Credit Spreads and the Macroeconomy

Simon Gilchrist Boston University and NBER

Joint BIS-ECB Workshop on Monetary Policy & Financial Stability
Bank for International Settlements
Basel, Switzerland
September 10, 2009

Credit Spreads and Economic Activity

- Research on the role of financial asset prices in cyclical fluctuations stresses the information content of credit spreads for the state of the economy and risks to the economic outlook.
- Information content of credit spreads likely reflects disruption in the supply of credit stemming from:
 - Worsening of the quality of borrowers' balance sheets.
 - Deterioration in the soundness of financial intermediaries.

GYZ (2009): Methodology

- Use security-level data to construct bond portfolios that assign each bond outstanding to a category determined by:
 - Firm-specific expected probability of default (EDF).
 - Bond-specific remaining term-to-maturity.
- Use CRSP equity returns to construct matched equity portfolios.

GYZ (2009): Forecasting Framework

- Measures of economic activity:
 - EP: log of private nonfarm payroll employment
 - IP: log of industrial production
- Forecasting VAR specification:

$$\Delta^{h} \text{EP}_{t+h} = \beta_{1}(L) \Delta \text{EP}_{t} + \beta_{2}(L) \Delta \text{IP}_{t} + \eta_{1}' Z_{1t} + \eta_{2}' Z_{2t} + \epsilon_{1,t+h}$$

$$\Delta^{h} \text{IP}_{t+h} = \gamma_{1}(L) \Delta \text{EP}_{t} + \gamma_{2}(L) \Delta \text{IP}_{t} + \theta_{1}' Z_{1t} + \theta_{2}' Z_{2t} + \epsilon_{2,t+h}$$

- $Z_{1t} =$ standard default-risk indicators (CP-bill spread, Aaa, Baa, HY spread)
- $Z_{2t} = \text{EDF-based}$ portfolio credit spreads

GYZ (2009): In-Sample Predictive Power (Sample period: Feb1990–Sep2008; 12-month forecast horizon)

Industrial Production (IP) Nonfarm Employment (EP) Adj. R^2 $Pr > W_1$ $Pr > W_2$ Adj. R^2 Credit Spreads $Pr > W_1$ $Pr > W_2$ Standard 0.003 0.665 0.109 0.200 EDF-O1 0.0000.7270.000 0.563 EDF-O2 0.0000.759 0.0000.641 EDF-O3 0.0000.739 0.000 0.528 EDF-O4 0.0000.704 0.0000.439 EDF-O5 0.000 0.0000.685 0.420Standard & EDF-O1 0.000 0.0000.809 0.2970.000 0.585 0.128 Standard & EDF-Q2 0.016 0.0000.817 0.000 0.679 Standard & EDF-O3 0.000 0.0000.816 0.000 0.000 0.645 Standard & EDF-O4 0.000 0.0000.795 0.021 0.000 0.552 Standard & EDF-Q5 0.0000.0000.791 0.015 0.0000.500 Memo: None 0.537 0.042

GYZ (2009): Out-of-Sample Predictive Power

(Sample period: Feb1990–Sep2008; 12-month forecast horizon)

	Nonfarm Employment (EP)			Industr	ial Produc	ction (IP)
Credit Spreads	RMSFE	Ratio	$\Pr > S $	RMSFE	Ratio	$\Pr > S $
Standard	1.113	-	-	3.676	-	-
EDF-Q1	0.693	0.387	0.002	2.087	0.323	0.000
EDF-Q2	0.667	0.359	0.001	2.004	0.297	0.000
EDF-Q3	0.740	0.442	0.000	2.279	0.384	0.000
EDF-Q4	0.902	0.659	0.094	2.704	0.541	0.004
EDF-Q5	0.872	0.613	0.092	2.574	0.490	0.001
Standard & EDF-Q1	0.827	0.551	-	2.571	0.489	-
Standard & EDF-Q2	0.816	0.537	-	2.238	0.371	-
Standard & EDF-Q3	0.814	0.535	-	2.376	0.418	-
Standard & EDF-Q4	0.869	0.609	-	2.686	0.539	-
Standard & EDF-Q5	0.864	0.602	-	2.948	0.643	-
Memo: None	1.115	-	-	3.882	-	-

GYZ (2009): Summary of Results

- Predictive content of credit spreads is concentrated in long-maturity corporate bonds issued by medium-risk firms.
- Shocks to medium-risk, long-maturity credit spreads account for a significant fraction of the variance in economic activity at 1–2 year horizon over the 1990–2008 period.

