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Abstract

(preliminary and incomplete)

Central Counterparty Resolution:
The Right Move at The Right Time

We develop a real option model to study the optimal timing of CCP resolution in the
context of intertwined market and liquidity risks. When a CCP starts recovery process
due to large default losses, the relevant resolution authority faces a trade-off between the
option value of waiting and the costs associated with the recovery tools. If the authority
steps in too early, it terminates a potentially successful recovery in an irreversible manner.
If it steps in too late, the negative externality from the recovery process could be large.
The model also sheds light on the dedicated resources to CCP resolution.
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1 Intoduction

Central clearing of over-the-counter derivatives contracts has grown markedly in terms of

market share since the Great Financial Crisis. In large part this has been driven by the

G20 commitment that all standardized over-the-counter derivatives contracts be cleared

through central counterparties (CCPs). At end-2017, reporting dealers’ interest rate po-

sitions booked against CCPs totaled $320 trillion, accounting for about 75% of notional

amounts outstanding. In light of the increased importance of CCPs, international stan-

dard setting bodies have done a substantial amount of policy work to guard against CCPs

becoming the next “too-big-to-fail” entities. This includes requiring CCPs to have com-

prehensive recovery plans to address all losses resulting from the default of their clearing

members (CPMI-IOSCO, 2017)1.

A CCP recovery plan by itself cannot preclude the possibility that resolution could

be required in some extreme circumstances. CCP resolution may be needed at least for

two reasons: First, a recovery plan may have, ex post, non-performance risk from clearing

members. For example, even if a CCP has the legal capacity to make uncapped cash calls

from its clearing members, there is a possibility that one or more clearing members may

not be able to honor their cash calls. Second, even if the comprehensive recovery plan

allows a CCP to fully recover, it might not be systemically optimal when taking into ac-

count the negative externality imposed on the clearing members. In particular, many of the

clearing members of CCPs tend to be financial institutions that are of systemic importance

to the domestic (or global) financial system. For instance, a CCP with uncapped varia-

tion margin gains haircut (VMGH) can reduce the full amount of the variation margins

that should be received by the clearing members with in-the-money positions. But if the

1The concept of comprehensiveness implies that the CCP should (in theory) be able to cope with any
shock, regardless of how extreme the shock turns out to be.
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clearing members are using the derivatives contracts to hedge their positions outside of

the CCP, haircutting their variation margins may translates to large losses to the clearing

members, threatening their viability and financial stability.

Resolution planning is less advanced for CCPs than other financial entities. For banks

and insurance companies there is a well-developed framework for resolution, which in-

cludes the identification of globally systemically important institutions, and a requirement

for additional regulatory and supervisory requirements for these institutions. Most im-

portantly, the globally systemically important banks (G-SIBs) and insurance companies

(G-SIICs) are subject to requirements to ensure sufficient loss-absorbing and recapitaliza-

tion capacity to be available in resolution (eg, TLAC for G-SIBs). The current resolution

guidelines for CCPs include a requirement to have in place a crisis management group

(CMG) for entities that are considered to be of systemic importance in more than one ju-

risdiction. There are no other additional regulatory or supervisory requirements for the

resolution of these CCPs.

There are on-going policy discussions about the need for adjusting the resolution

framework for CCPs. In particular, whether there should be additional (prefunded) finan-

cial resources available in the (unlikely) event of a CCP resolution. The unique structure

and function of CCPs make it difficult to draw on the already advanced state of discussion

for similar questions for bank resolution. CCPs are risk managers and, unlike banks, they

don’t engage in active market risk-taking. Given this role, a CCP tends to rely almost

entirely on its ability to mutualize counterparty credit risk among the members based on

a pre-agreed arrangement, i.e., the CCP rule book. In this context, our paper explores

two key questions. First, given the unique features of CCP recovery and resolution, when

should the resolution authority steps in and resolve a failing CCP? Second, if there is a

requirement for CCPs to have additional prefunded financial resources available only in

resolution (which would be similar to the TLAC requirements for G-SIBs) to alleviate
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the loss-absorbing burden of the resolution authority, what would be the impact on the

resolution decision?

To explore these questions we outline a model that captures the dynamics between

CCP recovery and resolution. The model has three types of agents: clearing members, a

CCP and a resolution authority. The CCP has a comprehensive recovery plan in the rule

book that specifies the recovery tool: either cash calls or variation margin gains haircut

(VMGH).2 The clearing members all behave in a way that is consistent with the CCP rule

book.3 The CCP has a simplified default waterfall. We don’t differentiate initial margin,

the CCP’s skin-in-the-game, and default fund, since doing so will only complicate the

model without providing additional insights. Instead, we assume the CCP has a certain

amount of prefunded resources based on value-at-risk measures. In a scenario where a

member’s default losses exhaust the prefunded resources, the CCP starts a recovery pro-

cess and resorts to cash calls or VMGH for allocating remaining losses. The resolution

authority optimizes the total value of both the CCP and the surviving clearing members.

To achieve that, the authority can potentially place a CCP into resolution at any point

following the start of the recovery process. However, there are costs involved with the

authority’s intervention. These costs could reflect inefficiencies of an outside party taking

over the CCP in the middle of a crisis, administrative costs related to bridging the critical

services of the CCP and/or potential impact on the sentiment of broader markets and the

real economy. When the authority resolves the CCP, its equity is used and remaining losses

are assumed to be covered by the resolution authority (i.e.,using any financial resources

2There is a fast growing literature of CCP loss allocation. Interested readers can refer to Elliott (2013),
Singh (2014), Heath et al. (2015), Huang (2016), and Cruz-Lopez and Manning (2017).

3In practice, a CCP may not be fully compliant with international standards and thus its recovery plan
may not be comprehensive. The clearing members may also have strategic defaults with the CCP and behave
differently from the rule book. All these are valid concerns. But to provide a starting point to think of the
dynamics between recovery and resolution, we simplify from the reality and focus on the ideal environment
specified by the PFMI.
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dedicated for resolution and/or public funds).

The resolution authority’s decision is modeled as an optimal stopping problem. The

key trade-off is as follows: if the authority steps in too early, he loses the option value of

waiting and interrupts a potentially successful recovery. If the authority steps in too late,

the value of the losses from the recovery process will be sub-optimal. In our framework,

the main area of interest is the timing of entry into resolution, which is influenced by a

number of model parameters such as the size of remaining CCP equity (and any additional

financial resources dedicated for resolution), the intensity of the liquidity shock, and the

percentage of surviving members subject to the liquidity shock.

