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1. Introduction

We are interested in economic platforms that inherently depend on attracting multiple differ-

ent types of users. For instance, the quality or usefulness of a credit card depends on which

merchants accept the card and which consumers use the card. Each side cares about the

other. A mobile phone network is attractive only if it allows a user to message her contacts

on the same technological platform. A dark pool for the trading of financial instruments

needs to attract both buyers and sellers in somewhat proportionate numbers if it is to allow

trade and coexist with other public exchanges. Likewise, a clearinghouse is a mechanism to

net trades and mitigate obligations that continue beyond an end-of-day settlement period.

Even traditional financial intermediaries can be thought of in this way, in the sense that they

stand between savers and borrowers and transform the risk and time structure of funds.

We ask, in these types of markets with multiple competing platforms how one defines a

Walrasian equilibrium. Does it typically exist, or are there inherent problems? If an equi-

librium exists, is it efficient in the allocation of costs or is there a case for the regulation of

prices? Finally, what is the relationship between competitive equilibria and the distribution

of welfare; specifically, does one side or the other have an inherent advantage?

Building on the “firms as clubs” literature, we model an economy with multiple platforms (for

example, a payment platform), platform users (for example, merchants and consumers), and

intermediaries. The intermediaries create the platforms, which vary in their size and com-

position. The intermediaries sell slots on these platforms to both merchants and consumers.

We show that the competitive equilibrium is efficient (Pareto optimal) and that there is no

motivation for regulating prices or quantities. Further, consistent with the second welfare

theorem, if a social planner or regulator wanted to redistribute welfare, this redistribution

should be done through lump-sum taxation and transfers rather than distorting prices.

One example of platform competition that has rightly attracted significant academic and

regulatory attention is the interchange fee. The interchange fee is a charge for the acquiring

bank (the bank that processes a credit card payment on behalf of the merchant) levied by

the issuing bank (the bank that issues a consumer’s credit card) to balance the credit card’s

costs between the merchant and the consumer’s bank. Consumers’ utility and merchants’

profits from using or accepting a credit card depend on the number of users of both types,

as well as their respective costs via the interchange fee. In this environment, because a

user’s utility or profit depends on the composition of the card’s users, does this dependence



THE ECONOMICS OF PLATFORMS IN A WALRASIAN FRAMEWORK 3

cause a network externality? Can the interchange fee correct this network externality? Does

the market-determined interchange fee require regulation? Finally, how does the size of the

interchange fee distribute costs between consumers and merchants?

These questions have been asked but only partially addressed. “The large volume of theo-

retical literature on interchange fees has arisen for the simplest of reasons: understanding

their termination and effect is intellectually challenging”, according to Schmalensee and

Evans [2005]. Baxter [1983]’s seminal work, seems to be the first paper to model the multi-

sided nature of payment systems: “In the case of transactional services, although consumer

P’s marginal valuation of the additional use of a particular payment mechanism may differ

markedly from consumer M’s marginal valuation, these valuations cannot be independent of

one another.” Baxter models these interdependencies across platform users in a competitive

framework. In more recent work, Rochet and Tirole [2003], Schmalensee and Evans [2005],

Armstrong [2006], Hagiu [2006], Rochet and Tirole [2006], Rysman [2009], Weyl [2010], Weyl

and White [2016] argue that platforms are unable to fully internalize the merchant’s mar-

ginal utility gain from an extra consumer, which leads to an unpriced “externality” and,

consequently, a market inefficiency.

In contrast to the recent literature on two-sided markets, we return to the competitive

framework first introduced by Baxter. We extend the original literature in two key ways:

(i) We use tools from general equilibrium theory to model platform competition, and (ii) we

allow platforms to offer bundles that detail the composition of a platform’s users—that is,

we are clear about platform characteristics, the commodity point, as it were. Through the

use of this modified contract, we show that the prices for the platform membership, varying

by type of user, overcome the inherent externality, in a similar manner as that suggested

by Arrow [1969]. That is, the competitive equilibrium is Pareto optimal, and the usual first

and second welfare theorems hold in our economy.

Our paper has four main results: First, building on Prescott and Townsend [2006], who

analyzed firms as clubs in general equilibrium, we provide a framework that shows that

platform contracts and competition among platforms can internalize the previously described

externality, if the platforms do not exhibit ever increasing economies to scale (in membership

or costs).

Second, and more specifically, we prove that both the first and second welfare theorems hold

in our model environment; a competitive equilibrium is Pareto optimal and any optimal
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allocation of resources can be achieved by lump-sum taxes and transfers on underlying wealth.

To prove this, we model that each basic user type faces a user price for each of a (infinite)

number of potential platforms, which vary in the number of own-type participants and other-

type participants. In equilibrium at given prices, the solution to these decentralized problems

delivers the mix and number of participants in active platforms that each user anticipated

when they choose platforms. That is, in equilibrium each active platform is populated with

user types and numbers exactly as anticipated. Multiple types of platforms can coexist

simultaneously, though far fewer than the potential number one can envision.

The solution is efficient because the type-specific market prices for joining platforms, which

each user takes as given, change across the many potential platforms in a way that internalizes

the marginal effect of altering the composition of the platform. Put differently, each agent of

each type (having tiny, negligible influence), is buying a bundle that includes the composition

and number of total participants, and buying the right to interface with her own and other

types in known numbers. Although the problem is decentralized and each type independently

determines the platform they want to join, type-specific prices to join a platform of a given

size direct traffic so that for each and every type, the composition of active platforms will

have the membership that was purchased. In short, the commodity space is expanded to

include the intrinsic externality feature of the platform and prices on that commodity space

decentralize the problem.

Third, we use this framework to do some comparative statics: We characterize how the

equilibrium prices for each type of user to join the platform and the composition of a plat-

form’s users change as we alter parameters of the underlying economic environment. We

make a distinction between a fundamental type of user (consumer and merchants) versus

within-a-type users that differ only in wealth or preferences. In this way we can examine

how the equilibrium changes as we alter different consumers’ wealth. The latter allows us to

see how higher wealth for a certain type leads to more advantageous matches for that type

but subsequently spills over to others’ and hence to their own utility. Specifically a change

in the wealth distribution towards a favored type not only increases the competitively deter-

mined utility of that type, but also potentially increases the utility of those that the favored

types wish to be matched with and likewise decreases the utility of others with lower wealth

who are in direct competition with the favored type to staff platforms with the requisite

membership structure.
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We exploit in these latter comparative static exercises the fact that changing Pareto weights

is equivalent to changing wealth—that is, we use a programming problem to maximize

Pareto weighted sums of utilities and then change the weights, tracing out all Pareto optimal

equilibria. A given optimum requires lump-sum taxes and transfers, or equivalently, a change

in the initial underlying distribution of wealth.

Fourth, we demonstrate the generality of our framework for modeling platforms. We extend

the model to allow for heterogeneous agent preferences, and allow agents to join multiple

platforms (multihoming). In addition, we compare a competitive and a monopoly framework

to demonstrate the marked difference in their platform allocations. In this sense, competition

matters even though both modes of organization internalize the externality.

Our Walrasian framework offers a compelling model for approximating the outcome of com-

petition among financial intermediaries, holding the type of intermediation fixed. For in-

stance, there were more than 40 different platforms for trading listed securities available to

traders in 2008 (O’Hara and Ye [2011]). In the limit, as the number of platforms becomes

arbitrarily large, we can ignore strategic aspects; of course, this approach sets us apart from

the industrial organization literature, which focuses on smaller numbers and imperfect com-

petition. To ensure the outcome that each platform is essentially a price-taker, we do need

to assume in our setting that platforms do not have ever increasing returns to scale. This

assumption has empirical support in both Altinkiliç and Hansen [2000] and O’Hara and Ye

[2011], which document non-increasing returns to scale in equity underwriting and equity

exchanges, respectively. Finally, the recent explosion in multiple cryptocurrencies suggests

an empirical basis for modeling multiple competing payment exchanges.

Our framework builds heavily on club theory and in particular, the firms as club literature.

Koopmans and Beckmann [1957] discuss the problem of assigning indivisible plants to a

finite number of locations and its link to more general linear assignment or programming

problems. A system of rents sustains an optimal assignment in the sense that the profit from

each plant-location pair can be split into an imputed rent to the plant and an imputed rent

to the location. At these prices landowners and factory owners would not wish to change the

mix of tenants or location. As Koopmans and Beckman point out, the key to this beyond

linear programming is Gale et al. [1951]’s theorem that delivers Lagrange multipliers on

constraints. Every location has a match and the firms and location are not over- or under-
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subscribed. A linear program ignores the intrinsic indivisibilities—the integer nature of the

actual problem—yet nevertheless achieves the solution.

Utilizing two related methods developed in the firms as club literature, we likewise overcome

the non-convexity in our production set (assigning individuals to platforms). First, with a

large number of agents one can approximate the environment with a production set that

has constant returns, that is when the non-convexity is small relative to the size of the

economy. Essentially, the production set becomes a convex cone, as in McKenzie [1959,

1981]’s formulation of general equilibrium. Second, more specifically, we use lotteries (at the

aggregate level) as developed in Prescott and Townsend [2006], to assign fractions of agent

types to contracts and platforms even though the individual assignments are discrete. The

firms as clubs methodology is well suited for our setting because it allows us to solve for

which platforms emerge in equilibrium, the size of each platform, and who is part of each

platform.

The closest literature to our work on platforms is the literature on two-sided markets. This

literature considers platforms that sell to at least two different user groups, and whose utility

is dependent on who else uses the platform. In general, the two-sided markets literature uses

an industrial organization, partial equilibrium framework. The main finding in Rochet and

Tirole [2003, 2006], Armstrong [2006], Weyl [2010], Weyl and White [2016] is that two-sided

markets lead to market failure. In particular, in the two-sided market literature, a key

concern is how the distribution of users’ fees will cover the platform’s fixed and marginal

costs.

Rysman [2009]’s comprehensive overview of the empirical and theoretical work on two-sided

market states that “the main result (in the two-sided market literature) is that pricing to

one side of the market depends not only on the demand and costs that those consumers

bring but also on how their participation affects participation on the other side.” This

statement highlights three of the main advantages of our general equilibrium framework

with a Walrasian allocation mechanism: First, we show that net prices are appropriate—the

indirect effect on the ‘other side’ is priced in, as the price is on the composition of the

platform which all believe they have a right to buy—and outcomes are efficient. Second, we

show how the equilibrium changes—the prices for joining a platform, the size of platforms,

and the resulting agent utilities—as we alter the underlying wealth distribution or the cost

of building a platform. For instance, we show that as we increase the fixed cost of building
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a platform, the relative cost for joining a platform rises the most for the poorest individuals,

thereby increasing inequality in the system. Third, the Walrasian framework has a vastly

different allocation relative to the monopoly framework.