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

GOZ (2009): Methodology

- Use bond-level data to construct a medium-risk, long-maturity corporate credit spread for the 1973:Q1–2009:Q1 period.
 - Compare its predictive content for economic activity with that of other standard financial indicators.
 - Predictive power of medium-risk long-maturity spreads suggests important linkages between financial conditions and macroeconomic outcomes.
- Estimate a DSGE model (CEE/SW) with the financial accelerator mechanism emphasized by BGG.
 - Distinguish between movements in credit supply and demand.
 - Account for GE effects between financial and real sectors.

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

Data Description

- Credit Spreads: prices of outstanding corporate bonds traded in the secondary market (Lehman/Warga & Merrill Lynch):
 - Sample period: Jan1973–Mar2009
 - 921 U.S. (nonfarm) nonfinancial issuers
 - 5,635 senior unsecured issues
 - Spreads relative to yields on comparable-maturity Treasuries
- Credit Risk: Merton (1974) distance-to-default (DD) model

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

Corporate Bond Characteristics (Jan1973–Mar2009)

Bond Characteristic	Mean	SD	Min	P50	Max
# of bonds per firm/month	3.26	3.79	1.00	2.00	60.0
Mkt. Value of Issue (\$mil.)	287.4	280.4	1.19	219.8	6,617
Maturity at Issue (years)	13.9	9.4	1.0	10.0	50.0
Term to Maturity (years)	11.8	8.63	0.01	8.7	30.0
Duration (years)	6.27	3.14	0.00	6.04	24.4
Credit Rating (S&P)	-	-	D	A3	AAA
Coupon Rate (pct.)	7.66	2.17	0.00	7.38	17.5
Nominal Effective Yield (pct.)	8.12	2.87	1.20	7.71	57.4
Credit Spread (bps.)	166	200	10	111	4,901

Panel Dimensions

 $\begin{array}{ll} \text{Obs.} = 351,970 & N=5,635 \text{ bonds} \\ \text{Min. Tenure} = 1 & \text{Median Tenure} = 51 & \text{Max. Tenure} = 279 \end{array}$

Merton (1974) DD-Model

- ullet Value of the firm (V) follows a geometric Brownian motion.
- ullet Firm has just issued a discount bond (D) maturing in T periods.
- Distance-to-default (1-year horizon):

$$DD = \frac{\ln(V/D) + (\mu_V - 0.5\sigma_V^2)}{\sigma_V}.$$

- V, μ_V, σ_V estimated using data on E, D, μ_E, σ_E
- Medium-risk, long-maturity (M-R/L-M) credit spreads:
 - \bullet DD_{it} between P25 and P75 of the cross-sectional distribution.
 - Remaining term-to-maturity greater than 15 years.

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

Selected Corporate Credit Spreads (Jan1973–Mar2009)

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

Predictive Content of Credit Spreads for Economic Activity

Forecasting specification:

$$\Delta^{h} Y_{t+h} = \alpha + \sum_{i=0}^{n-1} \beta_{i} \Delta Y_{t-i} + \gamma_{1} T S_{t} + \gamma_{2} RFF_{t} + \gamma_{3} C S_{t} + \epsilon_{t+h}$$

- Y_t = an indicator of economic activity
- $TS_t = \text{term spread (3-month less 10-year)}$
- RFF_t = real federal funds rate
- $CS_t = \text{credit spread}$
- Economic activity indicators:
 - nonfarm payrolls, unemployment rate
 - manufacturing industrial production, real business inventories
 - real GDP, real business fixed investment

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

Credit Spreads and Labor Market Indicators

Unemployment Rate						
Financial Indicator	(1)	(2)	(3)			
Term Spread (3m-10y)	0.314	0.289	0.268			
	(0.021)	(0.019)	(0.020)			
Real Federal Funds Rate	0.088	0.093	0.085			
	(0.012)	(0.012)	(0.011)			
Baa Credit Spread	-	-0.169	-			
_		(0.046)				
M-R/L-M Credit Spread	-	-	0.639			
•			(0.039)			
Adj. R^2	0.400	0.399	0.473			

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

Credit Spreads and Production Indicators

Manufacturing Industrial Production						
Financial Indicator	(1)	(2)	(3)			
Term Spread (3m-10y)	-1.248	-1.218	-1.009			
-	(0.408)	(0.358)	(0.424)			
Real Federal Funds Rate	-0.502	-0.506	-0.474			
	(0.211)	(0.208)	(0.193)			
Baa Credit Spread	-	0.202	-			
		(0.937)				
M-R/L-M Credit Spread	-	-	-3.540			
			(0.974)			
Adj. R^2	0.316	0.312	0.412			