Overall, the model suggests that additional prefunded resources dedicated for use in

resolution would make the authority delay triggering the resolution process. This could

allow more time for the recovery process to succeed, but also poses the risk that if the CCP

is not able to recover despite the additional time, the resulting losses in resolution could

impose a larger public sector support.

Our paper contributes to the literature in two ways. To our knowledge, we are the

first to explicitly model the dynamics of CCP recovery and resolution. A number of pa-

pers have outlined the conceptual and practical issues associated with a CCP resolution.

Duffie (2014) reviews possible recovery and resolution plans for insolvent CCPs and ar-

gues that CCP resolution should minimize the total expected distress costs of all relevant

participants, including clearing members, CCP operators, other market participants and

taxpayers who could suffer from spillover effects. Singh and Turing (2018) points out

the differences between the recovery and resolution for CCPs and those for banks. They

note that the resolution for banks typically means a “lift-out” of the uncontaminated assets

from the balance sheet. Meanwhile, CCP resolution typically does not involve this step; to

resolve a failing CCP without causing further market stress, they suggest relaxing clearing

mandate in the event of CCP failures. Most importantly, CCPs should build reserves and
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declare publicly their reserves and dividends policy. Neither of these papers develop the

conceptual arguments into a theoretical model; our paper fill this void in the literature, and

provides a framework to examine and develop the intricate linkages between the recovery

and resolution tools for the resolution of a CCP.

In our model, the timing of a CCP’s resolution is modeled as an optimal stopping

problem widely used in the real option literature. McDonald and Siegel (1986) study

the optimal timing of investment in an irreversible project where the cash flows follow

continuous stochastic processes. They model the option value of waiting and provide

closed-form solutions to it. Dixit (1989) models the option value of both investing a project

and liquidating the project jointly. Pindyck (1990) further develops this approach in the

context of incremental investment under uncertainty. Finally, Dixit and Pindyck (1994)

is the classic textbook that summarizes this strand of literature and further develops the

approach in a systemic way. Our work contributes to this literature in two aspects. We

apply the optimal stopping techniques to a CCP recovery-resolution setting and in doing

so provide closed-form solutions to the optimal resolution timing; this allows us to better

understand the drivers behind it. Importantly, we also extend the real option literature by

modeling both market risk and funding risk. A CCP’s recovery plan allows it to allocate

losses to its clearing members in the event of shocks. Therefore, the optimal resolution

strategy for a CCP also depends on the financial health of the clearing members. To capture

this feature, on top of the usual market risk in the literature, we also model the funding

risk related to the recovery tools.

The remainder of the paper is organized as follows. Section 2 presents the model and

discusses the assumptions. Section 3 shows the optimal timing of entry into CCP resolu-

tion. Section 4 studies the impact of additional resources dedicated to CCP resolution, and

section 5 concludes.
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2 The model

2.1 Model primitives

The model has three types of agents: clearing members, a CCP and a resolution authority.

There is one type of derivatives contract with sufficiently long maturity that is centrally

cleared by the CCP. There is a unit mass of buyers and a unit mass of sellers who are

clearing members of the CCP.

Clearing members. The buyers are exposed to some real economy risk that is outside

of the derivatives market and would like to fully hedge that real risk by entering into long

positions on the derivatives contract. The buyers rely on the payments from the derivatives

contract to hedge their positions outside of the derivatives market. The sellers are the

dealers that make the derivatives market, and hence hold the the short positions on the

derivatives contract.

Suppose the buyers have one unit long position and the sellers have one unit short

position. When the price of the derivatives contract changes, the buyers and sellers need

to exchange variation margin. Without loss of generality, we assume that the price of

the derivatives contract changes in such a way that the buyers are in-the-money with the

CCP and the sellers are out-of-money with the CCP. Suppose the sellers cannot meet their

variation margin calls because of exogenous shocks to their balance sheets. Since the

derivatives contract is centrally cleared, the CCP insure the traders against counterparty

credit risk. The CCP inherits the defaulting members’ portfolios and works to cover the

default losses. The CCP has prefunded financial resources but the default losses are so

large that the prefunded resources are depleted. The CCP enters into a recovery process,
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and will seek to mutualize the remaining losses X via tools like cash calls or VMGH

(Raykov, 2016).

As the derivatives contract is with long maturity, there is market risk due to the price

changes over future periods. To capture this market risk, let Xt the mark-to-market losses

at time t. It is modeled as a geometric Brownian motion with initial value X0 and volatility

σt:

dXt = σtXtdzt.

Furthermore, when the surviving members cannot receive the payment from the deriva-

tives contract in full, they are exposed to liquidity risk, i.e.,that members are not insolvent

but do not have liquid funds available at the particular time to meet their payment obliga-

tions. Typically, liquidity events result in large losses but happen infrequently, thus they

are modeled as a Poisson jump process with intensity λt:

dNt =


0, 1 − λtdt;

1, λtdt.

Each time when a liquidity event happens, a ε proportion of the surviving members are

affected. When the surviving members get hit by the liquidity shocks, they undergo stress

and cannot meet their obligations specified by the CCP recovery plan (elaborated below).

This results in losses of Ct, which is the cost associated with the CCP recovery plan. Let Rt

denote the obligations of the surviving clearing members to the CCP during the recovery

process, then Ct has an initial value of 0 and follows:

dCt = εRtdNt.
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CCP. The CCP has a comprehensive recovery plan in its rule book. The recovery plan

specifies that the CCP can allocate the mark-to-market losses Xt to the (surviving) clearing

members via recovery tools. Thus, during the recovery process, the CCP’s cash inflows Rt

come from the surviving members. The CCP’s cash outflow Xt depends on the mark-to-

market losses of the inherited positions from the defaulting members. The CCP’s value is

the cumulative net cash inflow:

VCCP
t =

∫ t

0
(Rs − Xs) ds (1)

During the recovery process, market risk and liquidity risk are intertwined. In particu-

lar, the volatility of the cash outflow σt and the intensity of liquidity shock arrivals λt are

large, when the CCP’s cash outflow is large relative to the cash inflow. The intuition is

as follows. When the CCP’s cash outflow is large relative to the cash inflow, the CCP is

less likely to recover. Since there is no informational asymmetry in the model, all market

participants can observe this development. This, in turn, leads to more uncertainty in the

derivatives market, i.e., volatility increases. In addition, market participants are also less

willing to provide liquidity to clearing members who have exposure to the stress CCP,

leading to a higher intensity of liquidity shocks. Let Gt be the ratio between the CCP’s

cash outflow and the CCP’s cash inflow, then the volatility and the liquidity-shock-arrival

intensity can be written as.

