## The Digitalization of Money

Markus K. Brunnermeier, Harold James and Jean-Pierre Landau
Princeton University - Sciences Po

# On the Equivalence of Private and Public Money

Markus K. Brunnermeier and Dirk Niepelt Princeton University - Study Center Gerzensee, University of Bern

BIS-CEPR Conference Sept 2019

### Introduction

Ubiquitous private money

- Claims on central bank money, claims on claims, ...
- Private digital "currencies" (e.g., M-Pesa, Alipay, Libra)

Currency Competition: Will new private money drive out cash?

- Will central banks lose their grip on monetary policy
- Digital Dollarization
- Digital Currency Areas
- Will CBDC be the answer? Embrace it, rather than fight it.
- How to design CBDC in a "neutral way"? Can it be done?

# **Currency Competition**

Hayek's (1976) idea: competing private currencies

**Unbundeling** of the 3 roles of money

- Unit of account
  - fewer relative prices (bounded rationality) stickiness
  - nominal debt contract affects risk sharing
- Store of value Gresham's law
- Medium of exchange ⇒ liquidity value

**Re-bundeling** with *platform/ecosystem* 

## **Currency Competition**

**Unbundeling** of the 3 roles of money

### **Re-bundeling** with *platform/ecosystem*

- Money product-differentiation
- "Privacy currency"
- Bundle with platform/eco system discounts
- smart contracts
- ◆ closed ecosystems ⇒ Digital Currency Areas

## **International Monetary System**

### **Digital Currency Area**

(new concept)

- Complementarity with platform, data linkages (not geographic)
- Price discounts, discovery, transparency within

### **Digital Dollarization**

(new concept)

- Store of value vs. payment/invoicing
- Sudden take-over due to non-linearity
- Vulnerability: small socially open countries

### **Digital Synthetic World Currency**

## **Public vs. Private Money Competition**

Loss of "monetary power"

- Store of value focus: Tax backing Iraqi dinar, Somali shilling
- Medium of exchange focus: Payment settlement outside
- Unit of account feature is key
  - New Keynesian: stickiness in private/public money
  - FinFrictions: Denomination of nominal debt contracts

# **CBDC** to maintain monetary sovereignty

Cash is poor substitute  $\Rightarrow$  calls for CBDC

- Back "stable coins" with CBDC
- Retail CBDC

Key policy decisions

- Interoperability
- Convertibility

## How to design CBDC in a "neutral" manner?

"On the Equivalence between Private and Public Money" (with Dirk Niepelt)

- Money creation generates rents—they belong to the public
- Outside money crowds out capital—inside money funds it
- CBDC chokes off credit
- CBDC triggers bank runs

#### Contributions

- Generic model of money, liquidity, financial frictions
- Liquidity and value
  - Liquidity (relaxation of means-of-payment constraints) renders bubbles more likely, generates seignorage rents
- Sufficient conditions for equivalence of monetary systems Swap public, private money
- Applications: CBDC, Chicago Plan, ...

## Does swap undermine credit, financial stability?

Not, with pass-through funding by central bank
 Central bank intermediates between non-banks and banks



## Does swap undermine credit, financial stability?

- Not, with pass-through funding by central bank
   Central bank intermediates between non-banks and banks
   Implicit LOLR guarantees become explicit
- Run from deposits into CBDC
   Bank funding automatically replenished

### Equivalence—under broad conditions

- Wealth neutrality
- Liquidity neutrality (requires condition)
- Invariant asset span (condition)
- Same resource cost private/public liquidity (Friedman, 1969)

### Implementation

- Pass-through funding subject to deposit rates, to insulate (even non-competitive) banks
- Contingent transfers to compensate for payoff differentials Unless little heterogeneity (cf. Barro, 1974)

#### Theorem serves as benchmark

- To identify possible sources of non-equivalence
- In spirit of Modigliani and Miller (1958), Barro (1974), ...

