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Introduction

What We Do

1) We formally model a cryptocurrency system according to the
Bitcoin protocol.

I A ledger of digital balances updated in a decentralized fashion.

2) We show that cryptocurrencies cannot achieve immediate and final
settlement.

I Why? Need to avoid a double spending problem.

3) We evaluate the efficiency of a cryptocurrency system.

I Positive inflation is optimal while transaction fees should be
minimized.

I Currently, welfare loss in BITCOIN of 1.4% of consumption,
but potentially as low as 0.08%.

Chiu & Koeppl – Cryptocurrencies 2



Introduction

What We Do

1) We formally model a cryptocurrency system according to the
Bitcoin protocol.

I A ledger of digital balances updated in a decentralized fashion.

2) We show that cryptocurrencies cannot achieve immediate and final
settlement.

I Why? Need to avoid a double spending problem.

3) We evaluate the efficiency of a cryptocurrency system.

I Positive inflation is optimal while transaction fees should be
minimized.

I Currently, welfare loss in BITCOIN of 1.4% of consumption,
but potentially as low as 0.08%.

Chiu & Koeppl – Cryptocurrencies 2



Introduction

What We Do

1) We formally model a cryptocurrency system according to the
Bitcoin protocol.

I A ledger of digital balances updated in a decentralized fashion.

2) We show that cryptocurrencies cannot achieve immediate and final
settlement.

I Why? Need to avoid a double spending problem.

3) We evaluate the efficiency of a cryptocurrency system.

I Positive inflation is optimal while transaction fees should be
minimized.

I Currently, welfare loss in BITCOIN of 1.4% of consumption,
but potentially as low as 0.08%.

Chiu & Koeppl – Cryptocurrencies 2



Why Cryptocurrency is Special?



Cryptocurrencies

Why Cryptocurrency is Special?

Physical Tokens

Immediate and Final Settlement

Chiu & Koeppl – Cryptocurrencies 4



Cryptocurrencies

Why Cryptocurrency is Special?

Physical Tokens

Immediate and Final Settlement

Chiu & Koeppl – Cryptocurrencies 4



Cryptocurrencies

Why Cryptocurrency is Special?

Digital Tokens

Subject to double‐spending problems
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Cryptocurrencies

Why Cryptocurrency is Special?

Digital Currency with Trusted Third Party
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B sends 
$1 to S
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Cryptocurrencies

Why Cryptocurrency is Special?

Digital Currency without Trusted Third Party

miners

B sends 
$1 to S

No central authority to keep record
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Cryptocurrencies

How Cryptocurrency works

1. Consensus Protocol

competition in the form of mining: “miners” compete to update
the public ledger (i.e. Blockchain)

the prob. of winning is proportional to the fraction of
computational power owned by a miner

2. Reward Scheme

reward winning miners by seigniorage and transaction fees

3. Confirmation Lags

double spending is discouraged by confirmation delay

if a seller waits for N validations before delivering the goods, the
buyer needs to win the mining game N + 1 times to revoke the
transaction
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Cryptocurrencies

Blockchain

ଵି்ܤ

A book containing the ledger 
of all past transactions
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Cryptocurrencies

Blockchain

miners

݀ ݅, ݆ ்block

ଵି்ܤ

Transactions broadcasted 
to the miners for 
validation
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Cryptocurrencies

Blockchain

miners

݀ ݅, ݆ ்block

ଵି்ܤ ்ܤ

The miner who first 
completes the proof‐
of‐work can update 
the blockchain
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Cryptocurrencies

No confirmation lag (N=0)

ଵି்ܤ
miners

்ܤ

Time T Goods delivered on the spot

Seller gets payment after 
confirmation
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Cryptocurrencies

Time T

No confirmation lag (N=0)

ଵି்ܤ
miners

்ܤ

miners

Buyer perform secret mining
to undo the payment  

If successful, buyer gets goods 
without paying the seller
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Cryptocurrencies

One confirmation lag (N=1)

