in this category participate actively in the corporate credit market. Their portfolios are 
diversified among enterprises of different sizes and from different economic sectors. Thus, 
they allocate a few large-size loans in a small number of debtors, as well as a large number 
of small-size loans. This diversification makes its GC to be high, but the large number of 
loans makes its concentration measures to be below average. In contrast, banks falling in 
group 2 have highly concentrated portfolios but low inequality. These banks do not contend 
in the market of corporate loans having only a few huge exposures in a small number of 
selected counterparties. In the other hand, banks that compose group 3 actively participate in 
the market assigning large-size loans. These banks have diversified portfolios with low 

Figure 2. HHI and GC for corporate loans and mortgage portfolios. 

  
a) HHI1/ and GC for mortgages and 

corporate loan portfolios. 
b) Representation of corporate loan 

portfolios’ classification1/,2/ 
 
1/ Concentration in logarithmic scale. 
2/ The horizontal and vertical lines correspond to the GC and the HHI medians respectively. 
 
Figure 3. Lorenz curves for typical corporate loans portfolios in each group and for 
mortgage portfolios. 

  
a) Corporate Loans Portfolios b) Mortgage Portfolios 
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inequality levels as well. As to group 4, banks in this category do not participate in this 
market. They assign few small-size loans, with the corresponding high concentration and 
inequality measures. 

To go deeper in this analysis, figure 3 shows the Lorenz Curves for some representative 
banks of each group. It is observed that banks in group 1, which have the least concentrated 
portfolios, also have the highest inequality; in contrast, banks in group 4 which are the most 
concentrated, locate their Lorenz curves the closest to the 45 degree line, implying a lower 
inequality. This result may be counter intuitive, but is explained by the fact that more 
concentrated portfolios tend to have fewer numbers of loans. 

2. Estimating Concentration under aggregate data 

In order to compute any of the measures presented in last section, the complete credit 
portfolio is required.  This may be an important limitation because in most cases, only 
aggregate data is available; the detail of the portfolio is unknown. This was the case for 
banking supervisors in Mexico in the past decade, when they only had access to detailed 
information on credits allocated by banks operating around the country, that were greater 
than a certain threshold, while credits below the threshold were aggregated and only the total 
exposure of the bucket was reported. 

During the 80’s, many studies on industry concentration and market competition were 
confronted with similar problems: researchers only had access to listings of the largest firms 
in a given industry so that calculation of the HHI (or other measures) was not possible. 

One of the first attempts to overcome this situation was due to Cowell and Mehta (1982) who 
proposed a “rule of thumb” derived by interpolating the histogram of the industry’s 
participants. Their main idea was to estimate upper and lower bounds of the tail of the 
Lorenz Curve from the Concentration Ratio at different levels, and then, to take a linear 
combination of these bounds to estimate the Gini-Coefficient of the industry. Hoffmann 
(1984) and Michelini and Pickford (1985) extended this approach to estimate concentration 
measures, especially the HHI. Mathematically, assume that the portfolio is divided in m 
buckets. Denote by Fk the total amount of bucket k relative to the total value of the portfolio, 
and by Hk the HHI in each bucket. Then, the HHI in equation 1 can be written as: 
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Now, we can compute two bounds for the HHI of the portfolio in terms of the bounds of the 
HHI of each bucket9. The lower bound for the HHI is, then: 
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where nk is the number of credits in each bucket; and the upper bound is: 
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Then, the HHI of the portfolio should be a convex combination of the lower and upper 
bounds: 

                                                
9 We know that, for a bucket composed of n credits, the HHI of the bucket is bounded between 1/n and 1. 
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for γ∈[0, 1]. The problem now becomes to estimate the real weight γ which is an unknown 
parameter10. Cowell and Mehta (1982) proposed as a “rule of thumb”, to establish γ=1/3. 
Hoffman (1984) and Michelini and Pickford (1985) showed that this rule of thumb worked 
pretty well on their studies of industry concentration. 