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decompositio

Credit Spreads Economic Activity Indicators

Real G	DP		
Financial Indicator	(1)	(2)	(3)
Term Spread (3m-10y)	-0.635	-0.581	-0.557
	(0.211)	(0.206)	(0.222)
Real Federal Funds Rate	-0.135	-0.139	-0.132
	(0.140)	(0.138)	(0.129)
Baa Credit Spread	-	0.364	-
		(0.482)	
M-R/L-M Credit Spread	-	-	-1.205
•			(0.537)
Adj. R^2	0.285	0.297	0.345

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

Credit Spreads and Economic Activity Indicators

Real Business Fixed Investment						
Financial Indicator	(1)	(2)	(3)			
Term Spread (3m-10y)	-0.703	-0.912	0.070			
	(0.548)	(0.533)	(0.589)			
Real Federal Funds Rate	-0.924	-0.875	-0.848			
	(0.322)	(0.292)	(0.300)			
Baa Credit Spread	-	-2.565	-			
_		(1.465)				
M-R/L-M Credit Spread	-	-	-7.508			
•			(1.324)			
Adj. R^2	0.339	0.352	0.533			

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

Comparison of Out-of-Sample Predictive Accuracy (Sample period: 1973:Q1–2009:Q1; 4-quarter forecast horizon)

- Specification 1: term spread, real funds rate, Baa credit spread
- Specification 2: medium-risk, long-maturity credit spread

Economic Activity Indicator	RMSFE-1	RMSFE-2	Ratio	$\Pr > S $
Private Payroll Employment	1.597	0.949	0.594	0.019
Unemployment Rate	0.840	0.562	0.669	0.022
Mfg. Industrial Production	4.693	3.132	0.667	0.007
Real Business Inventories	2.146	1.631	0.760	0.011
Real GDP	1.917	1.177	0.614	0.001
Real Business Fixed Investment	5.858	4.561	0.779	0.114

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

"Great Moderation"

	Economic Activity Indicator					
Financial Indicator	EMP	UEMP	IPM	INV	GDP	BFI
Term Spread	-0.356	0.189	-0.778	-0.467	-0.201	0.556
_	(0.095)	(0.018)	(0.357)	(0.212)	(0.249)	(0.683)
Real FFR	-0.015	0.002	0.791	0.297	0.192	0.023
	(0.077)	(0.013)	(0.305)	(0.166)	(0.178)	(0.534)
M-R/L-M Credit Spread	-1.456	0.726	-6.790	-2.572	-1.954	-11.00
•	(0.181)	(0.042)	(0.699)	(0.475)	(0.356)	(1.434)
Adj. R^2	0.758	0.545	0.517	0.544	0.386	0.683

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

Civilian Unemployment Rate

(Sample period: Jan1973–Dec2008; 12-month forecast horizon)

Data Sources & Methods
Forecasting Analysis
Outlook As of the End of 2008
DSGE Model
Impulse Responses
Historical Shock Decomposition

Real Business Fixed Investment

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

Estimated DSGE Model

Smets & Wouters (2007); Christiano, Motto & Rostagno (2009)

- Key features of the model:
 - Habit formation in consumption.
 - Higher-order adjustment costs to investment.
 - Variable capacity utilization.
 - Calvo-style price rigidities with partial indexation—New Keynesian Phillips curve.
 - Calvo-style wage rigidities with partial indexation.
 - Nominal interest rate rule responds to inflation, output gap, and output growth.

Adding the BGG Financial Accelerator Mechanism

 Use medium-risk long-horizon credit spreads to measure external finance premium:

$$s_{t} = -\chi (n_{t} - q_{t} - k_{t}) + \varepsilon_{t}^{fd}$$

$$n_{t} = \frac{K}{N} r_{t}^{K} - \left(\frac{K}{N} - 1\right) (s_{t-1} + r_{t-1} - \pi_{t}) + \theta n_{t-1} + \varepsilon_{t}^{nw}$$

- Allow for credit-supply shocks:
 - ε_t^{fd} : disturbances to credit intermediation process
 - ε_t^{nw} : disturbances to asset values that serve as collateral

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

Leverage in the U.S. Nonfinancial Corporate Sector (1973:Q1–2009:Q1)

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decompositio

Contractionary Monetary Policy Shock

(1-standard-deviation shock to federal funds rate)

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

Adverse Credit Spread Shock (1-standard-deviation shock to credit spreads)

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

Adverse Net Worth Shock

(1-standard-deviation shock to net worth)

Data Sources & Methods
Forecasting Analysis
Outlook As of the End of 2008
DSGE Model
Impulse Responses
Historical Shock Decomposition

Decomposition of Investment Growth

(Percentage point deviation (annual rate) from steady state)

Data Sources & Methods Forecasting Analysis Outlook As of the End of 2008 DSGE Model Impulse Responses Historical Shock Decomposition

Decomposition of Output Growth

(Percentage point deviation (annual rate) from steady state)

GZ (2009): Motivation

- Spreads on medium-risk, long-maturity corporate bonds have greatest predictive content for business cycle fluctuations.
- Cyclical variation in credit spreads on shorter-maturity corporate bonds most likely reflects cyclical movements in expected default risk.
- Cyclical variation in credit spreads on long-maturity corporate bonds most likely reflects variation in the price of default risk.