ଵି்ܤ
miners

்ܤ

Time T Time T+1

Goods delivered after one 
confirmation

Seller gets payment after 
one confirmation
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Cryptocurrencies
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Cryptocurrencies

One confirmation lag (N=1)

ଵି்ܤ
miners

்ܤ

Time T Time T+1

miners miners

ାଵ்ܤ

Need to 
secretly 
mine for 
N+1=2 
period
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Cryptocurrencies

How Cryptocurrency works
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Cryptocurrencies

Questions

Take as given the design of the cryptocurrency system:

1. How well does it function as a payment system?

2. How to optimally set policy parameters?
e.g. currency growth, transaction fees

3. How best to use it for different types of transactions?
e.g. retail vs large value
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Model

Environment

Based on Lagos and Wright (2005)

Time is discrete: t = 0, 1, 2, ...

Three types of agents.

I B buyers

I σB sellers

I M miners

Buyers and seller use balances recorded in a ledger to finance bilateral
trade.

Balances in the ledger grow at rate µ and there are transaction fees τ .

Chiu & Koeppl – Cryptocurrencies 26



Model

Proof-of-Work

M miners compete to update the ledger by solving a costly
computational task with a random success rate.

Miner i chooses computer power qi to maximize profits

ρ(qi)R− qiα

where

I R mining reward in real terms

I α price of computer power

I ρ probability of winning given by

ρ(qi) =
qi∑M

m=1 qm

Results:

1) Higher R induces higher mining activities
∑M
m=1 qm = MQ.

2) As M →∞, all rents R are dissipated. Micro
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Model

Trading

DayNightDay

buy xsell h

t t + 1

buyer:

sell xseller: buy h

I Preferences
I Buyer: εu(xt) − ht, where ε ∼ F

I Seller: −c(xt) + ht

I Trading
I Day: buyer sells h to acquire balances z

I Night: spends d ≤ z to buy x from a seller

I Next day: the seller uses d to buy h
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Model

Night Trading

n = 0 n = 1 n = 2 ... ... ... ... n = N̄

t t+ 1

Day Market Night Market

I In session 0, a buyer meets with a seller and makes a
take-it-or-leave-it-offer (x, d,N)

I immediate payment d in real balances

I x goods to be delivered after confirmations of the payment in N
consecutive blocks

I After trade, the buyer can attempt to double spend
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Double Spending

Transactions in Lagos-Wright

n = 0 n = 1 n = 2 ... ... n = N

(zb, zs)

n = N̄
start with

(x, d)
buyer offers seller rejects (zb, zs)

accepts
(zb − d, zs + d)

... ...
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Double Spending

Double-Spending Problem

n = 0 n = 1 n = 2 ... ... n = N

(zb, zs)

n = N̄
start with

(x, d,N)
buyer offers seller

... ...
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Double Spending

No Double Spending Constraint

For any contract (x, d,N), the expected payoff from a DS attempt is

D0(d,N) = max
{qn}Nn=0

P
β

µ
[d+R(1 +N)]−

N∑

n=0

(
n−1∏

t=0

qn
QM + qn

)
αqn

where

P =

N∏

n=0

(
qn

QM + qn

)
is the prob. of success

R =
Z(µ− 1) +Dτ

N̄ + 1
are the rewards form mining

Lemma

If D0(d,N) = 0, then the contract (x, d,N) is double-spending proof.
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Double Spending

Double-Spending Proof Contracts

Proposition

Suppose M →∞. A contract (x, d,N) is double-spending proof (i.e.
settlement is final) if

d < R(N + 1)N .

Otherwise, the settlement is final only with probability

1− P (d,N) =
N + 1√

d
R + (N + 1)

.

Results:

I Settlement cannot be both immediate (N = 0) and final (P = 0).

I Rewards help discourage double spending and improve finality.