σ2
t = σ2Gt

λt = λGt

According to CPMI-IOSCO (2018), most CCPs have either one of these tools or both

of them. In the model, we assume that the CCP has one recovery tool, either cash calls

or VMGH. When the CCP issues cash calls, the surviving members need to meet the
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cash calls within a certain period. When the CCP uses VMGH, it means that the CCP

can reduce its liability by haircutting the variation margin payment of the in-the-money

positions that the surviving members hold.

The surviving members may not be able to honor their commitments that are specified

by the recovery tools. As mentioned earlier, when the surviving members get hit by the

liquidity shocks, they undergo stress. Although they are in-the-money at the derivatives

market, their positions outside of the CCP are out-of-money, which makes these members

unable to fulfill their commitments to the CCP unless they incur losses on their balance

sheet. Hence, the surviving members that get hit by the liquidity shocks will default at

their cash calls. This is the so-called “non-performance” risk of the cash calls.

In the event of VMGH, there is no such non-performance risk (as the CCP has control

on the surviving members’ variation margins). However, the haircuts will translate into

losses for surviving clearing members that hit by the liquidity shocks. Since they don’t

receive the variation margin payment from the CCP, their out-of-money positions outside

of the CCP will weaken their balance sheets. Although there is no non-performance risk

associated with VMGH, there is some negative externality on the clearing members origi-

nating from VMGH.

Both the non-performance risk in the event of cash calls and the negative externality

in the event of VMGH are costs associated with the CCP recovery plan, which is denoted

as Ct. Such costs create a conflict between the CCP’s interest and the interest of the

surviving members: pursuing the CCP recovery plan in full may hurt the financial health

of the surviving members, which very often are systemically important financial institutes

themselves. For the system as a whole (i.e., taking into account both the CCP’s and the

surviving members’ interests), it could be optimal in some cases to resolve a CCP, even if

the CCP has a positive chance to successfully recover. That would require intervention by

a resolution authority.

9



Resolution authority. The resolution authority chooses the timing of its intervention to

optimize the total value of both the CCP and the surviving clearing members, which is the

sum of the CCP’s cumulative net cash inflow and the surviving members’ losses due to the

recovery process. The total value captures the non-performance risk in the event of cash

calls and the negative externality in the event of VMGH. The authority can potentially

place a CCP into resolution at any point following the start of the recovery process (and

before the successful recovery; elaborated later). When the authority steps in, it seizes

the CCP’s equity e but also incurs liquidation inefficiency l4. Moreover, all uncertainties

associated with the recovery plan will be resolved and the remaining losses will be born

by the resolution authority. In other words, the authority will bring in additional fund to

absorb the losses. In our model we abstract from the discussion of bail-out/bail-in scheme

and the magnitude of the associated funding costs.

The resolution authority’s decision is modeled as an optimal stopping problem, follow-

ing the rich literature on real options. A real option is the right - but not the obligation - to

make an irreversible decision when the future outcomes are not certain, such as to invest

or to liquidate a project under uncertainty. The CCP resolution in out setup is similar to

the liquidation decisions in the real options literature, but with some additional parameters

to capture the features of the CCP recovery process. The state variables are the CCP’s

cash inflow, the CCP’s cash outflow, and the cost associated with the recovery plan. The

cost associated with the recovery plan could be the non-performance risk (cash call) or the

negative externality on the surviving members (VMGH).

4The liquidation inefficiency could come from different sources such as the operational costs to migrate
all the transactions to a bridge CCP.
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max
T

E


∫ T

0
(Rt −Ct − Xt) dt︸                    ︷︷                    ︸

recovery

+ (e − l + RT −CT − XT )︸                       ︷︷                       ︸
resolution

 := F(R,C, X) (2)

The key trade-off is between the upward uncertainty from the CCP’s cash outflow and

the increasing costs associated with the recovery process. During the recovery process,

the authority faces the non-performance risk or the negative externality from the CCP’s

recovery plan depending on the tool that it is using. But due to the upward uncertainty

in the CCP’s cash flow, there is a chance that the CCP can recover successfully .Thus,

if the authority steps in too early, he loses the option value of waiting and interrupts a

potentially successful recovery. If the authority steps in too late, the non-performance risk

and the negative externality from the recovery process will lead to sub-optimal outcome

for the surviving members.

The solution to this stopping problem is a set of (interlinked) thresholds for the state

variables that separates the resolution region from the recovery region. Let ut denote

the state variables: {Rt,Ct, Xt}. The optimal stopping regions are separated by threshold

u∗, and the optimal timing of entry into resolution T is the first time when ut reaches

u∗. Nonetheless, the CCP may very well have already recover successfully before the

resolution is triggered. If the state variables meet the criteria for successful recovery before

they hit the resolution thresholds, the CCP is considered to be successfully recovered.

Thus, the CCP will be resolved if and only if T < τ, where τ(≥ 1) is defined by the

successful recovery criteria5.

5The restriction that τ has to be as large as 1 merely comes from the continuous setup. Since all the
state variables ut are continuous in the model, the interpretation of ut is some instantaneous rates at time
t. Mapping this to the reality where cash calls and VMGH happen discretely, t = 1 is when the cash calls
should be fulfilled or when surviving members’ variation margins are haircut.
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∫ τ

0
(Rt −Ct − Xt) dt = 0.

Timeline. The periods before time 0 are the preparation stage that specify the default

scenario. When the price of the derivatives contract changes, the sellers’ positions are

out-of-money. The sellers cannot meet their margin calls and default on the CCP. The

CCP has to take over the sellers’ positions and inherits the associated losses. When the

losses exhaust the CCP’s prefunded resources, the CCP starts the recovery process; this is

time period 0. The CCP can use either cash calls or VMGH. Facing market and liquidity

risks, the resolution authority can resolve the CCP any moment after time 0. Depending on

whether the state variables hit the resolution trigger first or the successful recovery criteria

are met first, the CCP is either resolved or successfully recovered. Below is an example of

a CCP that clears plain-vanilla interest rate swap (IRS).
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- Cash calls are not 
honored

- Cash outflows increase

3 Optimal timing of entry into CCP resolution

In this section, we solve the optimal stopping problem faced by the resolution authority in

the event of cash calls and in the event of VMGH, following the literature in real options

(Dixit and Pindyck, 1994). The standard procedure is to write out the Hamilton-Jacob-

Bellman (HJB) equation first; then based on the HJB equation, one could find out the

differential equations and boundary conditions that characterize the value function. For

specific differential equations, there are explicit solutions to figure out the value function

and the associated thresholds of the state variables, which enables to spell out the analytical
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form of the optimal stopping time, i,e, the optimal timing of entry into CCP resolution in

our setup.