Weyl and White [2016] consider the general equilibrium implications of two-sided mar-

kets with imperfect competition. They provide a new solution concept—Insulated Equi-

librium—to explain how platforms may induce agents to coordinate over which platforms to

join. Our paper focuses on modeling perfect competition with the full observability of an

agent’s type. In contrast to our paper, Weyl and White argue that there remains a poten-

tial for market failure due to an unpriced consumption externality. The key difference in

our papers’ predictions arises from our differing modeling choices. Our paper’s economy is

perfectly competitive, whereas Weyl and White assume an oligopolistic platform economy

where each platform has market power and cannot extract the full consumer surplus. This

oligopolistic competition potentially leads the platforms to charge socially inefficient prices.

In our economy, the platforms are perfectly competitive and earn no rents, removing this

potential source of social inefficiency.1

Indeed, we need to emphasize the limitations of what we are doing and, specifically, what we

are not doing. We do not consider agents to have any pricing power. We do not consider the

problem of establishing new products or platforms in the sense of innovation and entry into

an existing equilibrium outcome and the problem of changing client expectations. Relatedly,

we do not discuss the historical development of platforms or consider current regulatory

restrictions, including well-intended but potentially misguided regulations that may limit

our ideal market design. Nor do we model oligopolistic competition, though we do allow our

platforms to be configured with different compositions of customers so there is clear product

differentiation (just no market power). Finally, we do not allow ever increasing economies of

scale in platform size.

1Within our framework we can also model a monopolist platform sector. In this model, the monopolist will
maximize profits by severely restricting supply and producing a negligible mass of platforms.
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2. Model

There are two types of individuals, merchants (A) and consumers (B).2 There is a continuum

of measure one of each type. There is variation within these types – namely, there are sub-

types of merchants and consumers who differ in their endowment levels, wealth. We index

each agent by (T, s) where T is the type (merchant or consumer) and s is the sub-type. There

are I subtypes of merchants, A (indexed by i), and J subtypes of consumers, B (indexed

by j). By introducing variation in an agent’s wealth, we can analyze how changes in the

economic environment affect both the composition of a platform and an agent’s utility.3

There is a fraction αT,s of each type T and subtype s, and there is a measure of each one

of each type T ,
∑

s αT,s = 1 ∀T ∈ {A,B}. 4 Clearly, the fraction of each subtype αT,s are

arbitrary real numbers on the unit interval, not integers. Each agent has an endowment of

capital, denoted by κT,s > 0. Capital will be the numeraire.

We model utility at a reduced-form level. That is, we assume agents procure utility from be-

ing matched with other agents. Although this assumption is not realistic per se, we presume

the process of being matched with other agents facilitates trade over the platform, and trade

gives final allocations resulting in utility. We do not model that underlying environment ex-

plicitly—and in some ways that makes our model general. Further, we could generalize and

introduce a term for any private benefit the platform provides over and above its matching

service. In short, the utilities we use are to be thought of as indirect.

We only allow non-negative integers of merchants and consumers to join a platform. The

utility of a merchant, A (of any subtype s), matched with NA merchants (including the

merchant herself) and NB consumers is:

UA,s(NA, NB) = UA(NA, NB) =

{
0 if NB = 0[(

NB
NA

)γA
+N εA

B

]
else

2For clarity, we restrict our model to two types, but our model is sufficiently general to accommodate multiple
types.
3Section (6.1) extends the baseline model to allow subtypes to have different preferences.
4We use this assumption for computational ease but it is straightforward to allow different measures of each
type. Additionally, some insights can be drawn from varying agents’ wealth endowments.
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Note that the baseline utility of not being on any platform and being matched with none of

the other type is zero.5 This situation is the “opt-out” or autarky option, and it is always

available.

Symmetrically, for a consumer, B (of any subtype s), it is:

UB,s(NA, NB) = UB(NA, NB) =

{
0 if NA = 0[(

NA
NB

)γB
+N εB

A

]
else

Where {γA, γB, εA, εB}∈ (0, 1)4 are the key parameters.

This utility function exhibits two important features which Ellison and Fudenberg [2003]

highlight:

(1) Market Impact Effects: Each type prefers more of the other type and less of

it’s own

UA(NA, NB + 1)− UA(NA, NB) =
[(NB + 1)γA −NγA

B ]

NγA
A

+ [(NB + 1)εA −NB
εA ] > 0

UA(NA + 1, NB)− UA(NA, NB) =

[(
1

NA + 1

)γA
−
(

1

NA

)γA]
NγA
B < 0

Individuals will compete between agents of their own type, though they prefer more of the

other type. For example, in the general merchant and consumer case, we are presuming that

merchants dislike more merchants, as this situation would lead to greater competition and

possibly reduce the good’s price. Therefore, we are modeling a reduced form specification

for competition between agents of the same type.

(2) Scale effects: An individual prefers larger platforms for a given ratio

- assume τ > 1, therefore:

UA(τNA, τNB)− UA(NA, NB) = (τ − 1)N εA
B > 0

For a given ratio of participants, individuals prefer to be on larger platforms, as such plat-

forms provide more possibilities for trade and may promote economies of agglomeration.

Symmetrically, both effects also apply for the type B utility function.

5This is a natural assumption for the opt-out utility because the lower bound for NA is one (because as soon
as a merchant joins a platform, there must be at least one merchant on the platform), and, if NA is positive,

the limit of UA(NA, NB) as NB goes to zero is zero (limNA≥1,NB→0

(
NB

NA

)γA
+N εA

B = 0).
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The assumption that epsilon is greater than zero might seem to bias us in the direction

of having large platforms, undercutting our results, or make the price taking assumption

unrealistic, but we shall see this does not happen.

In the model, agents buy personal contracts that stipulate the number of merchants and

consumers on the platform.

We denote the contract by dT (NA, NB), where NA and NB are the number of merchants

and consumers, respectively, on the given platform, and T denotes the type of individual

the contract is for—a dummy as it were—indicating whether it is for merchants (A) or

consumers (B). Types are observed, and Type T cannot buy a contract indexed by T ′.

Further, one can think of any individual agent of a given type T and subtype s as allowed

to join only one and only platform. Thus, we can create a function xT,s[dT (NA, NB)] ≥ 0

such that
∑

s xT,s[dT (NA, NB)] = 1, which is an indicator (or, more generally, a probability

distribution, on which in the following) for the assignment of an agent (T, s) to contract

dT (NA, NB).6

The set of all possible contracts for type A, the space in which dA(NA, NB) lies, is denoted

as DA and, similarly, the set of contracts for type B is denoted DB.

The consumption set of type A, s agents can be written as the following:

XA,s =

{
xA,s[dA(NA, NB)] ≥ 0∀dA ∈ DA,

∑
dA∈DA

xA,s[dA(NA, NB)] = 1, xA,s[dB(NA, NB)] = 0 ∀dB ∈ DB

}

The above condition states that type A, s agents can buy any non-negative amount of con-

tract dA ∈ DA, but none of the type B contracts.

Symmetrically the consumption set of type B, s agents can be written as:

XB,s =

{
xB,s[dB(NA, NB)] ≥ 0∀dB ∈ DB,

∑
dB∈DB

xB,s[dB(NA, NB)] = 1, xB,s[dA(NA, NB)] = 0 ∀dA ∈ DA

}

As individuals can join only a single platform, this constraint introduces an indivisibility into

an agent’s consumption space. To overcome this problem we allow individuals to purchase

6In subsection 6.2, we extend the model to allow multihoming (agents can join multiple platforms) by
omitting the requirement that an agent is matched to only one platform (

∑
s xT,s[dT (NA, NB)] = 1).
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mixtures, or probabilities of being assigned to a platform of a certain size including the

opt-out option.7 For example, consider an agent who buys two different contracts: the first

contract assigns the agent to a platform consisting of four merchants and three consumers

with probability one-third, and the second contract assigns the agent to a platform consisting

of three merchants and one consumer with probability two-thirds. The deterministic case,

where an agent buys a contract that matches them with a platform of size (NA, NB) with

certainty, can be seen as a special case. We do not insist that there be mixing in a competitive

equilibrium but it can happen as a special case. For instance, there can be mixing between

a given platform and an opt-out contract when agents are poor because the poor agent has

insufficient wealth to buy fully into a platform.

As a technical assumption, we assume there is a maximal platform of size (NA, NB), and any

platform up to this size can be created. Assuming there is a maximal platform size bounds

the possible set of platforms and hence makes the commodity space finite. This maximal

platform size is for simplicity of our proofs because we can choose NA and NB arbitrarily

large such that this condition does not bind.

The commodity space is thus:

L = R2(NA×NB+1)+1

There are contracts for every possible platform size, in turn indexed by the two types. Thus

as we define the maximal platform size to be (NA, NB) and there is always the opt-out

contract, there are NA × NB + 1 contracts for each type. Because there are two types, we

multiply this number by two to calculate the number of contracts available. Finally, there

is a market for capital, as we describe in the following.8

All contracts dT (NA, NB) are priced in units of the capital good and the type T price for

contract dT (NA, NB) is denoted as pT [dT (NA, NB)] for types A and B (where T ∈ {A,B}).

7A similar modeling approach is used in Prescott and Townsend [1984], Prescott and Townsend [2005],
Pawasutipaisit [2010].
8For instance, assume NA and NB are equal to 2. Then for type A agents there would be five possible
contracts to join a platform. There are platforms of size and composition (NA, NB): (1,0) [opt-out contract],
(1,1), (2,1), (1,2) and (2,2). Similarly for type B agents, the agents could join platforms of composition
(NA,NB): (0,1) [opt-out contract], (1,1), (2,1), (1,2) and (2,2). Finally, agents have their capital endowment,
κ. Therefore, in total there area eleven contracts.



THE ECONOMICS OF PLATFORMS IN A WALRASIAN FRAMEWORK 12

2.1. Agent’s Problem. In summary, agent T, s takes prices pT [dT (NA, NB)] ∀dT ∈ DT as

given and solves the maximization problem:

max
xT,s∈XT,s

∑
dT (NA,NB)

xT,s[dT (NA, NB)]UT [dT (NA, NB)](1)

s.t.
∑

dT (NA,NB)

xT,s[dT (NA, NB)]pT [dT (NA, NB)] ≤ κT,s(2)

∑
dT (NA,NB)

xT,s[dT (NA, NB)] = 1(3)

where each type of individual has an endowment of κT,s of capital and the price of capital is

normalized to one—that is, capital is the numeraire.

