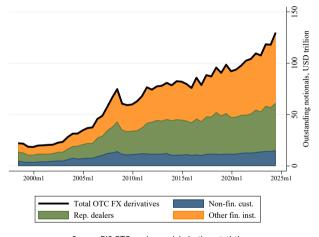
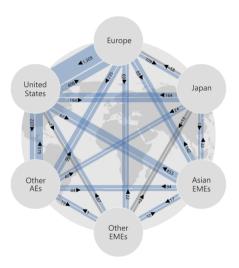
Global Portfolio Investments and FX Derivatives

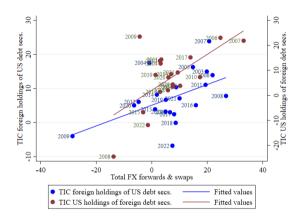

Tsvetelina Nenova BIS Andreas Schrimpf BIS & CEPR

Hyun Song Shin BIS & CEPR

September 2025

<u>Disclaimer:</u> The views are those of the authors and do not necessarily reflect those of the BIS.


Outstanding FX derivatives have grown tremendously since 2009


Source: BIS OTC semi-annual derivatives statistics

- FX swaps as largest instrument & central role of the US dollar (on one side of 90% of transactions)
- NBFIs (pension funds, insurers and hedge funds) as key driver of this growth

Global cross-border bond holdings

FXD activity tends to increase with cross-border bond investments

Focus here on cross-border debt securities positions (higher prevalence of hedging):

- Foreign holdings of US assets (blue)
- US holdings of foreign assets (red)

What we do...

- Draw on BIS semi-annual OTC derivatives statistics for FX swaps and forwards
- Link FX derivative activity with cross-border bond investments
- Devise a simple portfolio choice model (building on Du & Huber (2024)) to guide empirical evaluation of hedging activity drivers
 - focus on relative yield curve dynamics, hedging costs, and risk appetite

Key take-aways:

- \Rightarrow Symbiotic relation between FX derivatives activity & cross-border bond positions
- ⇒ FX derivatives fluctuations as **barometer** of global financial conditions

Related literature (selective)

FX hedging and bond investments

- Investors hedge currency risk in cross-border investments and especially so for bonds (McGuire et al., 2021; Du and Huber, 2024; Ahmed et al., 2023; Sialm and Zhu, 2024)
- NBFIs typically rely on short-term contracts to manage FX risk in long-term bonds (Hacioğlu-Hoke et al., 2024; Kubitza et al., 2025)

- Global financial cycle

 US monetary policy and financial markets drive global capital flows and asset prices (Rey, 2013; Miranda-Agrippino and Rey, 2020)

- FX derivatives markets

- CIP deviations and their impact on exchange rates
 (Du et al., 2018b,a; Du and Schreger, 2022; Bacchetta et al., 2024; Bräuer and Hau, 2022)
- Liquidity and other market characteristics influence FX derivatives trading (Kloks et al., 2023; Huang et al., 2025)

A simple theoretical framework

- Two-period bond portfolio choice problem for foreign investors into US bonds and a mirror problem for US investors
- We build on Du and Huber (2024), with extension that
 - allows each investor access to both foreign and domestic bonds
 - considers hedging on cross-border investments into and out of the US
 - assumes **full FX hedging** of all cross-border bond investments
- Allows to derive **key drivers of FX hedging volumes**: notably relative yield curve slopes, hedging costs, risk aversion and exchange rate

Model - The **foreign** investor (I)

Foreign investor allocates a portfolio of size $A_{i=l,t}$ between a risk-free and two risky assets:

- 1. the domestic risk-free rate rf_t^I
- 2. a domestic long-term bond with local currency return $r_{t+1}^l = r f_t^l + T_{t+1}^l$
- 3. an **FX-hedged USD long-term bond** with dollar return $r_{t+1}^{\$} = r f_t^{\$} + T_{t+1}^{\$}$

 $T_t^{\$/I}$ - (realized) risk premium compensation for taking on duration risk

Both bond returns feature the same volatility, $\sigma_{T^{\$}}^2$

Model - The **foreign** investor (II)