Some recent studies suggest probabilistic approaches to estimate concentration. These 
methods are more accurate than the rule of thumb proposed by Cowell and Mehta. Two of 
these methodologies are presented: one proposed by McCloughan and Abounoori (2003), 
and another one proposed by Kanagala et al. (2005). 

The methodology proposed by McCloughan and Abounoori (2003) assumes that the portfolio 
is divided in size-buckets11 and that the number of credits on each bucket and its total size is 
provided. This information provides some points on the Lorenz Curve of the portfolio. The 
authors proposed to interpolate a distribution over these points, and then, to distribute the 
credits uniformly among the range of its bucket. The method would provide estimates of the 
size of each credit on the portfolio and then, it would be possible to estimate concentration12. 

As for the methodology of Kanagala et al. (2005), the authors suggest to assume that the 
relative exposure of each credit on a given bucket (equation 5) follows a Gaussian random 
variable. Then, the HHI in the bucket would be a Chi-Square random variable. The main 
disadvantage of these methods is that it requires information on the number of credits and 
the standard deviation of the relative exposures in the bucket13; this information is rarely 
available. 

Two more methodologies to estimate the HHI were suggested by Márquez (2006). The first 
approach assumes that the only available information on a bucket is the size of the largest 
credit in the bucket. Then, an upper bound for the HHI in equation 5 is: 
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where ξk
* is the maximum exposure in bucket k relative to the bucket total exposure. It should 

be noted that this upper bound is more accurate than the upper bound defined by equation 7. 
If information on the number of credits in each bucket is also available, the estimator on 
equation 8 could be improved using this upper bound proposed by Márquez. 

The second estimator suggested by Márquez (2006), as the one proposed by Kanagala et 
al., is founded on the knowledge of the number of credits in a bucket and the standard 
deviation of the relative exposures, σX. Márquez derived an exact expression for computing 
the variance of the relative exposures in terms of the HHI: 

∑ ∑
= =







 −

−
=








+−

−
=






 −

−
=

n

i

n

i

i
iiX n

HHI
nnnnnn 1 1

2
2

2
2 1

1
112

1
11

1
1 ξ

ξξσ  

and then: 

                                                
10 As Michelini and Pickford (1985) stated, to estimate γ we must know the real HHI, but in this case, computing 

the linear combination is redundant. 
11 The original method of McCloughan and Abounoori estimates the CR for different levels of k. This is why the 

methodology requires the portfolio to be divided in size buckets. The approach we describe here is slightly 
different as our interest is in estimating concentration measures, especially the HHI. 

12 Appendix A better describes this approach. 
13 The average relative exposure is not required as it is the inverse of the number of credits. 
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This equation shows that there is a linear relation between the portfolio HHI and the variance 
of the exposures in the portfolio. Thus, unbiased estimators for the HHI may be computed 
from unbiased estimators of the variance of the exposures and the approach of Márquez is 
better than that of Kanagala et al. However, the second approach may be useful for making 
predictions on the future concentration of the portfolio, but this is not the purpose of this 
paper. 

Table 1 summarizes these methodologies and the information required to estimate the HHI. 
To assess the accuracy of these methodologies to estimate concentration when aggregate 
data is provided, it is assumed, as in the case of the information reported to Mexican 
supervisors, that loans below a given threshold are not reported in detail, but only some 
information is provided. Different thresholds will be considered to show how, the more 
information is provided, the more reliable are the concentration estimators. 

Figure 4 illustrates the number of loans that are lost on aggregation for each group of loans’ 
portfolios considered in last section. The thresholds that are considered are 0.5, 1.0 and 10 
million pesos. It is observed that the higher the threshold is the more information is lost. The 
portfolios for which more information is lost are corporates in group 1 and mortgages.  

The results on the estimates of the HHI are presented in figures 5, 6 and 7, for the thresholds 
0.5, 1.0 and 10 million pesos, respectively. These figures show box-plots for the relative 
errors on the estimation of the HHI using different methodologies, for each group of 

Table 1. Summary of methodologies to estimate the HHI from aggregate data. 

Author Required information Method 

Cowell and Mehta 
Convex Combination 

Number of credits. 
Total exposure. 
Weights for upper and 
lower bounds. 