Equation (1) is the agent’s expected utility from the assignment problem. Equation (2) is the

agent’s budget constraint. Equation (3) is the agent’s matching constraint, which requires

the agent to join a platform or opt-out.9

Figure 1 illustrates the agent’s maximization problem. The green dots represent the utility

and price (recall that we have normalized the price of the capital good to one) for each degen-

erate platform choice (that is, when xT,s[dT (NA, NB)] = 1), the dashed blue line represents

the agent’s hypothetical budget constraint, κT,s, and the dashed green area represents the

set of points that satisfy the agent’s matching constraint (inequality (3). In this example,

the agent’s optimal choice and resultant utility is represented by the red dot.

2.2. Platforms. We assume there are intermediaries or marketmakers who create platforms

and sell contracts for each type to join platforms. As will be evident, there are constant

returns to scale for the intermediaries, so for simplicity we can envision that just one mar-

ketmaker is needed in equilibrium. We denote yA[dA(NA, NB)], as the number of contracts

produced for type A of platform size and composition (NA, NB) and yB[dB(NA, NB)] as the

number of contracts produced for type B of platform size and composition (NA, NB). These

are counting measures and there is nothing random. Further, we denote the number of plat-

forms of size and composition (NA, NB) as y(NA, NB). Thus NA× y(NA, NB) is the number

of type A’s in total on the type of platform counted as y(NA, NB). Similarly, NB×y(NA, NB)

9Because an agent can join a platform that is only populated by that agent (autarky or a singleton platform),
this matching constraint essentially requires agents to join at most one platform in equilibrium.
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Figure 1. The agent’s maximization problem

Utility

Price

Degenerate points

Set of points that satisfy 

Agent’s budget constraint

Agent’s optimal choice  

௦,்ߢ

is the number of type B’s in total on the type of platform counted as y(NA, NB). In turn,

each of these must equal the numbers yA[dA(NA, NB)] and yB[dB(NA, NB)] respectively, as

defined earlier.

The intermediary must satisfy the following matching constraint:

(4)
yA[dA(NA, NB)]

NA

=
yB[dB(NA, NB)]

NB

= y(NA, NB) ∀dA ∈ DA,∀dB ∈ DB

In other words, this constraint states that the number of platforms created for type A of

size and composition (NA, NB), relative to the number of platforms created for type B of

the same size and composition (NA, NB) must equal the relative number of type B to the
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number of type A on the platform.10 Also, all of the numbers dealing with the number of

platforms are on a continuum and so do not have to take on integer values. This is because

the mathematics takes into account the continuum measure of each type of mass 1.

For example, if we multiply each type by 100, we will have larger numbers for each type

but the same proportions. Now consider if 0.1 platforms are created that match three

merchants and two consumers, a platform of composition (3, 2). This matching would require

0.1× 3 = 0.3 merchant contracts and 0.1× 2 = 0.2 consumer contracts. We could multiply

this figure by the common factor of 100 to have 10 platforms each with the composition

(3, 2) in total, hence with 30 type As and 20 type Bs in total. If the fraction of platforms

created were 0.135 and we used 100 as the base, we would end up with 13.5 platforms, but

multiplying by 1000, and we are back to integers, with 135 platforms, and so on. The point

is that the counting measures y are a more general way to do the math and do not require

integers. Also, any single individual, or any single platform, for that matter, has zero mass.

A platform of size (NA, NB) requires the following amount of capital:

C(NA, NB) =

{
0 if NA = 0 or NB = 0

cANA + cBNB + cNANB +K else

The capital requirement of a singleton or opt-out platform is normalized to zero, as it costs

nothing to produce and is always available. The amount of capital required for a platform

has a positive marginal cost for an extra agent on each side of the platform (captured by

cA and cB) and for the multiple of agents on both sides (captured by the interaction term

c). Additionally, there can be some positive fixed cost, K, in creating a platform. For a

more flexible specification we allow cA and cB to be different. We assume that cA, cB, c

∈ (0,∞) and K ∈ [0,∞). We require cA, cB and c to be strictly larger than zero; this

assumption ensures we can bound the size of the equilibrium platforms. In particular, with

c strictly greater than zero, the cost of doubling the size of any given platform rises more

10For instance, assume that there are 0.1 platforms of size and composition (NA = 2, NB = 1) (that is,
y(2, 1) equals 0.1). Then, to ensure there are the appropriate number of type As to type Bs on the platform,
we require that the number of contracts for type of A for platform of composition (2,1) to be equal to 0.2
(that is, yA[dA(2, 1)] equals 0.2), and that the number of contracts for type B for platform of composition
(2,1) to be equal to 0.1 (that is, yB [dB(2, 1)] equals 0.1).
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than proportionally (excluding the fixed cost)—that is, there are decreasing returns to scale

in this technology after some size.11

We denote the amount of capital input purchased by the intermediary as yκ – this amount has

to be sufficient to build the proposed platforms, as counted in y(NA, NB). Recall again that

there can be a variety of platforms. Thus we can write the intermediary’s capital constraint

as the following:

(5)
∑
NA,NB

y(NA, NB)[C(NA, NB)] ≤ yκ

Hence, the intermediary’s production set is:

Y =
{

(y, yA, yB, yκ) ∈ R2(NA×NB+1)+1| (4) and (5) are satisfied
}

It is a convex cone as in McKenzie [1959]. Note the choice objects are the y(NA, NB)’s, while

the cost function enters only as a weighting coefficient. Hence there are constant returns to

scale in the cost function as in constraint (5).

We explore the role of market power in platform supply and agent welfare by modeling two

different environments: First, we model a price-taking intermediary, and second, we model

a price-setting intermediary who has market power and who can set both the quantity and

price of each platform contract.

2.3. Competition: price-taking intermediary. The intermediary takes the Walrasian

prices pT [dT (NA, NB)] ∀dT ∈ DT , T ∈ {A,B} as given parametrically and maximizes profits

by constructing platforms and selling type-specific matchings (we again normalize the price

of capital to be one):

11Recall that the production of platform of a certain size and composition has constant returns to scale (for
example, creating ten platforms of size (NA, NB) will require ten times the amount of capital as creating
one platform of size (NA, NB) and the stated cost function shows that creating a larger platform (that is, a
platform with more individuals on that platform) has decreasing returns to scale after some size (due to the
strictly positive coefficient c).
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(6)

π = max
y,yA,yB ,yκ∈Y

∑
NA,NB

{pA[dA(NA, NB)]× yA[dA(NA, NB)] + pB[dB(NA, NB)]× yB[dB(NA, NB)]}−yκ

Equation (6) states that the intermediary maximizes how many platforms of a given size

(NA, NB) to produce given the prices for each position in the platform. The intermediary’s

profits are equal to the number of contracts it constructs multiplied by their respective price

minus the cost of the capital input.

The intermediary’s Lagrange problem is:

L(yA, yB, y, yκ, µ) =
∑
NA,NB

{pA[dA(NA, NB)]× yA[dA(NA, NB)] + pB[dB(NA, NB)]× yB[dB(NA, NB)]}

−yκ +
∑
NA,NB

[
µANA,,NB

(
yA[dA(NA, NB)]

NA

− y(NA, NB)

)]

+
∑
NA,NB

[
µBNA,,NB

(
yB[dB(NA, NB)]

NB

− y(NA, NB)

)]
+µk(

∑
NA,NB

y(NA, NB)[C(NA, NB)]− yκ)

where µANA,NBand µBNA,NB are the Lagrange multipliers for the intermediary’s matching con-

straints for a platform of size (NA, NB) and for types A and B respectively (equation (4)).

µk is the Lagrange multiplier for the intermediary’s capital constraint (equation (5)).

Solving the intermediary’s Lagrange problem gives the following first order condition for

creating a platform of size y(NA, NB):

(7) C(NA, NB) ≥ pA[dA(NA, NB)] ∗NA + pB[dB(NA, NB)] ∗NB

where equation (7) holds with equality if there is a positive number of active platforms of

that size (NA, NB) in equilibrium. If equation (7) is a strict inequality then no such platform

exists in equilibrium. Notice this natural condition requires that the payments received
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by the platform must cover all of the platform’s costs. The payments come from type-

specific prices and in that sense, the interchange fee in the credit card example is emerging

endogenously. Also note when the inequality in equation (7) is strict, such platforms of that

type do not exist. One could raise the price marginally; however, this increase would only

discourage demand and still would not cover the supply side’s costs. The market for inactive

platforms is thus clearing at a zero quantity with the minimum price the intermediary is

willing to accept, which is greater than the maximum sum of prices the household types are

willing to pay.

2.3.1. Competition: Market Clearing. For market clearing we require the following condi-

tions to hold

∑
s

αT,sxT,s[dT (NA, NB)] = yT (dT (NA, NB) ∀NA, NB, T ∈ {A,B}(8) ∑
T,s

αT,sκT,s = yκ(9)

Equation (8) ensures that the (decentralized) amount of demand for each contract for each

type equals the (decentralized) supply of that contract. Equation (9) states that the total

endowment of capital (the supply) must equal the amount of capital used by the intermediary.

2.3.2. Competitive Equilibrium. Let us define x as the vector of contracts bought xT,s[dT (NA, NB)]

for all subtypes (T, s), then a competitive equilibrium in this economy is (p, x, {y, yA, yB, yκ})
such that for given prices pT [dT (NA, NB)]:

(1) The allocation {xT,s[dT (NA, NB)]} solves the agent’s maximization problem [that is,

xT,s[dT (NA, NB)] solves equation (1) subject to equations (2 and 3)].

(2) The allocation {y, yA, yB, yκ} solves the platform’s maximization problem [that is,

{y, yA, yB, yκ} solves equation (6) subject to {y, yA, yB, yκ} ∈ Y ].

(3) The market clearing conditions hold [equations (8) and (9) hold].

In equilibrium, the pricing mechanism will determine the size and number of each platform

and subsequently the relative proportions of merchants and consumers on each platform.
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2.4. Monopoly: price-setting intermediary. In contrast to section (2.3), we model the

intermediary as a price-setting monopolist, who sets prices pT [dT (NA, NB)] ∀dT ∈ DT , T ∈
{A,B} and quantities yT (dT (NA, NB) ∀dT ∈ DT , T ∈ {A,B} to maximize profits subject

to aggregate demand equals aggregate supply, where aggregate demand is derived from the

consumer’s problem.