3.1 Cash calls

When the CCP’s recovery tool is cash calls to the surviving members, the CCP will set

the size of the initial cash calls equal to the size of the initial mark-to-market losses, i.e.,

R0 = X0. The reason is that as Xt is a geometric Brownian motion, which is a martingale

process. It means that the best estimate for the future value of Xt is the current value.

Hence, the CCP at time 0 expects to recover the losses after one period if all the surviving

members honor their commitments for the cash calls.

However, during period 0 and 1, a ε proportion of the surviving members may get hit

by a liquidity shock, which arrives as a Poisson process. In the event of the cash calls, these

members will undergo financial stress and not be able to meet their cash call obligation

to the CCP. Hence, the costs associated with the recovery tool Ct will be passed to the

CCP. In other words, when a liquidity event happens, the cash inflow of the CCP from the

cash calls will decrease by the size of dCt, which is the non-performance risk faced by the

resolution authority. Given the non-performance risk, the effective cash inflow of the CCP

is Rt − Ct. Let R̃t denote the effective cash inflow, one could have R̃t as a Poisson jump

process with initial value R̃0 = R0:

dR̃t = −εR̃tdNt

The resolution authority’s problem in equation 2 can be written as:

max
T

E
[∫ T

0

(
R̃t − Xt

)
dt +

(
e − l + R̃T − XT

)]
:= F(R̃, X). (3)
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F(R̃, X) denote the value of resolving a CCP in the event of cash calls. Figure 1 visu-

alizes R̃t and Xt. The left subplot shows one simulation path of R̃t, which is the liquidity

risk following a Poisson jump process. The right subplot shows one simulation path of

Xt, which is the market risk following geometric Brownian motion. The two processes are

interlinked because of σt and λt, both increase in Gt(= Xt
R̃t

).

Figure 1: Liquidity risk and market risk (cash calls)

This figure visualizes the liquidity risk and market risk in the event of cash calls. The left
subplot shows the effective cash inflow R̃t as a Poisson jump process. In this simulation,
there are two jumps, each hit 1% of the surviving members. The right subplot shows the
cash outflow Xt as a geometric Brownian motion. In this simulation, the cash outflow
of the CCP first reduces before t = 0.5 and then increases later. The two processes are
interlinked through the governing parameters: jump intensity λt for the Poisson process
and volatility σt for the geometric Brownian motion. Both increase in the ratio between
the cash outflow and the effective cash inflow.
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The solution to the optimization problem is a rule to maximize F(R̃, X), which is a set

of jointly determined thresholds for the state variables (R̃, X) that separate the recovery
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region from the resolution region. The Hamilton-Jacob-Bellman (HJB) equation to the

problem is

F(R̃t, Xt) = max


(
R̃t − Xt

)
dt + E[F(R̃t, Xt) + dF(R̃t, Xt)]︸                                             ︷︷                                             ︸

Recovery

,
(
e − l + R̃T − XT

)︸                ︷︷                ︸
Resolution

 (4)

For some range of values of the state variable (R̃, X), the maximum on the right hand

side of the HJB equation will be achieved by CCP resolution, and for other values of (R̃, X)

it will be achieved by continuing the recovery process. In the continuation region, the first

term on the right hand side is the larger one of the two. Hence, one could have

(
R̃t − Xt

)
dt + E[dF(R̃, X)] = 0. (5)

In the resolution region, the second term on the right hand side is the larger one of the

two, which defines the boundary conditions: value-matching condition and smooth pasting

condition. The former one matches the value function to the resolution payoff, while the

latter one ensures that the values of F(R̃, X) and the values of the resolution payoff meet

tangentially at the boundary (R̃∗, X∗).

F(R̃∗, X∗) = e − l + R̃∗ − X∗

FR̃(R̃∗, X∗) = 1, FX(R̃∗, X∗) = −1

Intuitively, it is optimal to resolve the CCP when R̃t is very small or when Xt is very

large. Hence, assuming homogeneity of degree one, we could reduce the number of state

variables to one. Let Gt = Xt
R̃t

, the value of resolving the CCP can be rewritten as follows:
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F(R̃, X) = R̃ f (
X
R̃

) = R̃ f (G).

Divided by R̃t on both sides, HJB equation 5 can be rewritten as follows:

(1 −Gt)dt + E[d f (Gt)] = 0 (6)

To derive the explicit functional form of f (Gt) from the HJB equation,we need to

first find out E[d f (Gt)] following the generalized Ito’s Lemma for Levy processes (see

also Merton, 1976; McDonald and Siegel, 1986; Biais et al., 2010). Lemma 1 presents

the expected change of the value function E[d f (Gt)]. The first term on the right hand

side comes from the uncertainty of the derivatives market. The second term is from the

downside risk of the Poisson jump process.

Lemma 1. Applying Ito’s lemma for Levy processes,

E[d f (Gt)] =
1
2
σ2G3

t f ′′(Gt)dt︸              ︷︷              ︸
Market risk

+ λGt[(1 − ε) f (Gt/(1 − ε)) − f (Gt)]dt︸                                         ︷︷                                         ︸
Liquidity risk

. (7)

Proof. See appendix.

Based on lemma 1, HJB equation 6 could be written as a delay differential equation

(DDE)6:

1
Gt
− 1 +

1
2
σ2G2

t f ′′(Gt) + λ[(1 − ε) f (Gt/(1 − ε)) − f (Gt)] = 0.

6For detail explanation on DDE, interested readers could refer to Kuang (1993) and Balachandran,
Kalmár-Nagy, and Gilsinn (2009)
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Moreover, for the resolution region, the boundary conditions from HJB equation 5

could be rewritten as following based on the homogeneity of degree one assumption.

f (G∗) =
k

(1 − ε)K + 1 −G∗, K = 0, 1, 2, ...,

f ′(G∗) = −1,

where k denote the ratio between e− l and R̃0, and K denote the number of jumps when

the resolution, if there is any, happens. With the DDE and the boundary conditions, the

value function f (G) can be characterized in Proposition 1.