Excess return on hedged USD long-term bond from the foreign investor's perspective:

$$rx_{t+1}^{\$,H} \approx r_{t+1}^{\$} + (f_t^I - s_t^I) - rf_t^I$$

= $T_{t+1}^{\$} + rf_t^{\$} + (f_t^I - s_t^I) - rf_t^I$
= $T_{t+1}^{\$} + x_t^I$,

- Investor fully hedges exchange rate risk using an FX swap: $f_t^l s_t^l$ spot (forward) rate s_t (f_t) defined as units of the foreign currency per 1 USD
- $x_t^l = f_t^l s_t^l (rf_t^l rf_t^{\$})$ (cross-currency basis): commonly negative as it is more expensive to hedge USD than FC risk

Model - The foreign investor (III)

Maximization problem of the foreign investor:

$$\max_{w^{\$},w'}\mathbb{E}[\mathit{rx}_{t+1}^{\rho}] - \frac{\gamma_t}{2}\mathbb{V}\mathrm{ar}[\mathit{rx}_{t+1}^{\rho}]$$

 \Rightarrow Investor chooses portfolio weights $w^{\$}$ (w^{I}) in US (local) long-term bonds, leaving $1 - w^{\$} - w^{I}$ in the local risk-free asset

Portfolio excess return in local currency is given by

$$rx_{t+1}^{p} = w^{\$}\underbrace{(T_{t+1}^{\$} + x_{t}^{I})}_{rx_{t+1}^{\$,H}} + w^{I}\underbrace{T_{t+1}^{I}}_{rx_{t+1}^{I}}$$

The foreign investor: optimal portfolio weights and hedging demand

- The optimal portfolio weight for the US portion of the portfolio

$$w_{i=1}^{\$} = \frac{\sigma_{T'}^{2} (\overline{T_{t+1}^{\$}} + x_{t}^{I}) - \sigma_{T^{\$}, T'} \overline{T_{t+1}^{I}}}{\gamma_{t} (\sigma_{T^{\$}}^{2} \sigma_{T'}^{2} - (\sigma_{T^{\$}, T'})^{2})},$$

 $T_{t+1}^{\$/7}$ denotes expectation (as of time t) of the bond's excess return one period ahead

- The implied dollar volume of FX hedging is

$$\frac{A_{i=l,t}}{S_{t}^{l}} \times w_{i=l}^{\$} = \frac{A_{i=l,t}}{S_{t}^{l}} \times \frac{\sigma_{T^{l}}^{2} \left(\overline{T_{t+1}^{\$}} + x_{t}^{l}\right) - \sigma_{T^{\$},T^{l}}}{\gamma_{t} (\sigma_{T^{\$}}^{2} \sigma_{T^{l}}^{2} - (\sigma_{T^{\$},T^{l}})^{2})}$$

Mirror problem for US investor and total FX hedging demand

Proceed analogously for the **US investor** to derive weight on foreign assets

$$w'_{i=US} = \frac{\sigma_{T^{\$}}^{2} (\overline{T'_{t+1}} - x'_{t}) - \sigma_{T^{\$}, T'}}{\gamma_{t} (\sigma_{T^{\$}}^{2} \sigma_{T'}^{2} - (\sigma_{T^{\$}, T'})^{2})}$$

Differences:

- US investor benefits from a negative cross-currency basis
- No rescaling to hedging volume to express in dollars

US investor and total hedging demand

Summary: variables that affect FX hedging demand

Variable	Foreign	US	Data
US slope $\overline{T_{t+1}^{\$}}$	↑	↓	↑
Foreign slope $\overline{T_{t+1}^{l}}$	↓	↑	↓
$CCB x_t^l$	↑	↓	+
Risk aversion γ_t	↓	↓	↓
Spot FX S_t^I	↓	0	↓
US wealth $A_{i=US,t}$	0	↑	N/A
Foreign wealth $A_{i=l,t}$	↑	0	N/A