#### Related work

- Fisher (1935), Gurley and Shaw (1960), Tobin (1963; 1969; 1985)
- Wallace (1981), Bryant (1983), Chamley and Polemarchakis (1984), Sargent (1987, 5.4)
- Benes and Kumhof (2012), Andolfatto (2018), Faure and Gersbach (2018)
- Niepelt (2018; 2020)
- Merkel (2019) "On Narrow Banking"

### Model

Stochastic, discrete time, finite or infinite horizon

Households, government, firms, banks (owned by households)

General technologies, securities

Complete or incomplete markets

#### Households

$$\mathcal{U}^{h}(x^{\cdot,h}) \text{ s.t. } \sum_{j} a_{t}^{j,h} p_{t}^{j} = \sum_{j} a_{t-1}^{j,h} (p_{t}^{j} + z_{t}^{j}) - \sum_{n} x_{t}^{n,h} q_{t}^{n} - \tau_{t}^{h}(x^{\cdot,h}, q) \ \forall t$$

$$\mathcal{L}^{h}_{t}(\{a_{t}^{j,h} p_{t}^{j}\}_{j}, \{a_{t-1}^{j,h} (p_{t}^{j} + z_{t}^{j})\}_{j}, p, x^{\cdot,h}, q) \ge (=) \ 0 \ \forall t$$

$$NPG$$

Stochastic security price (e.g., bank run), distorting transfers/taxes Vector of medium-of-exchange restrictions,  $\mathcal{L}_t^h$ 

# Examples (without/with $\mathcal{L}_t^h$ )

- OLG: Samuelson (1958), Wallace (1980), Townsend (1980)
- Incomplete markets: Brunnermeier and Sannikov (2016)
- Medium-of-exchange friction: CIA (Clower, 1967; Grandmont and Younes, 1972; Lucas, 1980; Lucas, 1982; Svensson, 1985), transaction costs (Baumol, 1952; Tobin, 1956), shopping-time (Saving, 1971; McCallum and Goodfriend, 1987), MIU (Sidrauski, 1967), "New Monetarist" (Kiyotaki and Wright, 1993; Lagos and Wright, 2005)
- Incomplete markets and borrowing constraints: Bewley (1980), Woodford (1990), Kiyotaki and Moore (2012), Holmström and Tirole (1998)

#### **Firms**

Profit maximization s.t.

- Budget constraint
- Production possibilities
- Medium-of-exchange constraints  $(\mathcal{L}_t^f)$

Possibly price, wage setting friction (Calvo, 1983; Clarida, Galí and Gertler, 1999; Woodford, 2003; Galí, 2008)

#### **Banks**

$$\sum_{t} \mathbb{E}_{0} \left[ \mu_{0,t} z_{t}^{b} \right] \text{ s.t. } \sum_{j \neq b} a_{t}^{j,b} p_{t}^{j} = \sum_{j \neq b} a_{t-1}^{j,b} (p_{t}^{j} + z_{t}^{j}) - z_{t}^{b} \, \forall t$$

$$C_{t}^{b} (a_{t}^{\cdot,b}, p_{t}^{D^{b}}, z_{t+1}^{D^{b}}, \text{state}_{t}^{b}) \leq (=) \, 0 \, \forall t$$

$$C_{t}^{b} (\{a_{t}^{j,b} p_{t}^{j}\}_{j}, p) \geq (=) \, 0 \, \forall t$$

$$NPG$$

Non-competitive bank chooses deposits, return subject to  $\mathcal{C}_t^b$ 

 $\mathcal{L}_t^b$ -constraint due to regulation, money markets, incentive constraints (Calomiris and Kahn, 1991; Diamond and Rajan, 2001)

Zero marginal cost of deposit creation, possibly fixed cost

#### Central Bank/Government

$$\sum_{j \neq c} a_t^{j,c} p_t^j = \sum_{j \neq c} a_{t-1}^{j,c} (p_t^j + z_t^j) + \int_h \tau_t^h(x^{\cdot,h}, q) dh \ \forall t$$
NPG