Proposition 1. Value function (cash calls)

The value function f is twice continuously differentiable and satisfies the following

delay differential equation (DDE):

1
Gt
− 1 +

1
2
σ2G2

t f ′′(Gt) + λ[(1 − ε) f (Gt/(1 − ε)) − f (Gt)] = 0, (8)

together with the boundary conditions:

f (G∗) =
k

(1 − ε)K + 1 −G∗, K = 0, 1, 2, ...,

f ′(G∗) = −1,

where G∗ is the resolution threshold.

Proof. See appendix.

To derive the explicit form of f (.), proposition 2 solves the value function and presents

the optimal timing of entry into resolution G∗ in the event of cash calls.
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Proposition 2. Optimal timing of entry into resolution (cash calls)

The specific functional form of f (G) could be written as:

f (G) = A1Gβ + A2G−1 + A3 (9)

where A1 = −
A2(G∗)−2+1

β
(G∗)1−β, A2 = 1

ελ(2−ε)−σ2 , A3 = − 1
ελ

, and β is the negative solution

to the following equation:

1
2
σ2β(β − 1) + λ(1 − ε)1−β − λ = 0;

It is optimal to resolve the CCP when Gt ≥ G∗ where

G∗ =

β

β−1

(
1
ελ

+ k
(1−ε)K + 1

)
+

√(
β

β−1

)2 (
1
ελ

+ k
(1−ε)K + 1

)2
− 4

ελ(2−ε)−σ2

2
(10)

Proof. See appendix.

Figure 2 shows Gt and R̃t − Xt following the simulation paths in Figure 1. The red

dotted lines show the resolution thresholds defined in Proposition 2. The green dashed

lines show the timing of successful recovery. At the beginning of the simulation, there

are no defaults among the surviving clearing members and the CCP’s cash outflow Xt

decreases, which brings the ratio between the CCP’s cash outflow and inflow below 1 and

the net cash inflow above 0. But as Xt increases after t = 0.25, the ratio climbs back to 1

and the net cash inflow decreases to 0. At around t = 0.5, the first liquidity event happens

and a proportion of the surviving members default. At around t = 0.75, the ratio gets

larger than1 and the net cash inflow becomes negative, since the cash outflow of the CCP

increases largely. But fortunately, the ratio Gt hits the resolution trigger after it meets the

successful recovery criteria. In other words, in this simulation, the CCP is successfully
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recovered.

Figure 2: Optimal resolution timing (cash calls)

This figure shows the resolution thresholds and the successful recovery timing based on
the same parameters and the same simulation realizations in figure 1. The upper subplot
shows the ratio between the CCP cash outflow and the effective cash inflow, i.e., Gt. The
lower subplot shows the associated net cash inflow. Obviously, when Gt < 1, R̃t − Xt > 0
and vice versa. The red dotted lines show the resolution thresholds and the green dashed
lines show the successful recovery timing.
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3.2 VMGH

When the CCP’s recovery tool is VMGH, the CCP can haircut the variation margin that

should be received by the surviving members. Unlike cash calls, VMGH allows the CCP
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to directly reduce the CCP’s liability to the surviving members. In the event of VMGH, the

CCP’s instantaneous cash inflow always equals to the CCP’s instantaneous cash outflow:

Rtdt = Xtdt. This means that the ratio between the CCP’s cash outflow and the CCP’s cash

inflow is always 1. Hence, the optimal stopping problem in the event of VMGH will be

unaffected by the interlinkage between funding risk and market risk. It also means that the

CCP’s cash inflow Rt follows a geometric Brownian motion:

dRt = σRtdzt.

As the CCP can directly reduce its own liability with the surviving members with

in-the-money positions in the derivatives market, the surviving members cannot pass their

losses to the CCP when they get hit by the liquidity shocks. Hence, the surviving members

have to bear the losses. The size of the losses depends on the amount of the variation

margin that is haircut by the CCP, which is equal to the CCP’s cash inflow. Hence, the

surviving members’ losses follow a Poisson jump process: dCt = εRtdNt. The intensity

of jump arrivals is λt while the jump size is εRt which follows the geometric Brownian

motion. Hence, the jump size is a log-normally distributed random variable with expected

value and variance given by7:

E(εRt) = εR0,

Var(εRt) = ε2R2
0

(
eσ

2
t t − 1

)
.

The resolution authority optimize the overall value of the financial system (i.e., it takes

into account the value of both the CCP’s and the surviving members). Hence, if the losses

to clearing members are too large, the authority may step in and resolve the CCP, even

if the CCP can successfully recover by reducing his own liability. The optimal stopping

7Rt is log-normal distributed: ln(Rt) ∼ N(ln(R0), σ2t).
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problem for the resolution authority is

max
T

E
[∫ T

0
(−Ct) dt + (e − l −CT )

]
:= V(C) (11)

V(C) denotes the value of resolving a CCP in the event of VMGH. Similar to the event

of cash calls, the HJB equation to the problem in the event of VMGH is

V(Ct) = max

(−Ctdt + E[V(Ct) + dV(Ct)])︸                                ︷︷                                ︸
Recovery

, (e − l −CT )︸        ︷︷        ︸
Resolution

 (12)

For some range of values of Ct, the maximum on the right hand side of the HJB equa-

tion will be achieved by CCP recovery and for other values of Ct it will be achieved by

resolving the CCP. In the recovery region, equation 12 will be

−Ctdt + E[dV(Ct)] = 0. (13)

To solve the HJB equation, we first derive the expected change of the value function.

Lemma 2 presents the expected change of the value function E[dV(Ct)]. Different from

equation 7, equation 14 integrates both market risk (−εR) and liquidity risk into one term.

Lemma 2. Applying Ito’s lemma for Levy processes, one could have

E[dV(Ct)] = λE [V(Ct − εRt) − V(Ct)] dt, (14)

Proof. See appendix.

In the resolution region, equation 12 defines the value-matching condition at the bound-

ary C∗8:

8Since Ct is a jump process, there is no smooth pasting condition.
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V(C∗) = e − l −C∗. (15)

Rewrite E[dV(Ct)] in equation 13, coupled with the value-matching condition, one

could characterize the value function V(C). Proposition 3 summarizes the characteristics

of functional form for the value function V(.).

Proposition 3. Value function (VMGH)

The value function V is twice continuously differentiable and satisfies the following

delay differential equation (DDE):

−Ct + λE [V(Ct − εRt) − V(Ct)] = 0, (16)

together with the boundary condition:

V(C∗) = e − l −C∗, K = 0, 1, 2, ...,

where C∗ is the resolution threshold.

Proof. See appendix.