Data

- Amounts outstanding of outright forwards & FX swaps (from BIS OTCD statistics)
- 5 major currencies: EUR, JPY, GBP, CAD, CHF (mostly vis-à-vis USD)
- Combine with data on:
 - Domestic & foreign yield curves (3-month, 10-year)
 - 3-month CIP deviations (majority of FX derivative contracts have short maturity & hedges are rolled over
 - \rightarrow similar but weaker results using longer 2-year contract)
 - Proxies of global risk aversion: US financial conditions index & its underlying factors: equity, bond, FX markets' implied vols (VIX, MOVE, JPMFXVOL)

Empirical specification

Run panel regressions of the form:

$$\Delta_{t,t-6} \ln(FXswaps_{l,t}) = \alpha_l + \beta_1 \ \Delta_{t,t-6} Slope_{\$,t}^{10y-3m} + \beta_2 \ \Delta_{t,t-6} Slope_{l,t}^{10y-3m} \\ + \beta_3 \ \Delta_{t,t-6} CIPdev_{l/\$,t} + \beta_4 \ \Delta_{t,t-6} Risk_t + \beta_5 \ \Delta_{t,t-6} \ln(S_{l,t}) + \zeta_{l,t},$$

where $\Delta_{t,t-6}$ denotes the six-monthly difference in the respective variable

 $I \in \{CAD, CHF, EUR, GBP, JPY\}$ refers to the currency

LHS corresponds to (change in) outstanding notionals of FX swaps and outright forwards taken up by \mathbf{OFIs} in each currency outstanding at the end of month t

Baseline results

	(1)	(2)	(3)	(4)	(5)
Slope USD (10y-3m)	2.706** (1.239)	2.702** (1.248)	1.861 (1.161)	1.798 (1.116)	1.645 (1.123)
Slope local (10y-3m)	-7.346*** (1.656)	-7.348*** (1.661)	-4.827*** (1.582)	-4.730*** (1.521)	-5.106*** (1.524)
CIP dev. (3m)		0.062 (2.244)	-4.335** (2.178)	-4.774** (2.096)	
GS US FCI			-5.580*** (0.845)	-3.647*** (0.914)	-3.124*** (0.892)
Spot ER (local per 1 USD)				-0.502*** (0.108)	-0.490*** (0.109)
Currency FE	Yes	Yes	Yes	Yes	Yes
Obs Adj. Rsq.	258 0.06	258 0.05	258 0.19	258 0.25	258 0.24

- Steepening of US yield curve: FXD activity ↑ (but not sign. in all specs)
- Flattening of foreign yield curve: \uparrow FXD activity
- Tighter financial conditions: ↓ FXD activity

Results by currency / geography of investor

	(1)	(2)	(3)	(4)	(5)
	EUR	JPY	GBP	CHF	CAD
Slope USD (10y-3m)	4.511*	-0.174	1.047	2.894	-2.675
	(2.283)	(1.811)	(2.759)	(2.770)	(3.979)
Slope local (10y-3m)	-9.081***	-10.048*	-0.390	-6.163	-1.195
	(2.898)	(5.878)	(3.633)	(4.360)	(4.102)
CIP dev. (3m)	-1.839	-5.866	-5.137	-8.980**	0.418
	(4.705)	(4.057)	(5.436)	(4.239)	(5.688)
GS US FCI	-0.461	-3.924**	-6.794**	-3.651	0.728
	(1.942)	(1.636)	(2.548)	(2.360)	(2.136)
Spot ER (local per 1 USD)	-0.631**	-0.123	-0.412	-0.380	-1.631***
	(0.237)	(0.173)	(0.329)	(0.278)	(0.311)
Obs	50	52	52	52	52
Adj. Rsq.	0.29	0.15	0.30	0.15	0.48