Calculate upper and lower bounds 
in each bucket and estimate a 
convex combination of these 
b d  

McCloughan and 
Abounoori 
Interpolation Method 

Number of 
credits. Total 
exposure. 

Assume the portfolio is divided in 
size-buckets.  Build the skeleton 
of the Lorenz Curve using the 
buckets. Interpolate the Lorenz 
Curve assuming credits in each 
buckets are uniformly distributed. 

Kanagala 
Probabilistic 
Approach 

Number of credits. 
Standard deviation of 
credit exposures. 

Assume exposures are Gaussian 
random variables. Then HHI has 
a Chi-Square distribution.  Make 
inferences on the HHI value from 
its distribution. 

Márquez Upper 
Bound 

Total Exposure 
Upper bound for credit 
exposures. 

Compute HHI upper bound. 

Márquez Exact HHI 
Number of credits. 
Standard deviation of 
credit exposures. 

Compute the exact HHI from its 
relation against the standard 
deviation. 
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corporate loans portfolios and for the mortgage portfolios. The estimate errors shown in 
these figures correspond to the following methodologies14: 

• LowB: Corresponds to the lower bound of the HHI established in equation 6. 

• MqUB1: Márquez upper bound in equation 9, assuming that the highest exposure in 
each aggregate bucket is known. 

• MqUB2: Márquez upper bound in equation 9, assuming we do not have any 
information on the aggregate data, but the threshold from which loans are 
aggregated. Then, we use this threshold to compute an upper bound for the HHI. 

• MA.exp: Interpolation method of the portfolios’ Lorenz curve, proposed by 
McCloughan and Abounoori, assuming an exponential function of the form15: 

( ) )1,0(          ,lnexp)( ∈= αα xxf  
• MA.sin: Interpolation method of the portfolios’ Lorenz curve, proposed by 

McCloughan and Abounoori, assuming a sinusoidal function of the form: 

                                                
14 Neither the Kanagala probabilistic approach nor the Márquez exact estimation of the HHI are considered in our 

results, because they require estimates of the variance of the exposures of the aggregate. To provide such 
estimates is not the main issue of this paper, so we drop these methodologies. 

15 It should be noticed that McCloughan and Abounoori proposed more sophisticated functions, as the log-normal, 
the type I Pareto and the exponential. The functions proposed in this study, while relatively simple, adequately 
capture the heterogeneity within the portfolios (see appendix A). 

Figure 4. Box-plot of the number of credits lost on aggregation by groups of corporate loans 
portfolios and mortgage portfolios. Aggregate loans are those of size exposure below a given 
threshold (0.5, 1.0 and 10.0 million pesos). 

 
Percentage of loans lost on aggregation. 
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• CM.RT: “Rule of thumb” proposed by Cowell and Mehta, which is a linear 
combination of the HHI lower and upper bounds, equation 8 with γ=1/3. 

• CM.MRT: Modified “Rule of thumb” proposed by Cowell and Mehta, changing the 
upper bound of the HHI to the upper bound proposed by Márquez (MqUB2), and 
fixing γ=1/3. 

Firstly, it is noticed that, as expected, for all portfolios – corporate loans and mortgages 
portfolios – accuracy improves with the amount of information provided. In other words, when 
loans below 10 million pesos are aggregated (figure 7), the estimation errors are higher than 
when considering lower thresholds. Moreover, for all thresholds, HHI estimation errors are 
higher for mortgage portfolios than for corporate loans. The main reason is that there are a 
larger number of loans below the thresholds for mortgage portfolios, so that more information 
is lost when aggregating. It should also be pointed out that even for mortgage portfolios, the 
estimators are highly accurate. For instance, the mean error for mortgage loans considering 
the 10 million pesos threshold is about 2.7 times the real HHI, which is reasonably accurate, 
considering that the HHI for mortgage portfolios is of the order of 1e-05 and 1e-03. 