# Liquidity and Value

Security price, from Euler equation

$$\tilde{\mu}_{t}^{h} p_{t}^{j} = \mathbb{E}_{t} \left[ \tilde{\mu}_{t+1}^{h} (p_{t+1}^{j} + z_{t+1}^{j}) \right] + p_{t}^{j} \tilde{\lambda}_{t}^{h} \mathcal{L}_{t}^{h'}$$

$$p_{t}^{j} = \mathbb{E}_{t} \left[ \mu_{t,t+1}^{h} (p_{t+1}^{j} + z_{t+1}^{j}) \right] + p_{t}^{j} \lambda_{t}^{h} \mathcal{L}_{t}^{h'}$$

$$p_{t}^{j} = \mathbb{E}_{t} \left[ \underbrace{\frac{\mu_{t,t+1}^{h}}{1 - \lambda_{t}^{h} \mathcal{L}_{t}^{h'}}}_{=\mu_{t,t+1}^{h} \Lambda_{t,t+1}^{h}} (p_{t+1}^{j} + z_{t+1}^{j}) \right], \quad \Lambda_{t,t+1}^{h} \geq 1$$

Liquidity modifies fundamental, bubble values

$$p_t^j = \lim_{T \to \infty} \mathbb{E}_t \left[ \sum_{s=1}^{\infty} \mu_{t,t+s}^h \Lambda_{t,t+s}^h z_{t+s}^j \right] + \lim_{T \to \infty} \mathbb{E}_t \left[ \mu_{t,t+T}^h \Lambda_{t,t+T}^h p_{t+T}^j \right]$$

## Liquidity payoff

- Effectively lowers discount rate
   Renders bubble more likely
- Creates rents for issuer
   Franchise value, reflected in equity value

# Equivalence

Swap CB money for bank deposits, for one period (generalizes)
Open market operation at *t* 

- CB money, deposits, possibly third security
- Latter could be implicit (cf. Barro, 1974)

Contingent transfers at t + 1, compensate for payoff differentials

## Wealth Neutrality

**Lemma** Given SDF, security prices, fundamental payoffs OMO with compensating transfers does not change date-*t* financial wealth iff unchanged liquidity payoffs of portfolios

Proof. Asset pricing condition, OMO

Market value of contingent transfers then equals zero

## **Liquidity Neutrality**

**Definition** Given prices, fundamental payoffs Swap *liquidity neutral* if for any plan in agents' choice sets, swap does not change  $\mathcal{L}_t^i$ - or  $\mathcal{L}_{t+1}^i$ -function values, nor derivatives

**Baseline Case**  $\mathcal{L}_t^i$  (weighted sum (CB money, deposits), other) & swap leaves weighted sum unchanged

Examples of liquidity neutral swap

- CIA (with two monies), different "liquidity," payoffs
- Almost all standard models (with two monies), to first order

Counterexample: Svensson (1985) CIA in some cases

### Equivalence

**Theorem** Given equilibrium, consider span neutral, liquidity neutral OMO with compensating transfers

Central bank can always assure same equilibrium allocation, prices

## **Equivalence**

**Theorem** Given equilibrium, consider span neutral, liquidity neutral OMO with compensating transfers

Central bank can always assure same equilibrium allocation, prices

Proof. Conjecture unchanged prices

**PE**: Liquidity neutrality  $\Rightarrow$  wealth neutrality  $\Rightarrow$  unchanged choice sets of households, firms  $\Rightarrow$  unchanged choices

Pass through deposit supply *schedule*  $\Rightarrow$  unchanged bank choices

**GE**: Unchanged commodity demands, supplies  $\Rightarrow$  market clearing; securities markets continue to clear

Unchanged allocation, liquidity neutrality  $\Rightarrow$  unchanged liquidity payoffs, prices

# **Applications**

### **Central Bank Digital Currency**

### Equivalence

- No security *s* needed if same liquidity
- But possibly transfers at t+1, depending on risk characteristics of CBDC vs. deposits

Not needed if deposits are insured to start with (or house-holds have same exposures to deposits, taxes)