(10)

π = max
p,yA,yB ,yκ∈L×Y

∑
NA,NB

{pA[dA(NA, NB)]× yA[dA(NA, NB)] + pB[dB(NA, NB)]× yB[dB(NA, NB)]}−yκ

(11) s.t.
∑
s

αT,sxT,s[dT (NA, NB)] ≥ yT (dT (NA, NB) ∀NA, NB, T ∈ {A,B}

Equation (10) states that the intermediary problem maximizes how many platforms of a

given size to produce and the price to charge each side of the market (pA[dA(NA, NB)] and

pB[dB(NA, NB)]) for each position in the platform subject to quantity supplied being less

than or equal to total demand for each contract.

2.4.1. Monopoly Equilibrium. Then a monopoly equilibrium in this economy is (p, x, {y, yA, yB, yκ})
such that:

(1) The allocation {xT,s[dT (NA, NB)]} solves the agent’s maximization problem [that is,

xT,s[dT (NA, NB)] solves equation (1) subject to equations (2 and 3)].

(2) The allocation {y, yA, yB, yκ} and prices p solves the platform’s maximization problem

[that is, (p{y, yA, yB, yκ}) solves equation (10) subject to (p{y, yA, yB, yκ}) ∈ L × Y
and equation (11)].

3. Social Planner’s Problem

First, we set up the social planner’s problem and determine the set of all Pareto optimal

contracts. We show (i) a competitive equilibrium is Pareto optimal, (ii) any Pareto optimal

allocation can be achieved with lump-sum transfers and taxes among agents and (iii) there

exists a competitive equilibrium. These results have two important implications: (i) the de-

centralized problem is Pareto optimal, and (ii) when solving for the competitive equilibrium,

we can use the simpler social planner’s problem to compute the allocation. Consequently, we
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can use the Lagrange multipliers to impute the competitive equilibrium prices and wealth

associated with that allocation.

The social planner’s welfare maximizing problem with Pareto weights λA,s and λB,s for types

(A, s) and (B, s), respectively, is

max
x≥0,y≥0

∑
s

λA,s

 ∑
dA(NA,NB)

αA,sxA,s[dA(NA, NB)]UA(NA, NB)


+
∑
s

λB,s

 ∑
dB(NA,NB)

αB,sxB,s[dB(NA, NB)]UB(NA, NB)


s.t.

∑
dT (NA,NB)

xT,s[dT (NA, NB)] = 1 ∀T, s(12)

∑
s

αT,sxT,s[dT (NA, NB)] = y(NA, NB)×NT ∀dT ∈ DT ,∀T ∈ {A,B}(13) ∑
NA,NB

y(NA, NB)[C(NA, NB)] ≤
∑
T,s

αT,sκT,s(14)

Equation (12) ensures that each individual is assigned to a platform, equation (13) ensures

that the total purchase of contracts equals the number of contracts produced, and equation

(14) ensures the total number of contracts produced is resource feasible.

3.1. Dual. The Pareto problem can also be written in terms of its dual equivalent:

min
p

∑
T,s

(pT,s + pκαT,sκT,s)

s.t. pT,s + αT,spT [dT (NA, NB)] ≥ λT,sαT,sUT (NA, NB) ∀i,∀T,∀(NA, NB)(15)

pκC(NA, NB)− {pA[dA(NA, NB)]×NA + pB[dB(NA, NB)]×NB} ≥ 0 ∀(NA, NB)

In this formulation pT,s, pT [dT [NA, NB)], and pκ are the Lagrangian multipliers associated

with the participation constraint for the agent of type T, s (equation 12), the Lagrangian

multiplier associated with the matching constraint for type T for all platforms (equation 13),
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and the Lagrangian multiplier associated with the economy’s resource constraint (equation

14), respectively.

The dual minimizes the aggregate cost of the economy (in terms of prices of each type and

total capital) such that each type of agent receives a given level of Pareto weighted utility.

Whereas, the primal problem maximizes the Pareto weighted expected utility of each type

subject to the matching and resource constraints.

The Pareto problem is well defined in both the primal and dual form therefore, by the “strong

duality property”12 there must exist an optimal solution (p∗, x∗, y∗) such that:

∑
T,s

λT,s

 ∑
dT (NA,NB)

αT,sx
∗
T,s[dT (NA, NB)]UT (NA, NB)

 =
∑
T,s

αT,s(p
∗
T,s + p∗κκT,s)

In the proofs of going between the Pareto allocation and competitive equilibrium we will

assume that individuals are non-satiated, but this assumption is not crucial because we can

always expand the commodity space such that this assumption holds.

The following theorems show that for all Pareto weights, there is a competitive equilibrium

that replicates the social planner’s problem.

Theorem 1. If all agents are non-satiated, a competitive equilibrium (p∗, x∗, y∗) is a Pareto

optimal allocation (x∗, y∗). [First Welfare Theorem]

Proof follows from Prescott and Townsend [2005].

Theorem 2. Any Pareto optimal allocation (x∗, y∗) can be achieved through a competitive

equilibrium with transfers between agents subject to there being a cheaper point for all agents

and agents are non-satiated.

The proof relies on using the Pareto weights and the dual variables from the planner problem,

to claim the Pareto optimal allocation (x∗, y∗) can be supported as a competitive equilibrium

with transfers between agents. The proof follows from Prescott and Townsend [2005].

Theorem 3. There exists a competitive equilibrium.

12See Bradley et al. [1977] pages 142-143 for more details.
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To provide a more general proof of existence of a competitive equilibrium, where the distri-

bution of wealth across individuals is taken as given but there is no restriction on the mass

of agents requires the use of a fixed point theorem. Negishi [1960] alters the Pareto weights

in the economy such that the budget constraints binds for all agents at the fixed point. The

proof follows from Prescott and Townsend [2005].

4. Results

4.1. How does market power affect the allocation of resources and rent? In section

(3) we showed that the competitive equilibrium is a Pareto optimal allocation. Here we will

analyze the monopoly equilibrium. The main difference between the competitive equilibrium

and the monopoly equilibrium is the number and type of platforms created. In particular, the

price-setting intermediary in the monopoly equilibrium will restrict the supply of platforms

to maximize his rent.

Theorem 4. The price-setting intermediary in the monopoly equilibrium will capture all the

rent in the economy and will produce fewer slots than the price-taking intermediary in the

competitive equilibrium.

The proof shows that in the monopoly equilibrium, the intermediary will use its price set-

ting power to charge higher prices (than the competitive equilibrium), thereby reducing the

number of platforms created in equilibrium. Moreover, in our environment the price-setting

intermediary can set prices in such a way that it captures the whole rent. In constrast, in the

competitive equilibrium, the prices to join a platform adjust such that in equilibrium, the

economy’s total resources will be fully utilized to build platforms. The full proof is provided

in section (8.1) in the Appendix.

Overall, market structure changes both the allocation of rents and the allocation of resources

within the economy. In particular, competition ensures that the intermediary makes no

profits, and that surplus is accrued by the agents. Further, competition ensures that all the

resources in the economy are used to produce platforms.

4.2. Prices for joining a platform in a competitive equilibrium. To better under-

stand how prices are determined in the competitive equilibrium, we analyze the agent’s

maximization problem in more detail. The agents’ maximization problem can be written
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as the following Lagrange maximization problem. We can use this problem to show which

contracts the agent of type T buys.

L =
∑
dT

xT,s[dT (NA, NB)]UT [dT (NA, NB)]− µWT,s

(∑
dT

xT,s[dT (NA, NB)]pT [dT (NA, NB)]− κT,s

)

−µPT,s

(∑
dT

xT,s[dT (NA, NB)]− 1

)

The first order condition for Type T and contract xT,s[dT (NA, NB)] is the following:

(16) UT (NA, NB)− µPT,s − µWT,s ∗ pT [dT (NA, NB)] ≤ 0

Where µPT,s is the Lagrange multiplier associated with the individual being assigned to some

platform, and µWT,s is the Lagrange multiplier associated with the agent’s budget constraint.

Furthermore, for any platform the agent buys with positive probability (xT,s[dT (NA, NB)] >

0 ), the equation will hold with equality. If the left-hand side of equation (16) is strictly less

than zero, that agent will not purchase that contract.

Let us consider what equation (16) implies. Consider an agent of type T who purchases with

positive probabilities in two different contracts, dT (NA, NB) and dT (N ′A, N
′
B). Let us define

the variable ∆U ≡ UT (NA, NB)−UT (N ′A, N
′
B) and ∆p ≡ pT [dT (NA, NB)]− pT [dT (N ′A, N

′
B)],

then we can state:

∆U = µWT,s ∗∆p

Therefore, if an agent buys two contracts with positive probability, the difference in utility

between the two contracts will be a constant multiplied by the difference in price.

In general, an agent is unwilling to pay proportionally more for a contract that confers pro-

portionally more utility (that is, ∆U
U
6= ∆p′

p
); the agent is only willing to pay proportionally

more when the individual’s matching constraint is not binding (that is, µPT,s = 0). Intu-

itively, when an individual’s matching constraint binds, this individual would prefer to join

more platforms but is constrained by the ability to join only one platform. In turn, the

limitation on the number of platforms to join ensures the percentage increase in the indi-

vidual’s willingness to pay to join a platform that confers greater utility will be more than
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the percentage change in utility. Intuitively, both platforms require the same assignment of

type component, but one platform confers greater utility.

Figure 2 demonstrates this result. If the agent buys bundle “B”, the agent’s utility per dollar

is lower than if the agent buys bundle “A”–so why does the agent not just buy more of bundle

A? The agent would like to buy more of bundle “A” but is constrained by only joining one

platform (the matching constraint in the agent’s maximization problem, inequality 3).

Figure 2. Agent’s optimal bundle choice
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Section 8.2 (in the Appendix) explains in greater detail how we solve the social planner’s

problem and solve for the prices paid by each agent in equilibrium.

5. Competitive Equilibrium Examples

In a general equilibrium framework we can analyze how both the composition of platforms

and the resulting utilities change as we alter parameters. First, as a useful benchmark we
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examine an equilibrium where we have symmetric parameters for both sides of the mar-

ket—that is, the same costs, preferences, and wealth. Second, we provide an example that

varies the wealth within and across types. We show that even with symmetric preferences,

a subtype with lower wealth may be better off than an alternative subtype.

Third, we are interested how the equilibrium—and, subsequently, agents’ utilities—change

as we redistribute wealth within our economy. Fourth, we examine how the equilibrium

utilities change as we alter the Pareto weights. We show that even if an agent’s relative

Pareto weight falls, their equilibrium utility can actually rise, depending on the general

equilibrium matching effects.