In regards of corporate portfolios, it is observed that estimates of the HHI are more accurate. 
For the 10 million pesos threshold, the relative errors of the estimators are of orders of 1e-02, 
which again, are very accurate. In the other hand, more concentrated and more 
homogeneous portfolios (higher HHI and lower GC) present better estimates of 

Figure 5. Box-plots for the error of estimation of the HHI when loans under 0.5 million 
pesos are aggregated using different methodologies. 

   
a) Corporates Group 1 b) Corporates Group 2 c) Corporates Group 3 

  
d) Corporates Group 4 e) Mortgages 

 
LowB: Lower bound by Cowell and Mehta. MqUB1: Márquez upper bound assuming the maximum size of 
the aggregate loans is provided. MqUB2: Márquez upper bound assuming all credits in the aggregate 
bucket are lower than the threshold. MA.exp: McCloughan and Abounoori interpolation method, from an 
exponential function. MA.sin: McCloughan and Abounoori interpolation method, from a sinusoidal function. 
CM.RT: Cowell and Mehta rule of thumb. CM.MRT: Cowell and Mehta modified rule of thumb. 
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concentration. Indeed, group 2 portfolios, which are highly concentrated and homogeneous, 
have the lowest estimation errors (except for an outlier bank). As already mentioned, the 
reason is that these banks allocate large size credits in a few selected counterparts. 

For group 1 of corporate loan portfolios, which comprises the most active banks in this 
sector, it is observed that the average estimation error is of the order of 1e-05 for the 0.5 
million pesos threshold and 1e-02 for the 10 million pesos threshold. 

Regarding the different measures, it is observed that the HHI upper bounds of Márquez, 
MqUB1 and MqUB2, have the highest errors for all portfolios. The reason is that these upper 
bounds consider an upper bound of the credits in the aggregate bucket, which may not give 
any information on how loans are distributed among the buckets.  The other methodologies, 
which are based on the number of aggregate loans, assume that aggregated loans are at 
least uniformly distributed in the bucket, and then, they give better estimates than the upper 
bounds. Indeed, estimating the HHI by the lower bound (LowB), assumes that all credits in 
the aggregate bucket are uniformly distributed, while the McCloughan-Abounoori 
interpolation method (MA.exp and MA.sin) assumes more general distributions. 

Figure 6. Box-plots for the error of estimation of the HHI when loans under 1.0 million 
pesos are aggregated using different methodologies. 

   
a) Corporates Group 1 b) Corporates Group 2 c) Corporates Group 3 

  
d) Corporates Group 4 e) Mortgages 

 
LowB: Lower bound by Cowell and Mehta. MqUB1: Márquez upper bound assuming the maximum size of 
the aggregate loans is provided. MqUB2: Márquez upper bound assuming all credits in the aggregate 
bucket are lower than the threshold. MA.exp: McCloughan and Abounoori interpolation method, from an 
exponential function. MA.sin: McCloughan and Abounoori interpolation method, from a sinusoidal function. 
CM.RT: Cowell and Mehta rule of thumb. CM.MRT: Cowell and Mehta modified rule of thumb. 
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For the methodologies based on the knowledge of the number of loans in the aggregate 
buckets, the McCloughan-Abounoori interpolation methods give better estimates than the 
lower bound. The reason is that loans are not uniformly distributed in the bucket, which is the 
assumption of the lower bound. Then, assuming more general distributions may provide 
better estimates, as in this study. However, it should be considered that more general 
distributions may require more complex process than just computing the lower bound. Even 
though, both distributions considered in this paper (exponential and sinusoidal) took a few 
seconds to be computed. The methodology is explained in appendix A. In the other hand, it 
is observed that for all portfolios, the sinusoidal function gives better estimates than the 
exponential. The sinusoidal function has the property of being more concave than the 
exponential; therefore, a sinusoidal function may adjust better for more heterogeneous 
portfolios. This may imply that the size-exposures of the loans in the aggregate buckets are 
not homogeneous. 