⁻ Prominent role of investors with euro and yen liabilities

Results by counterparty sector

	(1)	(2)	(3)	(4)
	All	Other fin. inst.	Rep. dealers	Non-fin. customers
Slope USD (10y-3m)	0.258	1.798	-0.370	-1.748
	(0.975)	(1.116)	(1.308)	(1.256)
Slope local (10y-3m)	-2.800**	-4.730***	-2.298	0.080
	(1.329)	(1.521)	(1.783)	(1.712)
CIP dev. (3m)	-3.685**	-4.774**	-3.640	-1.776
	(1.832)	(2.096)	(2.457)	(2.360)
GS US FCI	-2.771***	-3.647***	-1.568	-2.893***
	(0.798)	(0.914)	(1.071)	(1.028)
Spot ER (local per 1 USD)	-0.509***	-0.502***	-0.636***	-0.290**
	(0.095)	(0.108)	(0.127)	(0.122)
Currency FE	Yes	Yes	Yes	Yes
Obs	258	258	258	258
Adj. Rsq.	0.25	0.25	0.15	0.08

⁻ Financial institutions other than dealers (OFIs) stand out, with weaker relations for other counterparty sectors

Results by alternative risk proxies

	(1)	(2)	(3)	(4)	(5)
Slope USD (10y-3m)	1.798 (1.116)	1.994 (1.581)	2.000* (1.137)	2.515** (1.154)	2.038* (1.116)
Slope local (10y-3m)	-4.730*** (1.521)	-3.691** (1.744)	-5.581*** (1.528)	-5.912*** (1.526)	-5.358*** (1.503)
CIP dev. (3m)	-4.774** (2.096)	-6.464*** (2.356)	-5.148** (2.326)	-4.352* (2.305)	-7.162*** (2.365)
Spot ER (local per 1 USD)	-0.502*** (0.108)	-0.661*** (0.113)	-0.636*** (0.102)	-0.669*** (0.100)	-0.613*** (0.099)
GS US FCI	-3.647*** (0.914)				
BIS US FCI (level)		0.052 (0.440)			
BIS US FCI (risk)		-1.280*** (0.388)			
VIX			-0.225** (0.096)		
MOVE				-4.947* (2.921)	
JP Morgan FX vol.					-1.118*** (0.300)
Currency FE	Yes	Yes	Yes	Yes	Yes
Obs Adj. Rsq.	258 0.25	220 0.27	258 0.22	258 0.21	258 0.25

19 / 21 Chart

Monetary policy spillovers and IV estimation

	(1)	(2)	(3)	(4)
Slope USD (10y-3m)	1.798	7.317***	1.496*	7.786***
	(0.963)	(2.040)	(0.869)	(1.897)
Slope local (10y-3m)	-4.730**	-14.015**	-3.772**	-13.762***
	(1.537)	(5.535)	(1.570)	(4.835)
CIP dev. (3m)	-4.774*	-3.003	-6.291***	-3.938
	(1.976)	(2.221)	(1.469)	(2.771)
GS US FCI	-3.647**	-2.345**	-7.003***	-4.703***
	(1.035)	(1.138)	(1.502)	(1.724)
Spot ER (local per 1 USD)	-0.502*	-0.471***	-0.213	-0.159
	(0.185)	(0.172)	(0.251)	(0.457)
Obs Adj. Rsq. Curr FE Endog. F (p-val): US slope F (p-val): LC slope F (p-val): US FCI F (p-val): TS FCI	258 0.26 Yes OLS	218 0.17 Yes Slopes (MP) 0.00 0.32	258 0.20 Yes FCI & FX (shift) 0.00 0.00	218 0.15 Yes All (MP+shift) 0.00 0.06 0.00 0.00

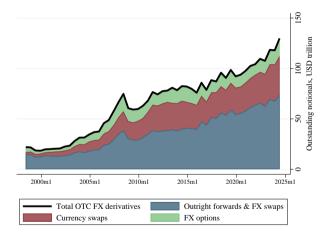
Conclusion

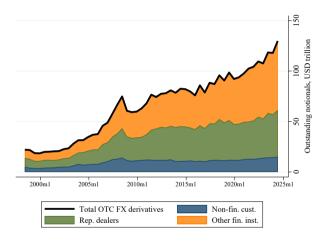
- Outstanding volumes in FX derivatives proxy for hedging activity of AE investors in international bond markets
- Symbiotic relation between hedging through FX derivatives and bond portfolio flows
- Yield curve slopes, hedging costs and risk appetite as key drivers of hedging
- Implications:
 - FX swaps as conduit of how financial conditions and shocks transmit globally
 - Central bank policies (not just by Fed) have far-reaching global consequences
 - Maturity mismatches could amplify vulnerabilities during market stress