Fifth, given that the cost of producing platforms changes over time (for instance because

of technological improvement), we demonstrate how the equilibrium utilities change as we

alter the fixed cost of producing platforms. We show that increasing fixed costs leads to

heterogeneous effects and, potentially, to increases in inequality.

5.1. Example 1: Symmetric wealth, preferences, population proportions, and cost

parameters: competitive equilibrium. Our initial example has two subtypes for each

type and is symmetric – there are equal fractions of each type (αA1 = αA2 = αB1 = αB2),

each subtype has the same Pareto weight (λA1 = λA2 = λB1 = λB2), the cost function

is the same for both types (cA = cB) and the utility functions’ parameters are the same

(γA = γB and εA = εB) .13 In this initial example, although there are nominally two

subtypes in the notation, they are in fact identical, and therefore there is no variation by

subtype.

In this equilibrium, only one type of platform is created. The measure of that platform is 0.5,

which makes sense, as that number multiplied by the number of each type on the platform,

2, delivers the measure of each type, unity. All users pay a price of two units of capital to

join a platform that matches them with two users of the other type, and one more user of

their own type, so the total for each type is 2 and the total size of the platform is 4.

5.2. Example 2: Different wealth but otherwise same preferences, population

proportions and cost parameters as earlier: competitive equilibrium. Our second

13The parameter values are:
αA1 = αA2 = αB1 = αB2 = 1

2 ; cA = cB = c = 1, K = 0; γA = γB = εA = εB = 1
2

λA1 = λA2 = λB1 = λB2 = 1
4
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Table 1. Equilibrium platforms and user utility for Example 1

Equilibrium platforms

Platform Size Number of
Platforms
Created

Cost of
Production

(NA, NB) y(NA, NB) C(NA, NB)

(2,2) 0.5 8

Equilibrium user utility and platform choice

Type Wealth Platform Joined Price of Joining Pr(joining) Utility on Platform
(T, s) (κT,s) (NA, NB) p(dT [NA, NB]) xT,s(dT [NA, NB]) UT (NA, NB)

A,1 2 (2,2) 2 1 2.41
A,2 2 (2,2) 2 1 2.41
B,1 2 (2,2) 2 1 2.41
B,2 2 (2,2) 2 1 2.41

example varies wealth both within and across types but otherwise keeps all parameters

and demographics the same. To improve intuition, let us consider a payment platform that

connects merchants to consumers. There are two subtypes of merchants, Small (A, 1) and Big

(A, 2), with varying wealth that is increasing in size. and two subtypes of consumers, Rural

(B, 1) and Urban (B, 2) with varying wealth that is increasing in urbanization. Platforms

are nationwide. Each consumer would prefer to be on a platform with more merchants (more

advantageous terms) and fewer consumers (less advantageous terms). Similarly, merchants

want many consumers to use the same platform but would like fewer rival merchants.

There are equal fractions of each type (αA1 = αA2 = αB1 = αB2), the cost function is

the same for both types (cA = cB), and the utility functions’ parameters are the same

(γA = γB and εA = εB); however, the agents vary in wealth.14

In this equilibrium, two different types of platforms are created. One type of platform

is larger than the other, of size 5, and is populated with relatively more merchants than

consumers. Its existence is due to the richer urban consumers—the wealthiest group in

14The parameter values are:
αA1 = αA2 = αB1 = αB2 = 1

2 ; cA = cB = c = 1, K = 0; γA = γB = εA = εB = 1
2
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Table 2. Equilibrium platforms and user utility for Example 2

Equilibrium platforms

Platform Size Number of
Platforms
Created

Cost of
Production

(NA, NB) y(NA, NB) C(NA, NB)

(3,2) 0.25 11
(1,2) 0.25 5

Equilibrium user utility and platform choice

Type Wealth Platform
Joined

Price of
Joining

Pr(joining) Platform
Utility

Expected
Utility

T, s κT,s (NA, NB) p(dT [NA, NB]) xT,s(dT [NA, NB]) UT (NA, NB)

Merchant
Small (A,1) 1.37 (3,2) 1.37 1.0 2.23 2.23

Big (A,2) 1.64
(3,2) 1.37 0.5 2.23

2.52
(1,2) 1.91 0.5 2.80

Consumer
Rural (B,1) 1.54 (1,2) 1.54 1.0 1.70 1.70

Urban (B,2) 3.45 (3,2) 3.54 1.0 2.96 2.96

the entire population. Urban consumers obtain the highest utility, as they join platforms

that are bigger and have a more favorable ratio of merchants to consumers. The poorer

rural consumers join smaller platforms, of size 3; these platforms are populated with a less

favorable ratio of merchants to consumers causing lower utility for rural consumers (and

lower prices for consumers to join that platform). Thus, the poor consumers are absorbing

the population imbalance created by the aforementioned catering to the richer consumers.

The urban consumers, rural consumers, and the small merchants all buy contracts, where

they are assigned to a particular platform with probability one. However, the big merchants

buy a mixture of probabilities in two different platforms; 50 percent are allocated to the

platforms of size (3, 2), and 50 percent are allocated to the platforms of size (1, 2). The
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respective prices for these two different contracts are 1.37 and 1.91. Note that buying the

platform (1,2) for big merchants costs 1.91, which is beyond their budget of 1.64.

The cost of the platform is primarily borne by the type that receives the most utility from

the platform (here the consumers); specifically, consumers pay 63 percent of the cost of

making the platforms of size (3, 2).15 Yet, consumers are only 40 percent of that platform’s

population.

Further, rural consumers (B,1) are wealthier than small merchants (A,1), yet they are worse

off. Again, urban consumers (B,2) are much richer than the other participants; hence, they

are able to bear the burden of larger platforms. Because the urban consumers are relatively

rich and want to join platforms populated with merchants this allows small merchants (A,1)

to be compensated by contributing less. Another way to look at this distribution of costs is

that the merchants are in scarcer supply (because consumers are so much wealthier; average

consumer wealth is 2.5, and average merchant wealth is only 1.5), yet they need to participate

equally on platforms, on average. Therefore, the merchants’ price schedule is lower than the

consumers’ price schedule. Finally, note that on the platform (1,2), consumers pay similar

amounts to join as merchants—even though merchants get more utility. Consumers are 67

percent of the platform yet contribute 62 percent of the platform’s costs.16

5.3. How does the competitive equilibrium change as we redistribute endow-

ments? If we redistribute wealth in our economy, this redistribution will change the relative

demand for merchants and consumers and subsequently change the relative prices to join

a given platform. To examine the general equilibrium effects of redistributing wealth, we

construct two placebo interventions that reallocate wealth within our economy while holding

the total resources constant.

Figure (3) uses the same cost and preferences as in the previous examples but varies agents’

wealth. The left panel shows the effects on the utility of (A, 1) and (B, 2) from redistributing

wealth across types, in particular from (A, 2) to (B, 1)—that is, κA,2 + κB,1 ≈ 2.4.17 The

152 consumers pay 3.45 units of capital each and the 3 merchants pay 1.37 units each. Therefore, consumers
pay 6.9 units to join the platform out of the 11 units of capital required to produce the platform.
16Recall that the cost parameters cA = cB therefore, the asymmetric prices and allocations are solely driven
by agents’ different capital endowments.
17We solve the model using the Pareto problem and then impute the wealth and prices which replicate the
same allocation. We simulate 2880 equilibria for different Pareto weights, and then collect only the equilibria
in which 0.51 < κA,1 < 0.59 and 1.01 < κB,2 < 1.19. We then ‘join up’ all the points to plot a smooth curve.
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right panel shows the effects on the utility of (A, 1) and (A, 2) from redistributing wealth

within a type, in particular between (B, 1) and (B, 2).18

Recall our payment platform example that connects merchants to consumers. There are

two subtypes of merchants, Small (A, 1) and Big (A, 2), and two subtypes of consumers,

Rural (B, 1) and Urban (B, 2). As we redistribute wealth from big merchants (κA,2) to rural

consumers (κB,1), again across types, the utility of urban consumers (B, 2) falls (holding

both urban consumer’s wealth (κB,2) and small merchants’ wealth (κA,1) constant). As we

increase rural consumers’ wealth (κB,1), the demand to join platforms with merchants rises.

Subsequently the price for consumers to join platforms for a given number of merchants will

also rise. Therefore, because urban consumers’ wealth (κB,2) is a constant and they now

face higher prices, their utility must fall. We help the subtype receiving more wealth (in

this case B,1) at the expense of the other subtype in the same group (B,2) and likewise

hurt the subtype losing wealth (A,2) and help the other subtype in the same group (A,1).

Symmetrically, a similar result holds when we increase the wealth of small merchants, and

decrease the wealth of one of the consumer types, on big merchants’ utility.

Further (in the right-panel of figure 3), we consider how the equilibrium changes as we

adjust the endowments within a type (consumers) and hold the endowments of the other

types (merchants) fixed. There is no effect on merchants’ utilities because any reduction in

purchasing power by one of the consumer subtypes is compensated by an equal change in

the other slightly richer consumer subtype.19

5.4. How does the competitive equilibrium change as we alter the Pareto weights?

We can also consider how the equilibrium changes as we adjust the Pareto weights20 on only

one subtype (B, 2).

18We solve the model using the Pareto problem and then impute the wealth and prices which replicate
the same allocation. We simulate 2880 equilibria for different Pareto weights, and then collected only the
equilibria in which 0.51 < κA,1 < 0.59 and 1.01 < κA,2 < 1.1. We are approximately holding the endowment
of (A, 1) and (A, 2) constant.
19There is a tiny change in the utility of (A, 2) because of the discrete nature of the possible platform
combinations and the changes in the platforms type (B) can purchase.
20The parameter values are:
αA1 = αA2 = αB1 = αB2 = 1

2 ; cA = cB = c = 1,K = 0 ;γA = γB = εA = εB = 1
2

λA1 = 1.01−x
3 , λA2 = 0.99−x

3 , λB1 = 1−x
3 , λB2 = x; We introduce a tiny wedge between (A, 1) and (A, 2) to

highlight the effects on a favored subtype.
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Figure 3. Redistributing wealth across- and within-agent type
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Figure (4) demonstrates (for given parameters) how the resulting utilities change as the

Pareto weight for type (B, 2) increases. First, it is clear and intuitive the utility of (B, 2)

monotonically weakly increases with their respective Pareto weight. This is a general result.

As figure (4) shows, type (B, 1) is clearly disadvantaged. This is a general result and follows

from the utility of subtype (B, 2) rising.

Recall our merchant and consumer example from before. If we increase the Pareto weight

on urban consumers (λB,2), the allocation will match them in both larger platforms and

with more merchants. This Pareto weight change has two effects in equilibrium: First, there

are fewer resources left for the rural consumers, and second, there are fewer merchants left

unmatched.