#### What about **bank runs** ...?

- Theorem: Initial equilibrium (or equilibria) still supported
- Beyond theorem: Should expect *fewer* bank runs
   One large depositor, *optimally* behaves differently
   Remaining small depositors have less incentive to run

### Chicago Plan and "Vollgeld" - for "stable coins"

### Equivalence

- Extreme form of CBDC
- Requires pass-through at deposit rates
   But "Vollgeld" proposal aims at redistribution

### Cryptocurrency

Proof of work

• No equivalence

No proof of work

- Stable coin: Equivalence
- Partial backing (fractional reserve): Sufficient conditions for equivalence require transfers

### **Conclusions**

#### Contributions

General model Liquidity and value, bubble, seignorage Equivalence conditions Applications, CBDC, run risk

When should we expect *non-*equivalence?

- Limited transfers, limited substitutability of monies
- Restrictions on pass through: Information, differential collateral requirements (central bank independence)
  - Not an issue with competitive banks
- Political economy (Gonzalez-Eiras and Niepelt, 2015)

#### References

- Andolfatto, D. (2018), Reconciling orthodox and heterodox views on money and banking, Working Paper 2018-27A, Federal Reserve Bank of St. Louis, St. Louis.
- Barro, R. J. (1974), 'Are government bonds net wealth?', *Journal of Political Economy* **82**(6), 1095–1117.
- Baumol, W. J. (1952), 'The transactions demand for cash', *Quarterly Journal of Economics* **67**(4), 545–556.
- Benes, J. and Kumhof, M. (2012), The Chicago plan revisited, Working Paper 12/202, International Monetary Fund, Washington.

- Bewley, T. F. (1980), The optimum quantity of money, *in* J. H. Kareken and N. Wallace, eds, 'Models of Monetary Economies', Federal Reserve Bank of Minneapolis, Minneapolis, pp. 169–210.
- Brunnermeier, M. K. and Sannikov, Y. (2016), The I theory of money, Working Paper 22533, NBER, Cambridge, Massachusetts.
- Bryant, J. (1983), 'Government irrelevance results: A simple exposition', *American Economic Review* **73**(4), 758–761.
- Calomiris, C. W. and Kahn, C. M. (1991), 'The role of demandable debt in structuring optimal banking arrangements', *American Economic Review* **81**(3), 497–513.

- Calvo, G. A. (1983), 'Staggered prices in a utility-maximizing framework', *Journal of Monetary Economics* **12**(3), 383–398.
- Chamley, C. and Polemarchakis, H. (1984), 'Assets, general equilibrium and the neutrality of money', *Review of Economic Studies* **51**(1), 129–138.
- Clarida, R., Galí, J. and Gertler, M. (1999), 'The science of monetary policy: A New Keynesian perspective', *Journal of Economic Literature* **37**(4), 1661–1707.
- Clower, R. W. (1967), 'A reconsideration of the microfoundations of monetary theory', *Western Economic Journal* **6**(1), 1–8.
- Diamond, D. W. and Rajan, R. G. (2001), 'Liquidity risk, liquidity creation, and financial fragility: A theory of banking', *Journal of Political Economy* **109**(2), 287–327.

- Faure, S. and Gersbach, H. (2018), Money creation in different architectures, Discussion Paper 13156, CEPR.
- Fisher, I. (1935), 100% Money, Adelphi, New York.
- Friedman, M. (1969), The optimum quantity of money, *in* M. Friedman, ed., 'The Optimum Quantity of Money and Other Essays', Aldine, Chicago, chapter 1, pp. 1–50.
- Galí, J. (2008), Monetary Policy, Inflation, and the Business Cycle, Princeton University Press, Princeton.
- Gonzalez-Eiras, M. and Niepelt, D. (2015), 'Politico-economic equivalence', *Review of Economic Dynamics* **18**(4), 843–862.
- Grandmont, J.-M. and Younes, Y. (1972), 'On the role of money

- and the existence of a monetary equilibrium', *Review of Economic Studies* **39**(3), 355–372.
- Gurley, J. G. and Shaw, E. S. (1960), *Money in a Theory of Finance*, Brookings Institution, Washington.
- Holmström, B. and Tirole, J. (1998), 'Private and public supply of liquidity', *Journal of Political Economy* **106**(1), 1–40.
- Kiyotaki, N. and Moore, J. (2012), Liquidity, business cycles, and monetary policy, Working Paper 17934, NBER, Cambridge, Massachusetts.
- Kiyotaki, N. and Wright, R. (1993), 'A search-theoretic approach to monetary economics', *American Economic Review* **83**(1), 63–77.