I There is a trade-off between trade size d, settlement lag N and
finality 1− P .
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Double Spending

Key Trade-off
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Figure: Trade Size vs. Settlement Lag vs. Finality
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Double Spending

Cryptocurrency Equilibrium

Definition

A DS-proof cryptocurrency equilibrium with (µ, τ) and M →∞ is
given by contracts (x(ε), d(ε), N(ε)), money demand z(ε) and a
mining choice q such that

1. the contracts satisfy the No-DS-constraint,

2. the money demand and the offer maximizes a buyer’s utility,

3. the mining choice maximizes a miner’s utility

4. and markets clear.

Theorem Proof

A DS-proof cryptocurrency equilibrium exists for B sufficiently large.
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Double Spending

Optimal Reward Scheme

Define social welfare as

W = B

∫
[σδN(ε)εu(x(ε))− x(ε)]dFε(ε)

︸ ︷︷ ︸
trade surplus

− β

µ
R(N̄ + 1)

︸ ︷︷ ︸
mining costs

Proposition
The optimal reward structure sets transaction fees to zero and only
relies on seignorage: τ = 0 and µ > 1.

I The reason is that the inflation tax is shared by all buyers while
transaction fees are paid only by the active ones who have a high
valuation of money.

I ... levying reward costs upfront in terms of inflation allows
distortions to be smoothed out across all buyers

I Implication: long-run zero currency growth is suboptimal
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Quantitative

Calibration – Basic Parameters

values targets
β 0.999916 period length = 1 day
δ 0.999999 block time = 10 min
µ 1.00025 money growth (9.6% p.a.)
τ 0.000088 total fees/vol per block
B 6873428 max. # of average-sized transactions
σ 0.0178 vol per day/total BTC
α 1 normalized

Source: 2015 data from Blockchain.info

I We use log utility.

I We use data on the distribution of transactions.

I Confirmation lags cannot be observed directly.

Details
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Quantitative

1. Welfare Comparison

Regime Welfare Cost as % of consumption

Cash (Friedman Rule) 0%
Cash (2% inflation) 0.003%

Bitcoin (benchmark) 1.410%
µ− 1 = 9.5%, τ = 0.0088% mining cost: $359.98 millions

Bitcoin (optimal policy) 0.080%
µ− 1 = 0.17%, τ = 0% mining cost: $6.9 millions

I Welfare loss is currently very large mainly due to the mining
cost.

I ... can be reduced substantially by lowering money growth and
setting transaction fees to zero.

I Long-run BTC design will bring money growth to 0 and is, thus,
inefficient.
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Quantitative

2. Best Usage of Cryptocurrency Technology

Retail Payments Large Value Payments
(US Debit cards) (Fedwire)

avg transaction size $38.29 $6552236
annual volume 59539 millions 135 millions

optimal µ 0.038% 0.53%
optimal τ 0% 0%

confirmation lag 2mins 12mins

welfare loss 0.00052% 0.0060%
mining cost (per year) $4.33 millions $22.10 billions

I DS-proof iff d < R ·N(1 +N)
I retail: small trade size, high volume
I interbank: large trade size, low volume

retial system incurs a lower welfare loss and mining costs
... requires smaller rewards
... induces shorter confirmation lags
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Conclusion

What to Take Away

1) Owing to its digital nature, a cryptocurrency is fundamentally
different from cash.

2) One can understand the economics of such a system well by
looking at the incentives to double-spend.

3) BITCOIN is not only really expensive in terms of mining costs,
but also inefficient in its long-run design.

4) It provides a more efficient payment system when the volume of
transactions is large relative to the individual transaction size.

On-going project: Blockchain for security settlement, cross-border
payments, ...
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Microfoundations for Mining

Investing computing power qm allows a miner to solve the PoW
problem with probability

F (t) = 1− e−µm·t

within a time interval t, where 1/µm = D/q(m) is the expected time
to solve the problem.

Hence, D is the difficulty parameter for the PoW problem.

The first solution among miners, min(τ1, . . . , τM ), is thus also
exponentially distributed and the probability for any miner to solve it
first is given by

ρn(qn) =
qn∑M

m=1 qm
.