To derive the explicit form of V(.), proposition 4 solves the value function and presents

the optimal timing of entry into resolution in the event of VMGH.

Proposition 4. Optimal timing of entry into resolution (VMGH) The specific func-

tional form of V(C) could be written as:

V(C) = A4C2 + A5C. (17)

where A4 = − 1
2ελR0

e−
σ2
2 t and A5 = − 1

2λeσ
2t.
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It is optimal to resolve the CCP when Ct ≥ C∗ where

C∗ =
−(A5 + 1) −

√
(A5 + 1)2 − 4A4(e − l)

2A4
(18)

Proof. See appendix.

Figure 3 shows the surviving members’ losses −Ct. The red dotted line is the threshold

that triggers resolution, as defined in Proposition 4. The green dash line is the timing of

successful recovery. In this simulation, the resolution threshold is far below the losses

born by the surviving CMs, and therefore resolution is not triggered by the authority.

Figure 3: Losses born by the surviving members (VMGH)

This figure shows the losses born by the surviving members, originating from VMGH.
The red dotted line shows the resolution threshold and the green dashed line shows the
successful recovery timing.
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4 Additional resources dedicated to CCP resolution

As noted in the introduction, a key current policy discussion is about the need for addi-

tional resources dedicated to CCP resolution. The main argument for having these addi-

tional resources set aside is that they could alleviate the burden of the resolution authority,

and potentially avoid (or minimize) usage of public funds. However, the financing of

these resources would incur costs that may disincentify central clearing. Our model does

not take a view on the appropriateness/need for additional resources but rather we examine

the potential impact of these resources on the optimal resolution timing9.

4.1 Comparative statics

Suppose the size of the additional resources dedicated to CCP resolution is ∆e. In this

case, the resources that the resolution authority can get are both the CCP’s equity and the

additional resources: e+∆e. Hence, one way to investigate the impact of the additional re-

sources dedicated to CCP resolution could be to study the comparative statics with respect

to e.

Before getting to the comparative statics, we note that G∗ is a jump-diffusion process

through Lemma 3 (see also Hirsa and Neftci, 2013).

Lemma 3. Applying the multivariate Ito’s Lemma, one could have

dGt

Gt
= σtdzt +

ε

1 − ε
dNt. (19)

9For example, in our current model, we assume that the prefunded resources dedicated to CCP resolution
is costless and there is no incentive issues around central clearing. However, our results are still meaningful
because they would not be weaken without these assumptions.
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Proof. See appendix.

To study the comparative statics with respect to e, the key is to find out the impact of

increasing e on the resolution thresholds: G∗ in the event of cash calls and C∗ in the event

of VMGH. Proposition 5 summarizes the impact of the additional resources dedicated to

CCP resolution.

Proposition 5. Comparative statics

With increasing additional resources dedicated to CCP resolution,

(i) the resolution thresholds are more relaxed,

(ii) the expected time to resolution increases,

(iii) the likelihood of successful recovery increases,

(iv) the losses conditional on resolution increases.

Proof. See appendix.

The intuition is as follows. At each moment, the resolution authority compares the

relative value of its two choices: to let the CCP run the recovery plan or to resolve the

CCP. This is captured by the HJB equations. Pursuing the first choice implies that the total

value of the CCP and the surviving members continues to be exposed to the market and

funding uncertainties, while the second choice resolves these uncertainties. As discussed

earlier and following the optimality principle in dynamic programming, the former choice

specifies the differential equations and determines the form of the value function, while the

latter choice specifies the boundary conditions. Additional resources for resolution only

have impact on the second choice, and thus only affects the boundary conditions. Under

the same uncertainties, if a resolution authority has more additional resources then it faces

more “slack” boundary conditions. This translates into a more tolerant resolution author-

ity. Thus, the CCP is more likely to meet the successful recovery criteria before hitting the
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resolution thresholds. However, because the resolution authority is more tolerant, when

resolution is triggered, the losses that the resolution authority will inherit are larger. The

implication is that, with one more unit prefunded resources dedicated to resolution, the in-

crease of the total value at resolution is less than one unit. Hence, having more additional

resources dedicated to CCP resolution can be viewed as a risky investment: high return

(i.e., high likelihood of CCP recovery) is always coupled with high risk (i.e., large losses

conditional resolution).

4.2 Numerical example

To illustrate the impact of the additional resources dedicated to CCP resolution, we estab-

lish a set of parameters as a base case: σ = 0.1, ε = 0.1, λ = 1, e − l = 1,R0 = X0 = 10.

In the base case, we take σ = 0.1, which means that ln(Xt) has a variance of 1 percent per

period. Also, we assume that the liquidity shocks, on expectation, come once per period.

When the surviving members are hit by the liquidity shock, 10 percent of them will suffer

losses. In the event of cash calls, they will default and pass the costs to the CCP. In the

event of VMGH, they will have to bear the costs by themselves. When the authority de-

cides to resolve the CCP, the authority could seize the CCP’s equity but also suffer some

liquidation inefficiency. The net outcome of these two effects (e − l) is one unit, which is

only 10 percent of the initial losses.

Figure 4 shows the impact of additional resources on the resolution threshold in the

event of cash calls and VMGH. The numerical results based on the above parameters

show that the resolution thresholds are higher for both cash calls and VMGH, i.e.,that the

resolution authority is more tolerant when additional resources are available.
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Figure 4: Additional resources dedicated to resolution

This figure shows the impact of additional resources dedicated to CCP resolution. The

red dashed lines are the resolution thresholds when there are additional resources and the

red dotted lines are the resolution thresholds when there are no additional resources. The

upper subplot shows the case with cash calls and the lower subplot shows the case of

VMGH.
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5 Conclusion

We develop a real option model to capture the dynamics between CCP recovery and reso-

lution. There are two important features of the model: (i) the interactions between market
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risk and liquidity risk during a recovery process, and (ii) the cost associated with the CCP

recovery tools on the clearing members. Thus, there is a conflict between the CCP’s inter-

est and the clearing members’ interests: Pursuing the CCP recovery plan in full can save

the CCP but will hurt the clearing members, which calls for a resolution authority that

can choose an optimal timing of intervention to maximize both the CCP’s value and the

clearing members’ value.

Based on the model, we also investigate the impact of additional resources dedicated

to CCP resolution. It turns out that increasing additional resources dedicated to CCP

resolution will lead to more slack resolution thresholds, in both cases of cash calls and

VMGH. It means that the resolution authority will be more tolerant, hence with a larger

expected time to resolution. In other words, the likelihood that the CCP will recover

increases. But, ex post, if the resolution thresholds are triggered before the CCP can

successfully recover, the losses that born by the resolution authority will be larger.