The story is more complicated for the merchants. An increase in the urban consumers’ Pareto

weight can lead to lower or higher utility for merchants. One of the merchants subtypes will

always be made worse off (A, 2) by the rise in (λB,2) because some platforms are composed

of relatively more merchants, favoring consumers on those platforms.
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Figure 4. How does the utility for each subtype change as we alter the Pareto
weight (λ) for Urban Consumers (B,2)?
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As seen in figure (4), it is possible for one of the merchant subtypes (A, 1) to be made

better off—even as their relative Pareto weight falls (as the Pareto weight for B,2 increases

from 0.3 to 0.35). This result occurs because the most favored consumer subtype (urban)

is matched to proportionally more merchants as λB,2 increases, and so the proportion of

merchants to consumers remaining declines. That is, not only do the relative Pareto weights

for the small merchants fall, but the relative Pareto weights for the rural consumers (B,1)

also fall, which means rural consumers may be matched on platforms with an unfavorable

ratio of merchants. Hence, those merchants who are not matched with urban consumers

may be matched at favorable ratios of consumers to merchants, increasing their utility.

5.5. How does the competitive equilibrium change as we alter the costs of build-

ing platforms? A further important consideration is how the equilibrium changes as we

adjust costs; for instance, technological innovations may decrease the costs of creating a plat-

form. Figure (5) shows how the equilibrium changes as the fixed cost of building a platform
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changes.21 As one would expect for a given distribution of wealth, as the fixed cost rises

utility falls. However, interestingly, the distribution of utility also changes. Figure (5) shows

that the richest subtype (A, 2) is barely affected by the rise in platform costs. In contrast,

the poorest subtype’s utility, (A, 1)’s utility, falls about 50 percent as we increase the fixed

cost of building a platform from 0.2 units of capital to 2 units of capital. The poorest agents

are most adversely affected by increasing platforms’ fixed costs.

Figure 5. How does the utility for each subtype change as we alter the fixed
cost of building a platform?
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For larger fixed costs of producing a platform, the distribution becomes more dispersed, and

inequality between different subtypes becomes more pronounced. To gain intuition for this

result, recall our interpretation that agents are endowed with two assets: labor and capital.

As we increase the costs of producing platforms of a given size, the relative value of capital

21The economy’s parameters are αA1 = αA2 = αB1 = αB2 = 1
2 ; cA = cB = c = 1 ;γA = γB = εA = εB = 1

2 ;
κA1 = 0.5, κA2 = 1.5, κB1 = 0.8, κB2 = 1.1. For computational simplicity, we allow the equilibrium wealth
levels to be close to the desired wealth levels (κA1 = 0.5, κA2 = 1.5, κB1 = 0.8, κB2 = 1.1).We only plot
the equilibrium utilities for those equilibria such that the maximum difference between the desired wealth
endowment and the plotted capital endowment is less than 0.1 units of capital for each subtype.
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to labor becomes larger. Therefore, agents who are endowed with more capital are less hurt

by the rise in costs, leading to greater inequality.

Figure 6. How do the platform characteristics vary as we alter the fixed cost
of building a platform?
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To understand in more detail what happens as fixed costs increase, figure (6) plots the number

of platforms (top left), the average size of the platforms (top right), the total number of slots

(bottom left), and the number of agents in autarky (bottom right) as we change the fixed cost

of building a platform from zero to two units of capital. As the fixed cost rises, the number

of active platforms falls by nearly 50 percent (top-left panel), the average size of platforms

increases by nearly 25 percent (top-right panel), and, on net, participation falls (bottom left

and bottom right panels). That is, the number of agents in autarky, not participating in

platforms in any way, is increasing. The intuition for this result follows from two key effects.
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Figure 7. How does participation by subtype change as the fixed cost of
building a platform rises?
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First, the cost of building platforms of any size rises, hitting the resource constraint and

causing the set of platforms to become smaller. The mass of platforms drops from 0.52 to

0.31 as the fixed cost of building a platform rises from 0 to 2 units of capital (upper left

panel). Second, note that the relative cost per slot increases more for small platforms than

for big platforms, causing larger platforms to be produced in equilibrium. The number of

users per platform rises to 5 (upper-right panel). Again, the net effect is that the number

of available contracts drops to 1.55 (bottom-left panel) and the number of agents in autarky

rises to 0.45 (bottom-left panel).

To see the distributional effect on participation as the fixed cost rises, figure (7) shows

participation by subtype. As the fixed cost rises—and, subsequently, the cost of joining

platforms rises—the poorest subtypes (A,1 and B,1) become less likely to participate, whereas

the richer subtypes (A,2 and B,2) continue to always join a platform.

Do these distributional effects suggest a rationale for regulating prices? No—the equilibrium

outcome is Pareto optimal, so the optimal government intervention would be to introduce
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lump-sum taxation on the rich and transfers to the poor. This transfer of wealth would

increase the utility of the poorest, achieving a more equitable division of utility while main-

taining a Pareto optimal allocation. Alternative interventions would be distorting.

6. Extensions to the model

6.1. How does user heterogeneity in preferences (within type) affect the compet-

itive equilibrium? We have concentrated on all types having the same preferences, but

potentially varying in their wealth endowments. In this subsection, we consider how varying

preferences within type affect the competitive equilibrium.

In our reformulated economy we introduce three new parameters (βT,s1 , βT,s2 , βT,s3 ), which

potentially vary across type (T ) and subtype (s). Further, we had allowed parameters γ, and

ε to vary across types in previous sections, in these future experiments we are varying across

both type and subtype. The merchant (A, i)’s utility function is now:

UA,i(NA, NB) =

{
0 if NA or NB = 0[

βA,i1

(
NB
NA

)γA
+ βA,i2 N

εA,
B + βA,i3

]
else

In particular note that: βA,i1 alters the merchant (A, i)’s utility with respect to the ratio

of consumers and merchants on the platform. βA,i2 alters the merchant (A, i)’s utility with

respect to the size of the platform (holding the ratio of consumers and merchants constant).

Finally, βA,i3 is the merchant (A, i)’s intrinsic value from joining a platform. Therefore, the

introduction of the parameters (βT,s1 , βT,s2 , βT,s3 ) facilitates the comparison of how users who

vary in their preferences alter the resulting equilibrium.22

Symmetrically, consumer (B, j)’s utility function is:

UB,j(NA, NB) =

{
0 if NA or NB = 0[

βB,j1

(
NA
NB

)γA
+ βB,j2 N

εB,
A + βB,j3

]
else

Recalling our prior example describing a payment platform, it is natural to consider that

rural and urban consumers will vary in preferences as well as wealth. For instance, a rural

22Note if βT,s1 = 1, βT,s2 = 1 and βT,s3 = 0 for all types and subtypes, we have the same utility function as
previous sections.
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consumer may both be poor and prefer to be on any platform (high βB,j3 ), whereas the urban

consumer may prefer to have a choice of merchants (higher βB,j1 ).

In contrast, to Armstrong [2006], Weyl and White [2016], who show that heterogeneity

in user preferences leads to market failure, our economy’s competitive equilibrium remains

Pareto efficient. The main difference in our papers’ results is caused by our differing modeling

choices. In Armstrong [2006] and Weyl and White [2016]’s models, each oligopolistic platform

potentially serves users with varying preferences and can only partially extract consumer

surplus, leading to potentially socially inefficient prices, whereas our model has free entry for

platforms (as opposed to exogenously fixing the number of platforms), which (i) allows the

possibility of complete platform differentiation, and (ii) prevents pricing distortions due to

market power. Subsequently, users may separate according to their preferences; for instance,

if there are subtypes who strongly prefer larger platforms, they can join other agents who

strongly prefer larger platforms. Note that once we have converted our economy to a standard

looking Walrasian one, it is less surprising that heterogeneity in preferences is not a source

of problems.

The introduction of consumer heterogeneity in preferences does lead to interesting compar-

ative statics. To understand in greater detail how the differences in preferences affect the

competitive equilibrium, we apply the new utility function to the experiment from section

(5.5).

In figure (8) we plot how the equilibrium utilities (for the new utility function) for each

subtype vary, and, in addition, we alter the fixed cost of building a platform for some given

parameters.23 To introduce differences in user preferences we alter urban consumers’, subtype

(B,2), preferences, while keeping all other subtypes preferences unchanged from the previous

section. We change the urban consumers’ preferences in two ways: (i) urban consumers (B, 2)

strongly prefer to be on a platform with a large number of merchants (βB,21 = 3) relative to

rural consumers (βB,11 = 1) and (ii) urban consumers are relatively indifferent about the size

of the platform (βB,22 = 0.01), whereas rural consumers prefer larger platforms (βB,12 = 1).

23The economy’s parameters are αA1 = αA2 = αB1 = αB2 = 1
2 ; cA = cB = c = 1 ;γA = γB = εA = εB = 1

2 ;
κA1 = 0.7, κA2 = 1.3, κB1 = 1, κB2 = 1.
Further we make urban consumers (B, 2) strongly prefer platforms that have a favorable ratio of consumers

to merchants (βB,21 = 3), be mostly indifferent about the size of the platform (βB,22 = 0.01) and have little

to no benefit from being on a platform (βB,23 = 0.01). For all other types, we maintain the previous utility

function (βA,11 = βA,21 = βB,11 = 1), (βA,12 = βA,22 = βB,12 = 1) and (βA,13 = βA,23 = βB,13 = 0).
For computational simplicity, we allow the equilibrium wealth levels to be close to the desired wealth levels.
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Figure 8. How does the utility for each subtype change as we alter the fixed
cost of building a platform with the new utility function?
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Comparing figure (5) and figure (8), we see that the urban consumers (B,2) are the most

adversely affected by increasing the platform’s fixed cost with the new utility function,

whereas, the other subtypes are significantly less affected.

Intuitively, as the platform’s fixed cost increases, the relative price of smaller platforms

becomes higher. Therefore, the competitive equilibrium is composed of larger platforms but

with a small number of active platforms. Consequently, even though the cost of building

platforms is larger (and, subsequently, the production possibility frontier of the economy

is shrinking), the equilibrium utility of rural consumers and the merchants are relatively

unchanged. The big losers in this experiment are the urban consumers—who relatively

prefer smaller platforms with a higher fraction of merchants. In contrast, the other subtypes

relatively prefer larger platforms and subsequently are less affected by the rise in the fixed

cost.



