BIS CCA-004-2010 May 2010

Macroprudential regulation and systemic capital requirements

A presentation prepared for the BIS CCA Conference on

"Systemic risk, bank behaviour and regulation over the business cycle"

Buenos Aires, 18–19 March 2010

Authors*: Celine Gauthier, Alfred Lehar and Moez Souissi

Affiliation: Bank of Canada, Haskayne School of Business/University of Calgary

Email: cgauthier@bankofcanada.ca, alfred.lehar@haskayne.ucalgary.ca, msouissi@bankofcanada.ca

^{*} This presentation reflects the views of the authors and not necessarily those of the BIS or of central banks participating in the meeting.

Macroprudential Regulation and Systemic Capital Requirements

Celine Gauthier Alfred Lehar and Moez Souissi

Bank of Canada WP 2010-04

Motivation - System-wide risk

 Current regulation is focussing on risk at individual institutions

 Consensus about a system-wide approach to regulation that would focus on system-wide risks

Motivation - System-wide risk

• A model to measure systemic risk

• Ways to internalise it

Contribution

 We propose a model to measure systemic risk (in the spirit of RAMSI at the BoE)

 We propose to reallocate capital according to individual contributions to systemic risk

 Fixed-point: capital requirement equals contribution to system risk

Contributions on the data side:

- We use extended data on exposures between the big six Canadian banks
- We use non public information on the largest loan exposures of banks
- Expanding the set of exposures between banks and considering the granularity of the loan portfolio have significant impact

Contribution

Main findings:

 Capital reallocation works: can decrease bank PDs as well as the probability of a crisis by around 25%

Works for all 6 capital reallocation mechanisms

Contribution

Main findings:

 Reallocated capital differs from current capital by up to 50%

 Reallocation is not trivially related to size or PD (at least in Canada)

Outline of the presentation

- 1. The related literature
- 2. A model of the banking system
- 3. Impact of contagion channels
- 4. Macroprudential capital requirements
- 5. Conclusion

1. The related literature

- Historical market data to exploit correlations and historical spillovers (Adrian and Brunnermeir [2008], Acharya et al. [2009])
- Network model and aggregate loss distribution conditional on stress-scenario (Aikman et al [2008], Elsinger et al [2006], Upper (2006))

•

2. A model of the banking system

 The model used to generate the system loss distribution

 Integrate a credit risk model (Misina and Tessier [2006,2007]) to a network model of exposures between banks

• The network is a potential source of contagion

 Banks that fall short of regulatory requirements start selling assets to an illiquid market (Cifuentes, Shin and Ferrucci [2005])

- Spiral may occur because of mark-to-market accounting
- www.bankofcanada.ca The aggregate loss distribution includes both network and asset fire sale externalities

www.bankofcanada.ca

2.1 The credit risk model

Two sources of uncertainty:

 Systematic factors which affects all loan portfolios simultaneously

 Idiosyncratic factors due to the composition of individual loan portfolios

2.2 The Network model

• Stylised balance-sheet (net worth)

$$p_i e_i + c_i + \sum_{j=1}^N \pi_{ji} d_j - d_i - L_i$$

• Clearing payment vector:

Min between total amount due and whatever is left after outside debt holders are paid (fixed point, Eisenberg and Noe [2001])

2.3 The asset fire sale (AFS)

• Minimum capital requirement constraint:

$$\frac{p_i e_i + c_i + \sum_j x_i \pi_{ji} - x_i - L}{w_i p_i (e_i - s_i)} \ge r^*$$

 An equilibrium of the model is a combination of interbank payments, individual sales of illiquid assets, and their prices.

2.4 The different sources of defaults

Fundamental default:

- Credit losses decreases capital sufficiently for a bank to be unable to honour its interbank obligations even when others do honour theirs.
 - Prices are not affected by AFS

AFS default:

- The bank is not in fundamental default...
- ...but cannot honour its interbank obligations at the equilibrium price of the illiquid assets...
- …even when all other banks meet their interbank obligations

2.4 The different sources of defaults

Contagious defaults:

• The bank is in default only because other banks are not able to keep their promises.

www.bankofcanada.ca

3. Impact of contagion channels

Bank	Fundamental PD	Contagious PD	AFS PD	Contagious PD (AFS)	Total PD (AFS)
	(%)	(%)	(%)	(%)	(%)
1	0.00	0.00	2.96	3.47	6.43
2	0.15	0.00	9.09	0.94	10.19
3	0.00	0.00	2.99	6.33	9.31
4	0.01	0.00	6.50	3.93	10.45
5	0.00	0.00	1.61	6.09	7.70
6	0.19	0.01	4.53	6.93	11.65

• The probability of a financial crisis

Number	Probability		probability of involvement of bank					
defaults	(in %)	1	2	3	4	5	6	
1	3.53	4.64	30.86	6.97	15.49	0.75	41.28	
2	1.16	9.07	47.48	20.70	49.03	3.44	70.29	
3	0.84	14.60	57.19	45.28	83.50	12.40	87.03	
4	1.11	22.21	69.86	81.68	95.25	34.96	96.04	
5	2.66	32.17	88.55	97.95	99.15	82.69	99.48	
6	4.94	100.00	100.00	100.00	100.00	100.00	100.00	

4. Macroprudential capital requirements

Component value-at-risk (beta):

 Allocates capital according to the relative marginal contributions of individual banks on the variance of the aggregate loss distribution

Incremental value-at-risk:

- Allocate capital according to the difference between the VaR of the aggregate loss distribution and the VaR of the aggregate loss without bank i.
- Measures the increase in risk by adding bank i to the system

4. Macroprudential capital requirements

Shapley values:

• Well known measure in game theory

 Allocate capital based on the average marginal value that the player's resources contribute to the total

CoVaR (Adrian and Brunnermeir):

 Allocate capital according to the difference in the VaR of bank i conditional on the whole banking system being at its VaR (CoVar) and the non-conditional VaR of bank i.