While our model is a useful guide to understand the dynamics between the recovery

and resolution of a CCP, it can be extended in several ways. One possible extension could

be to incorporate the market structure of the clearing industry. The clearing industry of

different products could be very different. For instance, clearing for equity is rather com-

petitive, while clearing for interest rate derivatives is highly concentrated. It would be

interesting to investigate the impact of the market structure on resolution timing. Another

possible extension would be to consider the heterogeneity among clearing members as

shown in Armakola and Laurent (2015).
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Appendix

A Variable summary

Variable Definition
λ Poisson jump intensity of liquidity shock arrival
σ volatility of the CCP’s cash outflow
ε proportion of vulnerable surviving member
e equity of the CCP that could be seized by the resolution authority
l liquidation inefficiency when the authority resolves the CCP
k ratio between e − l and R0

Rt cash inflow of the CCP
Xt cash outflow of the CCP
Ct cost because of the liquidity shock
Gt ratio between Xt and Rt

B Proof

Lemma 1.

Proof. First, the (multivariate) Ito’s Lemma for Levy process dXi,t = aidt + bidzi,t︸        ︷︷        ︸
dXc

i,t

+cidNi,t, i =

1, 2 is the following:

d f (X1,t, X2,t) =
∂ f
∂X1,t

dXc
1,t +

∂ f
∂X2,t

dXc
2,t + . . . (A1)

+
1
2
∂2 f
∂X2

1,t

d〈X1,t〉
c
t +

1
2
∂2 f
∂X2

2,t

d〈X2,t〉
c
t +

∂2 f
∂X1,t∂X2,t

d〈X1,tX2,t〉
c
t + . . .

+
(
f (X1,t, X2,t) − f (X1,t− , X2,t−)

)
dNt

Given that dR̃t = −εR̃tdNt and dXt = σtXtdzt, the (multivariate) Ito’s Lemma for Levy

process leads to
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dF(R̃, X) = FXdXt +
1
2

FXXd〈Xt〉t + (F((1 − ε)R̃, X) − F(R̃, X))dNt

= FXσtXtdzt +
1
2

FXXσ
2
t X2

t dt + (F((1 − ε)R̃, X) − F(R̃, X))dNt

(A2)

Assuming homogeneous of degree 1, F(R̃, X) = R̃ f (G). It leads to

FX = f ′(G), FXX = f ′′(G)/R̃, F((1 − ε)R̃, X) = (1 − ε)R̃ f (G/(1 − ε)).

Hence, dF(R̃, X) = R̃d f (G) where

dF(R̃, X) = FXσtXtdzt +
1
2

FXXσ
2
t X2

t dt + (F((1 − ε)R̃, X) − F(R̃, X))dNt

= f ′(G)σtXtdzt +
1
2

f ′′(G)σ2
t
X2

t

R̃
dt + ((1 − ε)R̃ f (G/(1 − ε)) − R̃ f (G))dNt

= R̃
[

f ′(G)σtGtdzt +
1
2

f ′′(G)σ2
t G

2
t dt + ((1 − ε) f (G/(1 − ε)) − f (G))dNt

] (A3)

Dividing equation 7 by R̃ and take expectation, one could have the following because

σ2
t = σ2Gt and λt = λGt

E[d f (G)] =
1
2

f ′′(G)σ2
t G

2
t dt + λt((1 − ε) f (G/(1 − ε)) − f (G))dt

=
1
2

f ′′(G)σ2G3
t dt + λGt((1 − ε) f (G/(1 − ε)) − f (G))dt.

(A4)

�

Proposition 1.

Proof.

Plug equation 7 into equation 6 and divide both sides of the equation by Gt, one could

33



have equation 8 which defines how the value function should evolve. The boundary con-

ditions are derived from the value at resolution:

F(R̃T , XT ) = R̃T f (GT ) = e − l + R̃T − XT .

Dividing both sides of the equation by R̃T , one could have

f (GT ) =
k

(1 − ε)K + 1 −GT .

Replacing GT with G∗, one could have the first boundary condition, the value matching

condition. Taking the first-order derivative with respect to G∗, one could have the second

boundary condition, the smooth pasting condition.

�

Proposition 2.

Proof.

The homogeneous solution to equation 8 is A1Gβ and the specific solution to it is

(A2G−1 + A3) where β, A1, A2, and A3 are the parameters that will meet the boundary

conditions. Hence, the specific functional form of f (G) could be written as:

f (G) = A1Gβ + A2G−1 + A3 (A5)

f ′′(G) = β(β − 1)A1Gβ−2 + 2A2G−3

f (G/(1 − ε)) = A1Gβ(1 − ε)−β + A2(1 − ε)G−1 + A3

Hence, equation 8 can be rewritten as
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1
G
− 1 +

1
2
β(β − 1)σ2A1Gβ + σ2A2G−1

+ λ
[
(1 − ε)

(
A1Gβ(1 − ε)−β + A2(1 − ε)G−1 + A3

)
−

(
A1Gβ + A2G−1 + A3

)]
= 0

A1Gβ

[
1
2
β(β − 1)σ2 + λ(1 − ε)1−β − λ

]
︸                                    ︷︷                                    ︸

0

+
1
G

[
A2(σ2 + λ(1 − ε)2 − λ) + 1

]︸                               ︷︷                               ︸
0

− (1 + ελA3)︸      ︷︷      ︸
0

= 0

(A6)

From the DDE, β is one of the solution to the following equation:

1
2
σ2β(β − 1) + λ(1 − ε)1−β − λ = 0;

and A2 = 1
ελ(2−ε)−σ2 , A3 = − 1

ελ
.

Also, when G, the ratio between the CCP’s cash outflow and the CCP’s cash inflow,

goes to infinite, the CCP is very unlikely to recover. Hence, the value of waiting should

approach to zero, which means that β should be the negative solution to the above equation.

From the smooth pasting condition, one could have

f ′(G∗) = A1β(G∗)β−1 − A2(G∗)−2 = −1 (A7)

Hence, A1 = −
A2(G∗)−2+1

β
(G∗)1−β. Plug A1, A2, A3 in the value matching condition, one

could have

f (G∗) = A1(G∗)β + A2(G∗)−1 + A3

= −
A2(G∗)−2 + 1

β
(G∗) + A2(G∗)−1 + A3

=
k

(1 − ε)K + 1 −G∗

(A8)

Reorganize the equation above, one could have
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(G∗)2 +
β

β − 1

(
A3 −

k
(1 − ε)K − 1

)
G∗ + A2 = 0 (A9)

Since G is always positive, G∗ should be the positive solution to the above equation,

which is

G∗ =

β

β−1

(
1
ελ

+ k
(1−ε)K + 1

)
+

√(
β

β−1

)2 (
1
ελ

+ k
(1−ε)K + 1

)2
− 4

ελ(2−ε)−σ2

2
(A10)

�

Lemma 2.