- Lagos, R. and Wright, R. (2005), 'A unified framework for monetary theory and policy analysis', *Journal of Political Economy* **113**(3), 463–484.
- Lucas, R. E. (1980), Equilibrium in a pure currency economy, in J. H. Kareken and N. Wallace, eds, 'Models of Monetary Economies', Federal Reserve Bank of Minneapolis, Minneapolis, pp. 131–145.
- Lucas, R. E. (1982), 'Interest rates and currency prices in a two-country world', *Journal of Monetary Economics* **10**(3), 335–359.
- McCallum, B. T. and Goodfriend, M. S. (1987), Demand for money: Theoretical studies, *in* J. Eatwell, P. Newman and

- M. Milgate, eds, 'The New Palgrave: A Dictionary of Economics', Macmillan Press, London, pp. 775–781.
- Modigliani, F. and Miller, M. H. (1958), 'The cost of capital, corporation finance and the theory of investment', *American Economic Review* **48**(3), 261–297.
- Niepelt, D. (2018), Reserves for all? Central Bank Digital Currency, deposits, and their (non)-equivalence, Discussion Paper 13065, CEPR.
- Niepelt, D. (2020), 'Reserves for all? Central Bank Digital Currency, deposits, and their (non)-equivalence', *International Journal of Central Banking* **forthcoming**.
- Samuelson, P. A. (1958), 'An exact consumption-loan model of

- interest with or without the social contrivance of money', *Journal of Political Economy* **66**(6), 467–482.
- Sargent, T. J. (1987), Dynamic Macroeconomic Theory, Harvard University Press, Cambridge, Massachusetts.
- Saving, T. R. (1971), 'Transactions costs and the demand for money', *American Economic Review* **61**(3), 407–420.
- Sidrauski, M. (1967), 'Rational choice and patterns of growth in a monetary economy', *American Economic Review* **57**(2), 534–544.
- Svensson, L. E. O. (1985), 'Money and asset prices in a cash-in-advance economy', *Journal of Political Economy* **93**(5), 919–944.

- Tobin, J. (1956), 'The interest elasticity of the transactions demand for cash', *Review of Economics and Statistics* **38**(3), 241–247.
- Tobin, J. (1963), Commercial banks as creators of "money", Discussion Paper 159, Cowles Foundation, New Haven.
- Tobin, J. (1969), 'A general equilibrium approach to monetary theory', *Journal of Money, Credit, and Banking* **1**(1), 15–29.
- Tobin, J. (1985), 'Financial innovation and deregulation in perspective', *Bank of Japan Monetary and Economic Studies* **3**(2), 19–29.
- Townsend, R. M. (1980), Models of money with spatially separated agents, in J. H. Kareken and N. Wallace, eds, 'Mod-

- els of Monetary Economies', Federal Reserve Bank of Minneapolis, Minneapolis, pp. 265–304.
- Wallace, N. (1980), The overlapping generations model of fiat money, *in* J. H. Kareken and N. Wallace, eds, 'Models of Monetary Economies', Federal Reserve Bank of Minneapolis, Minneapolis, pp. 49–82.
- Wallace, N. (1981), 'A Modigliani-Miller theorem for openmarket operations', *American Economic Review* **71**(3), 267–274.
- Woodford, M. (1990), 'Public debt as private liquidity', *American Economic Review* **80**(2), 382–388.
- Woodford, M. (2003), *Interest and Prices*, Princeton University Press, Princeton.