4. Macroprudential capital requirements

The reallocation mechanisms:

Bank	Component	Incremental	Shapley va	$\Delta CoVaR$	
	VaR	VaR	Expected loss	VaR	
1	95.33	104.56	105.18	105.25	96.45
2	103.95	101.91	102.52	102.34	103.57
3	96.17	92.95	92.62	92.54	96.69
4	110.44	114.07	113.11	113.47	95.94
5	91.74	89.23	89.20	89.14	91.92
6	106.66	104.26	104.31	104.38	149.62

The impact on individual default probability:

Bank	Observed	Basel	Component	Incremental	Shapley value		$\Delta CoVaR$
	capital	equal	VaR	VaR	Expected loss	VaR	
1	6.43	9.05	6.60	3.91	3.75	3.73	7.53
2	10.19	9.97	7.68	8.15	7.91	7.97	8.93
3	9.31	8.91	8.34	8.82	8.87	8.91	10.57
4	10.45	9.04	6.72	5.77	5.91	5.85	11.97
5	7.70	7.73	7.55	7.76	7.73	7.74	9.47
6	11.65	10.53	8.28	8.49	8.44	8.43	2.42
Average	9.29	9.21	7.53	7.15	7.10	7.11	8.48

The impact on multiple defaults probabilities:

Number	Observed	Basel	Component	Incremental	Shapley value		$\Delta CoVaR$
defaults	capital	equal	VaR	VaR	Expected loss	VaR	
1	3.53	3.55	3.01	3.43	3.39	3.41	3.01
2	1.16	1.05	0.85	1.11	1.09	1.10	1.20
3	0.84	0.60	0.51	0.75	0.73	0.75	1.25
4	1.11	0.70	0.67	1.08	1.06	1.08	2.47
5	2.66	1.70	1.71	2.49	2.58	2.57	4.06
6	4.94	6.09	4.62	3.04	2.95	2.93	1.93
≥ 5	7.60	7.78	6.33	5.53	5.53	5.50	5.98
≥ 4	8.70	8.48	7.00	6.60	6.59	6.59	8.46

5. Conclusion

 Macroprudential capital allocation mechanisms reduce individual default and the prob. of systemic crisis by as much as 25%

First step in measuring systemic risk and macroprudential capital requirement

2.2 The Network model

Stylised balance-sheet

$$p_i e_i + c_i + \sum_{j=1}^N \pi_{ji} d_j - d_i - L_i$$

Price of illiquid assets function of riskiness of BS

$$p_i = \min(1, p + (\overline{w} - w_i)\kappa)$$

Changing the elasticity of the demand curve

Bank	AFS PD	Contagious PD (AFS)	Total PD
	()	All data, P_{min} =0.97, in %	6)
1	33.58	24.84	58.42
2	57.64	3.92	61.74
3	29.05	34.23	63.29
4	55.06	8.63	63.71
5	17.17	44.67	61.84
6	26.88	36.86	63.94

	Systemati	e and idiosyneratie	Systematic		
		factors		factors	
Panel A: Descriptive	statistics of	of aggregate loss distri	butions		
	\$Billion %of Tier1 capital			%of Tier1capital	
Mean	-55.7	58.2	-45.7	47.7	
Standard Deviation	-11.4	11.9	-7.9	8.3	
Quantiles:					
99%	-21.9	22.9	-27.3	28.5	
10%	-77.3	80.8	-35.5	37.1	
1%	-97.5	101.9	-63.7	66.6	
Panel B: Frequencies	s of bank d	efaults (%)			
Minimum	0.004		0.0		
Average	0.06		0.0		
Maximum		0.18		0.0	

Advantages of scenario analysis:

 Compute the potential losses based on current positions rather than using past losses

Does not induce pro-cyclical risk-taking

2.1 The credit risk model

Severe recession scenario mapped into default rates for 7 sectors

	Minimum	Average	Maximum	Historic Peaks
Accommodation	3.0	11.7	21.0	7.6
Agriculture	1.0	1.7	2.0	0.8
Construction	2.0	6.4	10.0	3.3
Manufacturing	5.0	12.2	20.0	8.3
Retail	0.0	4.3	8.0	5.3
Wholesale	2.0	7.0	12.0	4.6
Mortgage	0.0	0.6	1.0	0.6

Bank	PD	Cond. probability of multiple defaults					
	(in %)	1	2	3	4	5	6
1	6.43	2.55	1.64	1.91	3.82	13.28	76.80
2	10.19	10.70	5.41	4.72	7.60	23.08	48.50
3	9.31	2.64	2.58	4.09	9.71	27.93	53.05
4	10.45	5.24	5.45	6.72	10.10	25.21	47.30
5	7.69	0.35	0.52	1.35	5.03	28.54	64.21
6	11.65	12.51	7.00	6.28	9.13	22.68	42.41

BANK OF CANADA BANOUE DU CANADA

2.4 The different sources of defaults

Fundamental default

$$e_i + c_i + \sum_{j=1}^N \pi_{ji} d_j - L_i < d_i$$

• AFS default

$$e_i + c_i + \sum_{j=1}^N \pi_{ji} d_j - L_i > d_i$$
 and
 $p_i^* e_i + c_i + \sum_{j=1}^N \pi_{ji} d_j - L_i < d_i$

2.4 The different sources of defaults

Contagious defaults

$$p_i^* e_i + c_i + \sum_{j=1}^N \pi_{ji} d_j - L_i > d_i \qquad \text{but}$$
$$p_i^* e_i + c_i + \sum_{j=1}^N \pi_{ji} x_j^* - L_i < d_i$$