Finally, the Cowell and Mehta “rule of thumb” give the highest errors. Actually, this 
methodology gives highly biased estimators. In some cases, especially for corporate 
portfolios in group 1 and for mortgage portfolios, the box-plots for the errors are not 
presented because they are out of the scale. The reason is that the portfolios considered in 
this paper are closer to the low bound of the HHI than to the upper one, which implies that 
such portfolios may be diversified. The exception is for corporate portfolios in group 2, for 
which the Cowell and Mehta rule of thumb is quite accurate. However, this methodology 
losses precision as the threshold for aggregating loans increases. 

Figure 7. Box-plots for the error of estimation of the HHI when loans under 10.0 million 
pesos are aggregated using different methodologies. 

   
a) Corporates Group 1 b) Corporates Group 2 c) Corporates Group 3 

  
d) Corporates Group 4 e) Mortgages 

 
LowB: Lower bound by Cowell and Mehta. MqUB1: Márquez upper bound assuming the maximum size of 
the aggregate loans is provided. MqUB2: Márquez upper bound assuming all credits in the aggregate 
bucket are lower than the threshold. MA.exp: McCloughan and Abounoori interpolation method, from an 
exponential function. MA.sin: McCloughan and Abounoori interpolation method, from a sinusoidal function. 
CM.RT: Cowell and Mehta rule of thumb. CM.MRT: Cowell and Mehta modified rule of thumb. 
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Even though, the Cowell and Mehta “rule of thumb” can be modified to create more accurate 
estimates of the HHI. This “modified rule of thumb” (CM.MRT), rather than considering as 
upper bound the one given in equation 7, it considers the upper bound proposed by Márquez 
(MqUB2). Then, the estimator proposed by this “modified rule of thumb” is given by: 

2
3
2

3
1 MqUBLowBHHI +=  

This modified rule of thumb gives better estimates than the simple rule of thumb of Cowell 
and Mehta, because the upper bound of Márquez is much closer to the real HHI than the 
upper bound used by Cowell and Mehta. Furthermore, more accurate estimates can be 
proposed by changing the weight γ. Actually, the real value of γ lies between 0.6 and 0.8 for 
most cases, and hence, proposing γ=2/3 may increase considerably the accuracy of the 
estimates of the HHI. However, computing the best value of γ may not be possible a priori, 
and the error of this “rule of thumb” may not be controlled. 

3. Conclusions 

As concentration is presumably one of the most important causes of large losses in the 
banks’ portfolios, banking supervisors and authorities are encouraged to monitor and 
evaluate the concentration risks of their financial institutions. To this end, they should have 
their own models to assess the capital adequacy of the banks, and furthermore, such models 
should be sensitive to concentration measures.  

If concentration is explicitly incorporated in those models, supervisors and authorities may 
not need the full set of exposures of the banks’ portfolios. Instead, accurate estimates on the 
portfolios’ concentration may be sufficient to properly assess the capital adequacy of banks.  

The paper presented some methodologies that properly fulfill this task. By comparing 
estimates on the HHI – one of the most popular measures of concentration – from aggregate 
data, against the actual index, for the credit portfolios of the Mexican banking institutions, we 
were able to properly assess the accuracy of some methodologies that have been proposed 
in the literature. Depending on the structure of the portfolios and the available information on 
the aggregate data, the mean relative error of the estimates lies between 1e-07 and 1e-02, 
which is quite accurate. Therefore, even if banking supervisors and authorities are provided 
with aggregate data on the credit exposures of a bank, they are able to compute estimates of 
concentration measures, and thus monitor the risk of banks’ portfolios and to assess their 
capital adequacy. 

However, we should remark that concentration is not the only source of large losses in a 
credit portfolio, there are sources of risk that supervisors and authorities should consider, for 
example common exposure to the same risk factors in a single portfolio, have a direct 
influence on the concentration of risk, which is really the issue. In other words, even If 
concentration in terms of number and size of credits can be accurately estimated from 
aggregate data, other risk factors such as how defaults are correlated within a portfolio, may 
require supervisors to have access the full set of exposures of banks and its characteristics. 
Even though, the proper measurement of concentration is one step forward on the 
assessment of banks’ capital adequacy. 
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A. The McCloughan-Abounoori interpolation method o estimate 
concentration under aggregate data 

This appendix is concerned on the mathematical description of the McCloughan and 
Abounoori (2003) interpolation method, its implementation for the cases presented in this 
paper, and some comments on its accuracy. 