THE ECONOMICS OF PLATFORMS IN A WALRASIAN FRAMEWORK 37

6.2. Multihoming. Agents may wish to join multiple platforms. For instance, some con-

sumers may prefer to use multiple forms of payment, some companies may prefer to list their

stock on multiple exchanges, or some traders may prefer to trade over many dark pools.

Our framework is sufficiently flexible to allow endogenous multihoming (agents can choose to

join multiple platforms). In previous sections, we restricted individuals to only joining one

platform via our matching constraint,
∑

dT (NA,NB) xT,s[dT (NA, NB)] = 1. We can relax the

matching constraint and yet retain the linear programming nature of the problem. Therefore,

we can model various different forms of multihoming by altering the matching constraint.

For instance, we could require agents to join two platforms (the matching constraint would

be
∑

dT (NA,NB) xT,s[dT (NA, NB)] = 2), a maximum of two platforms (the matching constraint

would be
∑

dT (NA,NB) xT,s[dT (NA, NB)] ≤ 2), or as many platforms as the agent as the agent

can afford (no matching constraint).

Relaxing the matching constraint tends to create smaller, more numerous platforms in equi-

librium. For instance, consider some very rich subtype; with singlehoming (an agent is only

allowed to join a maximum of one platform), the rich subtype would only be able to sponsor

larger or more unequal platforms. With the possibility of joining more than one platform,

the rich subtype could sponsor multiple, smaller platforms, which would lead to a higher

utility (because utility is concave in the number of users of each type) and would generally

be cheaper to produce (to be precise, the cost function for producing platforms exhibits

decreasing returns to scale if there are no fixed costs of platform production; that is, if

K = 0).

A potential shortcoming of our model is that utility is additive in the number of platforms

an agent joins. Therefore, if an agent joins two identical platforms, or even two slots in the

same platform, the agent’s utility would be double the utility from joining only one platform.

7. Conclusion

There are many economic platforms that must cater to multiple, differentiated users who,

in turn, care about who else the platform serves—for instance, credit cards, clearinghouses,

and dark pools, to name but a few (Rochet and Tirole [2003], Ellison and Fudenberg [2003],

Rochet and Tirole [2006], Caillaud and Jullien [2003], Armstrong [2006], Rysman [2009], Weyl

[2010] and Weyl and White [2016]). Over-the-counter markets can also be conceptualized

in this way—who is trading with whom, what is the network architecture, and what is the
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overall degree of direct and indirect connectedness (Allen and Gale [2000], Leitner [2005],

Allen et al. [2012], Acemoglu et al. [2015], Cohen-Cole et al. [2014], Elliott et al. [2014]).

Modeling each of these arrangements is inherently difficult and there is much more to be

done. Here we try to capture each of the applications in a stylized way by building a common

conceptual framework for analysis.

Our paper has four main contributions.

Our first contribution is methodological. As in the prior work on firms as clubs by Prescott

and Townsend [2006], which builds on Koopmans and Beckmann [1957], Sattinger [1993],

Hornstein and Prescott [1993], Prescott and Townsend [1984] Hansen [1985] and Rogerson

[1988], we model an economy with competing platforms in a general equilibrium framework,

with platforms as clubs. Our framework is relatively general; we can analyze an economy with

many (that is, more than two) types of users, who may have heterogeneous preferences; an

economy with heterogeneous costs for servicing different users; or an economy with inherent

differences within a type’s wealth.

Second, our economy incorporates the fact that an individual’s utility may be contingent

on the actions of others—in short an externality. But we show how to internalize interde-

pendencies so that they do not lead to an inefficient equilibrium overall. In particular, the

potential externality is “priced” – in a manner suggested by Arrow [1969]. The competitive

equilibrium is efficient.

Third, we demonstrate how changes in one agent’s wealth (or Pareto weight) have interesting

general equilibrium effects both within- and across-types. The matching in the economy is

endogenous, and the math of assignment has to work out in the general equilibrium. For

instance, consider a payment platform for consumers and merchants where there are two

subtypes of consumers, rural and urban. An increase in the rural consumer’s wealth will

lead to decreases in the urban consumer’s welfare and ambiguous effects on the merchant’s

welfare. This result follows from our assumption that agents do not like to be on a platform

with more of their own type, and therefore as we increase the rural consumer’s wealth, the

rural consumers will prefer platforms with more merchants (and fewer consumers). This

increase in rural consumers’ wealth is also bad for some merchants with low wealth, as they

are now on platforms with fewer consumers and relatively more merchants. Further, the rise

in the rural consumer’s wealth will lead rural consumers to pay a greater fraction of the costs

of being on a platform.
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Fourth, we show how technological progress may reduce inequality. A reduction in the

fixed cost of building a platform reduces the relative value of capital (that is wealth) and

subsequently allows both bigger and more platforms to be created which in turn creates

more demand from the various subtypes. The biggest utility gain is for the lowest wealth

subtypes, who can now join some platforms rather than reside in autarky/non participation.

We should make clear at the same time the limitations of our framework. First, our model is

purely static, and we exclude any coordination failures (Caillaud and Jullien [2003], Ellison

and Fudenberg [2003], Ellison et al. [2004], Ambrus and Argenziano [2009], Lee [2013], Weyl

and White [2016]) and any possibility of innovation in platform design as an intrinsic part

of the model.

Second, no platforms or agents have any pricing power in our model, which as Weyl [2010] and

Weyl and White [2016] show may interact with the agent’s preferences over other agents’

actions to exacerbate or minimize market failures. That literature is concerned with the

allocation of fees. In our Walrasian set up there is no rationale for the regulation of prices

on a platform – if a social planner wishes to implement a more equitable allocation, a social

planner should redistribute wealth and not regulate prices.

Third, the only source of platform differentiation arises from the size and composition of

a platform’s users. Relatedly, we also require the characteristics of agents to be clearly

identified and rules enforced (that is, no adverse selection or false advertising). Some might

find it implausible that the neighborhood composition can be so tightly controlled.

Fourth, we do not allow ever increasing economies of scale in platform size. The existence of

economies of scale remains an empirical matter, depending on the particular platform and

market one has in mind. But for some there is no presumption of ever increasing returns.

Duffie and Zhu [2011] argue there are economies of scales for central counterparty clearing

house (CCP) platforms but O’Hara and Ye [2011] for equity market platforms and Altinkiliç

and Hansen [2000] for capital issuance find contrary evidence.

Our work’s most significant difference to the existing two-sided market literature and the

macro financial literature is our methodology. We concentrate on modeling platforms in

a Walrasian equilibrium with an extended commodity space with complete contracts and

exclusivity. In contrast, the two-sided market literature concentrates on modeling platforms

in a partial equilibrium environment and the macro financial literature typically imposes

incomplete contracts or a particular institutional arrangement or game. Moreover, the two
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sided market literature focuses on how market power and imperfect competition affect plat-

form economics, while our framework considers perfect competition between platforms. The

macro financial literature argues explicitly or implicitly for regulation, to ensure stability,

and sometimes externalities is the rationale. Whereas, we argue for the appropriate design

of markets ex ante and letting rights to trade be priced in equilibrium to remove externalities

(see also Kilenthong and Townsend [2014]). Therefore, our alternative modelling methodol-

ogy—explicitly looking at perfect competition with complete contracts—ensures that we can

analyze different questions (such as whether the outcome is Pareto optimal), and examine

different comparative statics (such as how does inequality change as we increase the fixed

cost of building a platform).

We do not view our paper as the final word. In some sense we are trying to arbitrage across

distinct literatures, bringing some general equilibrium insights to applied problems in indus-

trial organization and market design/ regulation. Ultimately, modeling and understanding

platform economies with more nuanced but important details is crucial. We hope this paper

ignites a discussion on how to model and analyze multiple, competing platforms.
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O. Altinkiliç and R. Hansen. Are there economies of scale in underwriting fees? evidence of

rising external financing costs. Review of Financial Studies, 13(1):191–218, 2000.

A. Ambrus and R. Argenziano. Asymmetric networks in two-sided markets. American

Economic Journal: Microeconomics, 1(1):17–52, 2009.

M. Armstrong. Competition in two-sided markets. The RAND Journal of Economics, 37

(3):668–691, 2006.

K. J. Arrow. The organization of economic activity: issues pertinent to the choice of market

versus nonmarket allocation. The Analysis and Evaluation of Public Expenditure: the PPB

system, 1:59–73, 1969.

W. F. Baxter. Bank interchange of transactional paper: Legal and economic perspectives.

The Journal of Law & Economics, 26(3):541–588, 1983.

S. Bradley, A. Hax, and T. Magnanti. Applied mathematical programming. 1977.

B. Caillaud and B. Jullien. Chicken & egg: Competition among intermediation service

providers. RAND Journal of Economics, pages 309–328, 2003.

E. Cohen-Cole, A. Kirilenko, and E. Patacchini. Trading networks and liquidity provision.

Journal of Financial Economics, 2014.

D. Duffie and H. Zhu. Does a central clearing counterparty reduce counterparty risk? Review

of Asset Pricing Studies, 1(1):74–95, 2011.

M. Elliott, B. Golub, and M. O. Jackson. Financial networks and contagion. American

Economic Review, 104(10):3115–53, 2014.

G. Ellison and D. Fudenberg. Knife-edge or plateau: When do market models tip? The

Quarterly Journal of Economics, 118(4):1249–1278, 2003.

G. Ellison, D. Fudenberg, and M. Möbius. Competing auctions. Journal of the European

Economic Association, 2(1):30–66, 2004.

D. Gale, H. W. Kuhn, and A. W. Tucker. Linear programming and the theory of games.

Activity Analysis of Production and Allocation, 13:317–335, 1951.



THE ECONOMICS OF PLATFORMS IN A WALRASIAN FRAMEWORK 42

A. Hagiu. Pricing and commitment by two-sided platforms. The RAND Journal of Econom-

ics, 37(3):720–737, 2006.

G. D. Hansen. Indivisible labor and the business cycle. Journal of Monetary Economics, 16

(3):309–327, 1985.

A. Hornstein and E. C. Prescott. The firm and the plant in general equilibrium theory.

General equilibrium, growth, and trade, 2:393–410, 1993.

W. T. Kilenthong and R. M. Townsend. A market based solution to price externalities: A

generalized framework. National Bureau of Economic Research Working Paper No. 20275,

2014.

T. C. Koopmans and M. Beckmann. Assignment problems and the location of economic

activities. Econometrica: Journal of the Econometric Society, pages 53–76, 1957.

R. S. Lee. Vertical integration and exclusivity in platform and two-sided markets. The

American Economic Review, 103(7):2960–3000, 2013.