 FX derivatives volumes & associated hedging activity ⇒ barometer of risk-taking & complementary indicator to track the global financial cycle - Annex slides -

BIS FX swaps and forwards by OFIs & TIC holdings by asset class

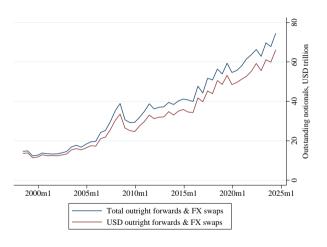
	(1)	(2)	(3)	(4)
	Total LT securities	LT debt	Equity	ST debt
Foreign into US	0.362***	0.442***	0.189*	-0.051
	(0.120)	(0.117)	(0.098)	(0.054)
US abroad	0.179*	0.171**	0.189**	0.094**
	(0.105)	(0.075)	(0.093)	(0.047)
Obs	125	125	125	210
Adj. Rsq.	0.15	0.14	0.12	-0.01


Financial conditions & portfolio flows to the US

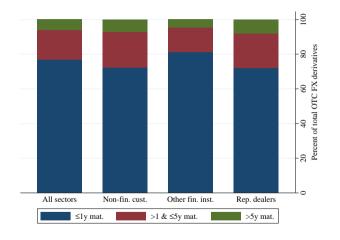

Stylized facts

- Rapid growth in FX derivatives since the 2008-09 financial crisis:
- Dominance of non-bank financial institutions (NBFIs):
 - Investment funds, pension funds, and insurance companies.
- USD's outsized role:
 - Appears in 90% of FX derivatives contracts.
- Maturity mismatch:
 - Short-term FX contracts hedge long-term bond investments.
 - Yield curve slopes are critical for hedging decisions.

Significant growth in FX derivatives markets post-GFC


Dominance of non-dealer financial institutions

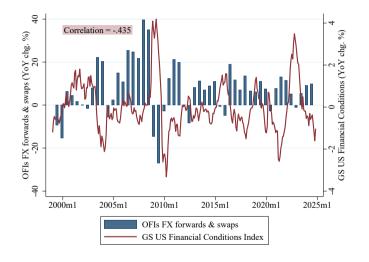
OFIs as key players behind hedging demand:


- Investment funds, pension funds, and insurance companies

USD's outsized role

- USD appears in 90% of FX derivatives contracts

Maturity mismatch of FX hedging



Total hedging demand

Total FX hedging demand can be obtained as a weighted sum of the FX-hedged cross-currency bond allocations of the **foreign** and the **US** investors:

$$\frac{A_{i=l,t}}{S_{t}^{l}} \times w_{i=l}^{\$} + A_{i=US,t} \times w_{i=US}^{l} =
= \frac{A_{i=l,t}}{S_{t}^{l}} \times \frac{\sigma_{T^{l}}^{2} \left(\overline{T_{t+1}^{\$}} + x_{t}^{l}\right) - \sigma_{T^{\$},T^{l}}}{\gamma_{t} \left(\sigma_{T^{\$}}^{2} \sigma_{T^{l}}^{2} - (\sigma_{T^{\$},T^{l}})^{2}\right)} + A_{i=US,t} \frac{\sigma_{T^{\$}}^{2} \left(\overline{T_{t+1}^{l}} - x_{t}^{l}\right) - \sigma_{T^{\$},T^{l}}}{\gamma_{t} \left(\sigma_{T^{\$}}^{2} \sigma_{T^{l}}^{2} - (\sigma_{T^{\$},T^{l}})^{2}\right)}$$

NBFI's FX derivatives volumes fluctuates with financial conditions

NBFI's FX derivatives (FXD) activity strengthens when financial conditions loosen (here captured by GS FCI)