Back
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Oligopolistic Mining Equilibrium

Maximizing profits by miner j yields as a FOC



∑N
i=1 qi − qj(∑N
i=1 qi

)2


 β

µ
R = α

Imposing symmetry, we obtain for the total mining cost

C = αMQ =
M − 1

M

β

µ
R.

For M →∞ all rents are dissipated and we obtain

C =
β

µ
R

Back
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Trading
DayNightDay

buy xsell h

t t + 1

buyer:

sell xseller: buy h

Two markets

I centralized market in day

I decentralized market at night

Preferences

I Buyer: εu(xt)− ht, where ε ∼ F

I Seller: −xt + ht

Trading

I Day: buyer sells h to acquire real balances z

I Night: spends d ≤ z to buy x from a seller

I Next day: the seller uses d to buy h
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Day Market

n = 0 n = 1 n = 2 ... ... ... ... n = N̄

t t+ 1

Day Market Night Market

The value of a buyer who draws ε is

max
z′,h
−h+ V (z′; ε)

subject to

h+ z ≥ z′ ≥ 0

where z′ are the real balances carried to the night market.

Assumption:

Transactions can be perfectly monitored and there is full liability so
that double spending is not a problem.
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Night Market

n = 0 n = 1 n = 2 ... ... ... ... n = N̄

t t+ 1

Day Market Night Market

The night market is divided into N̄ + 1 trading sessions.

I In session 0, a buyer meets with a a seller w.p. σ and makes a
take-it-or-leave-it-offer (x, d,N).

I There is immediate payment d in real balances.

I x goods are to be delivered after confirmation of the payment in
N consecutive blocks.

The offer (x, d,N) determines whether the buyer has an incentive to
double spend or not. Back
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Optimal DS Proof Contracts

At the start of the night market, the buyer with z makes a
take-it-or-leave-it offer (x, d,N) to a seller.

The buyer will never carry more real balances than necessary so that
z = d and the offer is given by (x(d), N(d)).

Requiring the offer to be double spending proof the buyer solves

max
(x,d,N)

−d+ V (d; ε)

subject to

V (d; ε) = σδNεu(x) + (1− σ)
β

µ
d

x ≤ β

µ
d(1− τ)

d ≤ R(N + 1)N
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Sufficient Condition for DS proof

The optimal contract is DS proof if

σ [δεmaxu
′(x̄)(1− τ)E(x)− 1] < i

where

x̄ = (1− τ)2R is the maximum trade size with N = 1

E(x) ≤ 3

4
is the elasticity of x w.r.t. d at N = 1

The reason is that the tightest constraint to avoid DS is a
confirmation lag of N = 1.

This condition is satisfied when
I the opp. cost of carrying balances is high (i is high)

I the matching friction is high (σ is low)

I the marginal utility is low (ε is low)
Back
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Existence Proof

We use Kakutani’s Fixed Point Theorem.

Fix (µ, τ). The reward R determines the aggregate money supply
S(R) which in turn determines total rewards R′. Hence, we need to
find a fixed point for R given aggregate money demand for a
correspondence

T (R) =

(
(µ− 1) + στ

N̄ + 1

)
S(R).

Aggregate money demand can be shown to be u.h.c, convex in R
which pins down the aggregate transaction fees and, hence, R′.

Furthermore, given B sufficiently large, we can find a lower bound on
Rmin > 0 such that R > Rmin.

Hence, we can restrict the correspondence to a compact set and show
that the correspondence has a closed graph.

Back
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Optimal Contracts

We use data on transactions to recover the implied distribution of ε.
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Optimal Design I – Effects of Money Growth Rate
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I Higher inflation implies distortions and higher mining costs ...

I .. but positive inflation is optimal due to lower confirmation lags.
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Optimal Design II – Effects of Transaction Fees
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I Same trade-off ...

I ... but zero transaction costs seem to be optimal given µ > 0.
Back

Chiu & Koeppl – Cryptocurrencies 57


	Introduction
	Cryptocurrencies
	Model
	Double Spending
	Quantitative
	Conclusion
	Appendix