GZ (2009): Methodology

- Credit spread decomposition:
 - Component attributable to expected default risk.
 - Excess bond premium: price of default risk.
- Analysis:
 - Predictive content of the excess bond premium for economic activity and excess stock returns.
 - VAR decomposition: Do shocks to the excess bond premium cause fluctuations in real activity and asset prices at business cycle frequencies?

GZ (2009): Main Findings

- Predictive content of credit spreads for real activity variables entirely due to movements in the excess bond premium.
- Excess bond premium predicts the stock market as well as (or better) other financial variables (e.g., dividend-price ratio, "CAY," slope of the yield curve).
- Excess bond premium is closely related to conditions in credit markets as measured by the changes in bank lending standards.
- Shocks to the excess bond premium account for 40% of the variation in output growth and 20% of the variation in the excess market return at business cycle frequencies.

Identifying the Excess Bond Premium

• Corporate bond pricing model:

$$\ln S_{it}^{k} = \beta_1 \ln[D/V]_{i,t-1} + \beta_2 \mu_{V_{i,t-1}} + \beta_3 \ln \sigma_{V_{i,t-1}} + \theta' \mathbf{x}_{it}^{k} + \epsilon_{it}^{k}$$

- $S_{it}^k = \text{credit spread on bond } k \text{ (issued by firm } i) \text{ in month } t$
- DD-model components: D_{it} , V_{it} , $\mu_{V_{it}}$, $\sigma_{V_{it}}$
- $\mathbf{x}_{it}^k = \text{bond/firm-specific control variables}$
- Excess bond premium: cross-sectional average of OLS residuals $\hat{\epsilon}_{it}^k$ in month t:

$$EBP_t = \frac{1}{M_t} \sum_{t} \hat{\epsilon}_{it}^k$$

Empirical Framework EBP and Real Economic Activi EBP and the Stock Market Macroeconomic Implications

Estimated Corporate Bond Pricing Model

(Sample period: Feb1973–Mar2009)

Explanatory Variable	(1)	(2)	(3)	(4)
Constant	1.578	0.686	0.583	0.726
	(0.092)	(0.071)	(0.074)	(0.070)
$ln(PAR_i^k)$	0.048	-0.007	0.002	0.002
	(0.014)	(0.010)	(0.009)	(0.008)
$ln(DUR_{it}^k)$	-0.040	0.043	0.043	0.042
	(0.013)	(0.009)	(0.009)	(0.009)
$\ln(D/V)_{i,t-1}$	0.435	0.155	0.150	0.352
	(0.025)	(0.016)	(0.016)	(0.033)
$\mu_{V_{i,t-1}}$	-0.310	-0.439	-0.438	-0.412
2,2	(0.043)	(0.030)	(0.030)	(0.030)
$\ln(\sigma_{V_{i,t-1}})$	0.796	0.458	0.448	0.451
, 1	(0.037)	(0.027)	(0.026)	(0.025)
$[\ln(D/V)_{i,t-1}]^2$	-	-	-	0.063
, ,-,2				(0.008)
Adj. R^2	0.306	0.501	0.506	0.512
Ratings Effects	-	0.000	0.000	0.000
Industry Effects	-	-	0.000	0.000

Excess Corporate Bond Premium (Feb1973–Mar2009)

Empirical Framework
EBP and Real Economic Activity
EBP and the Stock Market
Macroeconomic Implications

Predictive Content of EBP for Economic Activity

(Sample period: Feb1973–Mar2009)

	Forecast Horizon (h months)					
		h = 3			h = 12	
Explanatory Variable	EMP	UEMP	IPM	EMP	UEMP	IPM
Term Spread	-0.021	0.073	-0.057	-0.189	0.315	-0.271
	[0.521]	[2.877]	[0.880]	[3.707]	[36.58]	[3.222]
Real Funds Rate	-0.039	0.030	-0.006	-0.100	0.039	-0.049
	[0.858]	[1.032]	[0.075]	[1.823]	[4.653]	[0.551]
Excess Bond Premium	-0.312	0.372	-0.472	-0.359	0.393	-0.427
	[7.914]	[16.61]	[6.339]	[10.14]	[69.55]	[6.057]
Adj. R^2	0.699	0.440	0.439	0.519	0.418	0.356