The problem that McCloughan and Abounoori dealt with was to estimate concentration 
measures, particularly the Gini-Coefficient, when loans16 in the portfolio were aggregated in 
size-buckets, and only the total exposure of the bucket and the number of loans that 
conformed it were reported. For example, they were provided with the total exposure of the 
largest 100 loans in the portfolio, the exposure of the next 500 largest loans, the next 1000 
thousand loans, and so on. This information gives some points on the Lorenz Curve of the 
portfolio, as represented in figure 8a. The red dots in the figure represent the known points 
on the Lorenz curve, which is the black dotted line. McCloughan and Abounoori proposed to 
fit a distribution to these points and then, complete the rest of the Lorenz Curves with the 
fitted function. Once the Lorenz Curve is approached, whichever of the measures of 
concentration or inequality presented in section 2 could be estimated. 

In the context of this article, loans over a given threshold are reported in detail, while loans 
below the threshold are aggregated. This situation is represented in figure 8b. In this figure 
the red dots correspond to the cumulative exposure of the largest loans in the portfolio, those 
which are not aggregate. The black dotted line represents the unknown part of the Lorenz 
Curve, which corresponds to the aggregate loans. Then, in our case, we only have to fit a 
function to the black-dotted part of the portfolio Lorenz Curve. 

To this end, we should consider that the fitted curve must pass through the point where the 
non-aggregate loans finish. In other words, if we denote by x* the number of non-aggregate 
loans in the portfolio divided by the total number of loans, and by ξ* the total exposure of the 
non-aggregate loans relative to the portfolio value, then the fitted function h:[0,1]→[0,1] 
should verify that: 

( ) ** ξ=xh  

Moreover, the fitted function should be strictly increasing and concave. 

To simplify the computation of the fitted function, only functions with one parameter are 
considered17. Figure 9 illustrates the fitted Lorenz Curve for one portfolio, considering four 
distinct functions: 

)1,0(,)(1 ∈= ααxxf  

)1,0(,
2

sin)(2 ∈





= απ αxxf  

1,|1|1)(3 ≥−−= ααxxf  

                                                
16 McCloughan and Abounoori were dealing with the problem of estimating industry concentration from aggregate 

data. We describe their methodology in the context of credit risk concentration, which is, actually, the problem 
we are considering in this paper. 

17 More general functions may be considered, as proposed by McCloughan and Abounoori. However, one 
parameter functions worked properly for our case, but more important was that the improvement on the 
accuracy of the HHI estimates when considering more general functions was diminished by the errors 
committed on the fitting procedure. 
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( ) 0,11)(4 >−−= αα xxf  

In these figures, black lines represent the current Lorenz Curve; red lines correspond to the 
fitted curve using the exponential function, f1; blue lines correspond to the sinusoidal function, 
f2; green lines correspond to f3; and the linear function, f4, is represented by light-blue lines. 
Panel one of the figure 9a, shows the Lorenz Curve of the portfolio and the fitted curves 
using these functions. The second panel, figure 9b, zooms in the part of the Lorenz Curve 
which corresponds to the aggregate data. It is observed that the sinusoidal function, blue 
line, best fits the Lorenz Curve.  

Figure 8. Representation of Lorenz curves when aggregate data is provided. 

  
a) Lorenz curves when data on the 

largest 100,500, 1000, etc. loans 
is provided. 

b) Lorenz curves when aggregating 
loans under a given threshold. 

 
Figure 9. Fitted Lorenz curves for different functions. 

  
a) Lorenz curves and fitted functions. b) Zoom of the Lorenz curves and 

the fitted functions on the 
aggregate loans. 
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We remark that the McCloughan-Abounoori interpolation method using the linear function, 
light blue line, corresponds to the HHI lower bound, where loans in the aggregate bucket are 
assumed to be equally distributed. 
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