Details on instruments in 2SLS estimation

- Use two types of high-frequency surprises constructed in short-windows around monetary policy events:
 - Interest rate surprises at 3-m and 10-yr maturities sourced from Jarociński (2024) for the US and Kearns et al. (2023) internationally
 - used to instrument changes in interest rate slopes
 - 2. FOMC risk shifts in the spirit of Kroencke et al. (2021); Bauer et al. (2023)
 - ightarrow not spanned by interest rate changes, captures channel via investor risk-taking
 - used to instrument the risk aversion proxies and exchange rates

References

- Ahmed, Ahmed, Boris Hofmann, and Martin Schmitz, "Foreign institutional investors, monetary policy, and reaching for yield," Technical Report, Bank for International Settlements 2023.
- Bacchetta, Philippe, J Scott Davis, and Eric Van Wincoop, "Exchange Rate Determination under Limits to CIP Arbitrage," Technical Report, National Bureau of Economic Research 2024.
- Bauer, Michael D, Ben S Bernanke, and Eric Milstein, "Risk appetite and the risk-taking channel of monetary policy," Journal of Economic Perspectives, 2023, 37 (1), 77–100.
- Bräuer, Leonie and Harald Hau, "Can Time-Varying Currency Risk Hedging Explain Exchange Rates?," Technical Report, CESifo Working Paper 2022.
- Du, Wenxin, Alexander Tepper, and Adrien Verdelhan. "Deviations from Covered Interest Rate Parity." The Journal of Finance, 2018, 73 (3), 915–957.
- and Amy Huber. "Dollar Asset Holdings and Hedging Around the Globe." Technical Report. National Bureau of Economic Research 2024.
- and Jesse Schreger, "CIP deviations, the dollar, and frictions in international capital markets," in "Handbook of International Economics," Vol. 6, Elsevier, 2022, pp. 147–197.
- Joanne Im. and Jesse Schreger. "The us treasury premium." Journal of International Economics, 2018, 112, 167–181.
- Hacioğlu-Hoke, Sinem, Daniel Ostry, Hélène Rey, Adrien Rousset Planat, Vania Stavrakeva, and Jenny Tang, "Topography of the FX derivatives market: a view from London," Technical Report, Bank of England 2024.
- Huang, Wenqian, Angelo Ranaldo, Andreas Schrimpf, and Fabricius Somogyi, "Constrained liquidity provision in currency markets," Journal of Financial Economics, 2025. 167. 104028.
- Jarociński, Marek, "Estimating the Fed's unconventional policy shocks," Journal of Monetary Economics, 2024, 144, 103548.
- Kearns, Jonathan, Andreas Schrimpf, and Fan Dora Xia, "Explaining monetary spillovers: The matrix reloaded," Journal of Money, Credit and Banking, 2023, 55 (6), 1535–1568.
- Kloks, Peteris, Edouard Mattille, and Angelo Ranaldo, "Foreign exchange swap liquidity," Swiss Finance Institute Research Paper, 2023, (23-22).
- Kroencke, Tim A, Maik Schmeling, and Andreas Schrimpf, "The FOMC risk shift," Journal of Monetary Economics, 2021, 120, 21–39.
- Kubitza, Christian, Jean-David Sigaux, and Quentin Vandeweyer, "The implications of CIP deviations for international capital flows," 2025.
- McGuire, Patrick, Ilhyock Shim, Hyun Song Shin, and Vladyslav Sushko, "Outward portfolio investment and dollar funding in emerging Asia," BIS Quarterly Review, December, 2021.
- Miranda-Agrippino, Silvia and Hélene Rey, "US monetary policy and the global financial cycle," The Review of Economic Studies, 2020, 87 (6), 2754–2776.
- Rey, Hélène, "Dilemma not trilemma: the global financial cycle and monetary policy independence," 2013.
- Sialm, Clemens and Qifei Zhu, "Currency Management by International Fixed-Income Mutual Funds," The Journal of Finance, 2024, 79 (6), 4037–4081.