Proof.

By equation A1, the change of value function could be written as

dV(Ct) = (V(Ct − εRt) − V(Ct)) dNt.

Taking expectation, one could have

E[dV(Ct)] = λ (E[V(Ct − εRt) − V(Ct)]) dt.

Because Gt, the ratio between the CCP’s cash outflow and the CCP’s cash inflow, is

always 1.

�

Proposition 3.

Proof.

Plug in equation 14 into equation 13, one could have the DDE:

−Ct + λE [V(Ct − εRt) − V(Ct)] = 0.
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The boundary condition is also specified in equation 15.

�

Proposition 4.

Proof.

Observe equation 16, one could guess a possible functional form to solve the DDE is:

V(C) = A4C2 + A5C. (A11)

With this functional form, one could have

E[V(Ct − εRt) − V(Ct)] = E[(A4(Ct − εRt)2 + A5(Ct − εRt)) − (A4C2
t + A5Ct)]

= E[A4(εRt)2 − 2A4Ct(εRt) − A5εRt]

= A4ε
2E[R2

t ] − 2A4εE[CtRt] − A5εE[Rt]

(A12)

Since Rt follows a geometric Brownian motion that is independent from the Poisson

jump process, following Dunbar (2016) and Privault (2013), one could have the following:

E[Rt] = R0e
σ2
2 t;

E[R2
t ] = R2

0e2σ2t;

E[CtRt] = CtE[Rt],

= CtR0e
σ2
2 t.

(A13)

Plug the above equations into equation A12, it could be rewritten as

E[V(Ct − εRt) − V(Ct)] = A4ε
2R2

0e2σ2t − 2A4εCtR0e
σ2
2 t − A5εR0e

σ2
2 t (A14)
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Hence, DDE in the event of VMGH could be rewritten as

−Ct + λ
(
A4ε

2R2
0e2σ2t − 2A4εCtR0e

σ2
2 t − A5εR0e

σ2
2 t

)
= 0,

−Ct

[
1 + 2A4ελR0e

σ2
2 t

]
︸                 ︷︷                 ︸

0

+λ
(
A4ε

2R2
0e2σ2t − A5εR0e

σ2
2 t

)
︸                            ︷︷                            ︸

0

= 0 (A15)

Hence, A4 = − 1
2ελR0

e−
σ2
2 t and A5 = − 1

2λeσ
2t.

The optimal timing of entry into resolution in the event of VMGH could be solved by

the boundary condition:

V(C∗) = e − l −C∗,

= A4(C∗)2 + A5C∗

Collecting the terms, one could have C∗ as the positive solution to

A4(C∗)2 + (A5 + 1)C∗ − (e − l). (A16)

Hence, the explicit form of C∗ is

C∗ =
−(A5 + 1) −

√
(A5 + 1)2 − 4A4(e − l)

2A4
. (A17)

�

Lemma 3.

Proof.

First of all, Gt could be rewritten as g(R̃, X):
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g(R̃, X) =
X
R̃
.

Hence, gX = 1
R̃ , gXX = 0. By Equation A1, the change of g(.) could be written as

dg(R̃t, Xt) = gXdXt +
1
2

gXXd〈Xt〉t + (g((1 − ε)R̃, X) − g(R̃, X))dNt

= σt
Xt

R̃t
dzt +

(
X

(1 − ε)R̃
−

X
R̃

)
dNt

= σtGtdzt +
ε

1 − ε
GtdNt.

(A18)

�

Proposition 5.

Proof.

First, let’s look at the event of cash calls. The resolution threshold G∗ should be the

positive solution to equation A9, according to the proof in Proposition 2. Let a(G∗)2 +

bG∗ + c = 0 denote equation A9. Apparently, G∗ could be rewritted as

G∗ =
−b +

√
b2 − 4ac

2a
.

The first order derivative of G∗ with respect to b is

dG∗

db
=
−1 + b

√
b2−4ac

2a
,

< 0.

(A19)

The inequality comes from the fact that b = −
β

β − 1︸︷︷︸
>0

(
1
ελ

+
k

(1 − ε)K + 1
)

︸                    ︷︷                    ︸
>0

< 0.

The first order derivative of b with respect to k is
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db
dk

= −
β

β − 1
1

(1 − ε)K ,

< 0.
(A20)

Based on equation ??, one could have the first order derivative of k with respect to e as

dk
de

=
(1 − ε)K

R̃0
,

> 0.
(A21)

Hence, the first order derivative of G∗ with respect to e is dG∗
db

db
dk

dk
de > 0. It means that

when there is increasing additional resources dedicated to CCP resolution, the threshold

G∗, the ratio between the CCP’s cash outflow and the CCP’s cash inflow, is larger.

Following Kou and Wang (2003), the expected time to resolution, i.e., the expected

first passage time of a jump diffusion process Gt, increases in the threshold G∗. Hence,

the larger threshold in the case of the increasing additional resources dedicated to CCP

resolution leads to a larger expected time to resolution, which means that the CCP is

more likely to meet the successful recovery criteria before hitting the resolution threshold.

However, the losses conditional on resolution is

R̃T − XT = R̃T (1 −G∗). (A22)

Given everything else unchanged, the larger G∗ due to the increasing e give rises to a

larger losses conditional on resolution.

Second, in the event of VMGH, the resolution threshold C∗ is the positive solution

equation A24 in the proof of Proposition 4. The first order derivatives of C∗ with respect

to e is
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dC∗

de
=

1√
(A5 + 1)2 + 4A4(e − l)

,

> 0.

(A23)

A4(C∗)2 + (A5 + 1)C∗ − (e − l). (A24)

Hence, when there is increasing additional resources dedicated to CCP resolution, the

threshold C∗ is larger. Given that Ct is a compound Poisson jump process, the larger

threshold means a larger expected time to resolution and a higher probability that the CCP

will meet the successful recovery criteria before hitting the resolution threshold. Since

C∗ is the losses conditional on resolution, when there is increasing resources dedicated to

CCP resolution, these losses would be larger.

�
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