Y. Leitner. Financial networks: Contagion, commitment, and private sector bailouts. The

Journal of Finance, 60(6):2925–2953, 2005.

L. W. McKenzie. On the existence of general equilibrium for a competitive market. Econo-

metrica: Journal of the Econometric Society, pages 54–71, 1959.

L. W. McKenzie. The classical theorem on existence of competitive equilibrium. Economet-

rica: Journal of the Econometric Society, pages 819–841, 1981.

T. Negishi. Welfare economics and existence of an equilibrium for a competitive economy.

Metroeconomica, 12(2-3):92–97, 1960.

M. O’Hara and M. Ye. Is market fragmentation harming market quality? Journal of

Financial Economics, 100(3):459–474, 2011.

A. Pawasutipaisit. Family formation in walrasian markets. University of Chicago PhD

Thesis, 2010.

E. C. Prescott and R. M. Townsend. Pareto optima and competitive equilibria with adverse

selection and moral hazard. Econometrica: Journal of the Econometric Society, pages

21–45, 1984.

E. S. Prescott and R. M. Townsend. Firms as clubs in walrasian markets with private

information: Technical appendix. Federal Reserve Bank Richmond, 05-11, 2005.

E. S. Prescott and R. M. Townsend. Firms as clubs in walrasian markets with private

information. Journal of Political Economy, 114(4):644–671, 2006.



THE ECONOMICS OF PLATFORMS IN A WALRASIAN FRAMEWORK 43

J.-C. Rochet and J. Tirole. Platform competition in two-sided markets. Journal of the

European Economic Association, 1(4):990–1029, 2003.

J.-C. Rochet and J. Tirole. Two-sided markets: a progress report. The RAND Journal of

Economics, 37(3):645–667, 2006.

R. Rogerson. Indivisible labor, lotteries and equilibrium. Journal of Monetary Economics,

21(1):3–16, 1988.

M. Rysman. The economics of two-sided markets. The Journal of Economic Perspectives,

pages 125–143, 2009.

M. Sattinger. Assignment models of the distribution of earnings. Journal of Economic

Literature, pages 831–880, 1993.

R. Schmalensee and D. S. Evans. The economics of interchange fees and their regulation:

An overview. 2005.

E. G. Weyl. A price theory of multi-sided platforms. The American Economic Review, pages

1642–1672, 2010.

E. G. Weyl and A. White. Insulated platform competition. mimeo, 2016.



THE ECONOMICS OF PLATFORMS IN A WALRASIAN FRAMEWORK 44

8. Appendix

8.1. Proof of Theorem (4). The price-setting intermediary in the monopolistic equilibrium

will capture all the rent in the economy and will produce less slots than the price-taking

intermediary in the competitive equilibrium.

Proof. To begin we show that in the monopolistic equilibrium, the intermediary will produce

a negligible amount of platforms. Then we show that the competitive equilibrium will

produce platforms that use the entire endowment in the economy.

For simplicity, let us assume there are only two types of agents A and B with no subtypes.

Assume a monopolistic intermediary produces X (where X is less than one) platforms of

size24 (1, 1) and sells each contract to type T at a price of κT/X, where κT is the agent T ’s

wealth. The agents can either participate (that is, buy contracts) or not buy. If the agent

does not buy any contracts, their resultant utility is zero.

Let us assume each agent buys X contracts of the platform of size (1, 1). Then type T ’s

utility will be XUT (1, 1), that is, the utility of being on a platform of size (1, 1) multiplied

by the probability of being on that platform, X.

Could the agent buy any other contract? No, because the monopolist only produces one

type of platform. Could the agent buy less of the contract? Yes, but utility is increasing in

the purchase of this contract, X, therefore not optimal. Could the agent buy more of the

contract? No, because the agent is constrained by their wealth endowment, κT .

The intermediary’s profit is equal to: κA+κB−X(cA+cB+c). Therefore, the intermediary’s

profit is decreasing in X. Therefore, the intermediary will produce the smallest positive

number of platforms, X, as possible to maximize profits. Therefore, in the monopolistic

equilibrium only a negligible number of platforms will be produced.

In the competitive equilibrium, from theorem (1) – the First Welfare Theorem – we know

that the competitive equilibrium is a Pareto Optimal allocation, second, given the interme-

diary’s constant returns to scale technology, we know the intermediary makes zero profits.

Combining these two results, we know in the competitive equilibrium there will be a positive

24We restrict attention to the platform of size (1,1) for expositional ease, although the intermediary could
construct platforms of any given size. Additionally, even though in equilibrium the platform will produce
only a negligible amount of this platform, the platform of size (1, 1) would be the cheapest platform to
produce.
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number of platforms and that the total cost of producing these platforms will be κA + κB –

the total amount of resources in the economy. �

8.2. Computation. Attempting to compute the Pareto problem can be difficult due to the

large commodity space and the number of constraints, therefore, we transform the above

Pareto problem by removing the club constraints therefore, allowing us to use simplex algo-

rithms which are quicker and more capable to handle the large commodity and constraint

space.

For ease of explanation let us assume there is only two subtypes of merchants and consumers,

i.e i ∈ {1, 2} and j ∈ {1, 2}.

First we eliminate the club constraints recall equation (13), this constraint can be rewritten

in matrices for each contract dT (NA, NB) as

(17)

[
αA,1 αA,2 0 0 −NA

0 0 αB,1 αB,2 −NB

]

xA,1[dA(NA, NB)]

xA,2[dA(NA, NB)]

xB,1[dB(NA, NB)]

xB,2[dB(NA, NB)]

y(NA, NB)

 =

[
0

0

]

Because, xT,s[dT (NA, NB)] and y(NA, NB) must be non-negative, with equation (17) let us

define a polyhedral cone, with a single extreme point at the origin. Therefore, using the

Resolution Theorem of Polyhedrons, the systems of equations can be represented as the

set of all non-negative linear combinations of its extreme rays. Scaling such that each

y(NA, NB) = 1, the extreme rays of this cone are:

(
NA

αA,1
, 0,

NB

αB,1
, 0, 1

)
(
NA

αA,1
, 0, 0,

NB

αB,2
, 1

)
(

0,
NA

αA,2
,
NB

αB,1
, 0, 1

)
(

0,
NA

αA,1
, 0,

NB

αB,2
, 1

)
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Let y(i,j)(NA, NB), the quantity of each ray, where i is the subtype A agent, j is the subtype

B agent. Therefore, we can define the set of {xT,s[dT (NA, NB)],y(NA, NB)} that satisfies (17)

as:

{xT,s[dT (NA, NB)], y(NA, NB)} = [y(1,1)(NA, NB)]

(
NA

αA,1
, 0,

NB

αB,1
, 0, 1

)
+

. . .+ [y(2,2)(NA, NB)]

(
0,
NA

αA,2
, 0,

NB

αB,2
, 1

)

Where y(i,j)(NA, NB) ≥ 0, i = 1, 2 and j = 1, 2. Intuitively, each ray is a different composi-

tion of types of agents to fulfill the contract, for example y(1,1)(NA, NB) corresponds to the

measure of platforms which are fulfilled by agents (A, 1) and (B, 1). There are four extreme

rays hence a linear combination of these four rays is able to replicate any combination of

types of agents. In general, if there are I types of A and J types of B then there will be

I × J extreme rays for each contract.

Furthermore, we have the following relations:

xA,i[dT (NA, NB)] =
∑
j

y(i,j)

αA,i
NA

xB,j[dT (NA, NB)] =
∑
i

y(i,j)

αB,j
NB

y(NA, NB) =
∑
i,i′

y(i,j)(NA, NB)

Hence, we are now ready to redefine the Pareto problem in terms of our new definitions which

satisfy the matching constraints (to reduce notation and clarity, we normalize all αT,s = 1

for all subtypes).
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max
y(i,j)(NA,NB)≥0

∑
i

λA,i

∑
j

∑
(NA,NB)

y(i,j)(NA, NB)×NA × UA(NA, NB)

+

+
∑
j

λB,j

∑
i

∑
(NA,NB)

y(i,j)(NA, NB)×NB × UB(NA, NB)


Such that each agent is assigned to a platform with probability one (the counterpart to

equation (12)). ∑
j

∑
(NA,NB)

y(i,j)(NA, NB)NA = 1 ∀i,(18)

∑
i

∑
(NA,NB)

y(i,j)(NA, NB)NB = 1 ∀j(19)

Such that the resource constraint is satisfied (the counterpart to equation(14)):

(20)
∑

(NA,NB)

[∑
i,j

y(i,j)(NA, NB)× C(NA, NB)

]
≤
∑
T,s

κT,s

The advantage of writing the Pareto problem in the above formulation is that it reduces the

constraint set, in this example, there are only five constraints, however, the number of vari-

ables is very large and we can use a linear programming solver to compute the reformulated

Pareto program.

To calculate the prices paid by each agent we use the shadow prices (duals) from the refor-

mulated problem and the economy’s budget constraint.

The first-order conditions for this reformulated problem are:

(21) γκC(NA, NB) + γA,iNA + γB,jNB ≥ NAλA,iUA(NA, NB) +NBλB,jUA(NA, NB)

where equation (21) holds with equality for those platforms that exist in equilibrium. The

variables, γκ, γA,i, and γB,j are the Lagrange multipliers associated with the resource con-

straint (equation 20), and the matching constraints (equations 18 and 19) respectively.
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Recall that for all platforms that exist (that is, y(NA, NB) > 0), then the sum of prices paid

for the platform must equal the costs of producing the platform. That is,

(22) C(NA, NB) = pA[dA(NA, NB)] ∗NA + pB[dB(NA, NB)] ∗NB

We can use equations 21 and 22 to solve for the price paid by each agent for all platforms

that are created in equilibrium yi,j(NA, NB) > 0. Solving this set of equations gives the

following prices for each slot in a platform:

(23) pT,s(NA, NB) =
λT,sUT (NA, NB)− γT,s

γκ

Where pT,s(NA, NB) is the equilibrium price paid by an agent of subtype T, s to join a plat-

form of size (NA, NB). Notice that the price function varies by subtype, yet, in equilibrium,

if agents of the same type, but different subtype, join the same platform they will still pay

the same price. For example, if xA,1[dA(NA, NB)] > 0 and xA,2[dA(NA, NB)] > 0 for some

[dA(NA, NB)] then:

(24) pA,1[dA(NA, NB)] = pA,2[dA(NA, NB)] ⇐⇒ (λA,1 − λA,2)UA(NA, NB) = (γA,1 − γA,2)

Therefore, the difference in the weighted utility between the different subtypes must be equal

to the difference in the Lagrangian multipliers associated with each agent’s participation

constraint.
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