Empirical Framework
EBP and Real Economic Activity
EBP and the Stock Market
Macroeconomic Implications

Predictive Content of EBP for Real GDP

(Sample period: 1973:Q1–2009:Q1)

	Forecast	Forecast Horizon (h quarters)			
Explanatory Variable	h = 1	h = 2	h = 4		
Term Spread	-0.091	-0.168	-0.331		
	[0.953]	[1.563]	[2.638]		
Real Funds Rate	-0.063	-0.103	-0.072		
	[0.604]	[0.900]	[0.544]		
Excess Bond Premium	-0.412	-0.446	-0.318		
	[4.990]	[5.085]	[3.528]		
Adj. R^2	0.286	0.379	0.327		

Empirical Framework EBP and Real Economic Activ EBP and the Stock Market Macroeconomic Implications

Predictive Content of EBP for Excess Stock Returns

(Sample period: 1973:Q1–2009:Q1)

	Forecast	Forecast Horizon (h quarters)			
Explanatory Variable	h = 1	h = 2	h = 4		
Log Dividend-Price Ratio	0.083	0.121	0.166		
-	[0.902]	[1.036]	[0.988]		
Term Spread	0.104	0.054	-0.057		
-	[0.889]	[0.344]	[0.297]		
Relative Interest Rate	-0.179	-0.122	-0.100		
	[1.667]	[0.992]	[0.848]		
"CAY"	0.155	0.197	0.261		
	[2.045]	[2.156]	[2.116]		
Excess Bond Premium	-0.272	-0.272	-0.256		
	[2.526]	[1.872]	[1.604]		
Adj. R^2	0.069	0.103	0.193		

Empirical Framework EBP and Real Economic Activ EBP and the Stock Market Macroeconomic Implications

"Great Moderation"

(Sample period: 1986:Q1–2009:Q1)

Explanatory Variable	Forecast Horizon (h quarters)		
	h = 1	h = 2	h = 4
Log Dividend-Price Ratio	0.140	0.184	0.172
	[0.926]	[0.992]	[0.601]
Term Spread	0.192	0.243	0.059
	[1.542]	[1.437]	[0.288]
Relative Interest Rate	-0.081	-0.076	0.086
	[0.628]	[0.512]	[0.579]
"CAY"	0.064	0.095	0.202
	[0.582]	[0.745]	[1.078]
Excess Bond Premium	-0.420	-0.585	-0.512
	[2.888]	[3.171]	[2.303]
Adj. R^2	0.119	0.280	0.364

Shocks to the Excess Bond Premium

- Evidence suggests that movements in the EBP capture changes in the price of default risk, which are related to the willingness of financial intermediaries to supply credit.
- 6-variable VAR(2) specification:
 - log-difference of real GDP
 - log-difference of GDP price deflator
 - 10-year (nominal) Treasury yield
 - effective federal funds rate
 - excess (value-weighted) total market return
 - excess bond premium
- Estimation period: 1986:Q1–2009:Q1
- EBP shocks identified using the Cholesky decomposition.

Empirical Framework EBP and Real Economic Activity EBP and the Stock Market Macroeconomic Implications

Adverse EBP Shock

(1-standard-deviation shock to EBP)

Empirical Framework EBP and Real Economic Activit EBP and the Stock Market Macroeconomic Implications

Forecast Error Variance Decomposition

(1-standard-deviation shock to EBP)

Percent 100 80 60

Percent

18

20

60

40

20

Empirical Framework
EBP and Real Economic Activit
EBP and the Stock Market
Macroeconomic Implications

EBP & Changes in Business Lending Policies at Banks (1973:Q1–2009:Q1)

Summary of Results

- Medium-risk long-maturity (M-R/L-M) credit spreads have substantial predictive power for economic activity.
- Estimation of a DSGE model that uses M-R/L-M credit spreads to identify financial market distortions implies important role for credit-supply shocks for investment and output at business cycle frequencies.
- Information content of credit spreads reflects movements in the excess bond premium.

Concluding Remarks

- Interpretation:
 - Corporate bond spreads reflect downside risk not well captured by variation in stock returns.
 - Corporate bond spreads reflect "risk-aversion" of financial intermediaries.
- In both cases, disruptions in credit markets have important consequences for macroeconomic outcomes.
- Integrating asset pricing with macroeconomic models used in policy analysis is a necessary step to understanding the interaction between the financial sector and the real economy.