Banking Regulation, Market Liquidity, and the Macroeconomy

by Frédéric Boissay, Fabrice Collard and Ulf Lewrick

Discussion by Tim Landvoigt
Wharton & NBER

8th BIS Research Network Meeting
September 28, 2018
Idea of Paper

- Scope for macro-prudential policy in models with
 - pecuniary externalities in constraints (e.g. Lorenzoni 2008)
 - moral hazard due to bailout guarantees (e.g. Bianchi 2016)
Idea of Paper

- Scope for macro-prudential policy in models with
 - pecuniary externalities in constraints (e.g. Lorenzoni 2008)
 - moral hazard due to bailout guarantees (e.g. Bianchi 2016)

- Bank regulation is specific macro-pru policy
 - Capital requirement can make financial system safer, but may also reduce its output,
 - Risky lending vs. liquidity provision
 (e.g. Begenau 2015, Davidyuk 2017)
 - Severity of crises vs. size of economy
 (e.g. Elenev, Landvoigt, Van Nieuwerburgh 2018)
 - Substitution towards shadow banks?
Idea of Paper

- Scope for macro-prudential policy in models with
 - pecuniary externalities in constraints (e.g. Lorenzoni 2008)
 - moral hazard due to bailout guarantees (e.g. Bianchi 2016)

- Bank regulation is specific macro-pru policy
 - Capital requirement can make financial system safer, but may also reduce its output,
 - Risky lending vs. liquidity provision
 (e.g. Begenau 2015, Davidyuk 2017)
 - Severity of crises vs. size of economy
 (e.g. Elenev, Landvoigt, Van Nieuwerburgh 2018)
 - Substitution towards shadow banks?

- This paper explores new mechanism through which capital regulation may be welfare improving
 - Better risk sharing in interbank market when banks have more capital
 - Spill-overs to corporate bond market?
Outline

- Review model setup
- Key mechanism and result
 - Capital regulation and the interbank market
 - Lending efficiency vs. funding mix
- Comments
 1. Where could we look for evidence on mechanism?
 2. Benefits and costs of capital regulation
 3. Role of bond market
 4. Calibration
Model Setup

1. Neoclassical producers
 - Fully depend on credit finance $r_t = r_t^b = \text{MPK}_t$
Model Setup

1. Neoclassical producers
 ▶ Fully depend on credit finance $r_t^\ell = r_t^b = \text{MPK}_t$

2. Households consume and invest in bank equity, deposits, and corporate bonds
 ▶ Portfolio choice in steady-state through transaction cost functions $\mu_j(q^j)$, for $j = e, d, b^h$
 ▶ Transaction costs are true resource costs

 ▶ Originate and hold loans ℓ_t "on balance sheet"
 ▶ Buy bonds b_t and pass through bonds to HH
 ▶ Need to keep bond inventory proportional to volume $b_t \geq (1 + \kappa)s_t$
Model Setup

1. Neoclassical producers
 ▶ Fully depend on credit finance \(r^\ell_t = r^b_t = \text{MPK}_t \)

2. Households consume and invest in bank equity, deposits, and corporate bonds
 ▶ Portfolio choice in steady-state through transaction cost functions \(\mu_j(q^j) \), for \(j = e, d, b^h \)
 ▶ Transaction costs are true resource costs

3. Banks lend to firms and raise equity and deposits from HH
 ▶ No equity issuance cost → one-period banks
 ▶ Originate and hold loans \(\ell_t \) “on balance sheet”
 ▶ Buy \(b^b_t \) bonds and pass through \(s_t \) bonds to HH
 ▶ Need to keep bond inventory proportional to volume \(b^b_t \geq (1 + \kappa)s_t \)
Model Setup

1. Neoclassical producers
 ▶ Fully depend on credit finance $r^e_t = r^d_t = MPK_t$

2. Households consume and invest in bank equity, deposits, and corporate bonds
 ▶ Portfolio choice in steady-state through transaction cost functions $\mu_j(q^j)$, for $j = e, d, b^h$
 ▶ Transaction costs are true resource costs

3. Banks lend to firms and raise equity and deposits from HH
 ▶ No equity issuance cost → one-period banks
 ▶ Originate and hold loans ℓ_t “on balance sheet”
 ▶ Buy b^b_t bonds and pass through s_t bonds to HH
 ▶ Need to keep bond inventory proportional to volume $b^b_t \geq (1 + \kappa)s_t$
 ▶ Trade loans in **interbank** market
Interbank Market: Setup

- After making loans ℓ_t, but before interbank trade, each bank draws shock q^ℓ such that effective payoff $q^\ell r_t \ell_t$.
Interbank Market: Setup

- After making loans ℓ_t, but before interbank trade, each bank draws shock q^ℓ such that effective payoff $q^\ell r_t^\ell \ell_t$

- Credit frictions in interbank market
 - Efficient holder of all loans is bank with highest q^ℓ
 - But due to moral hazard, banks can at most borrow

$$\phi_t = \frac{\ell_t}{\zeta} (r_t^i - \zeta + F(e_t, b_t^b))$$

- Banks optimally either borrow ϕ_t, or completely “sell” their loans and lend the proceeds, depending on q^ℓ, with cutoff

$$\bar{q}_t^\ell = r_t^i / r_t^\ell$$
Interbank Market: Setup

- After making loans l_t, but before interbank trade, each bank draws shock q^l such that effective payoff $q^l r_t^l l_t$

- Credit frictions in interbank market
 - Efficient holder of all loans is bank with highest q^l
 - But due to moral hazard, banks can at most borrow
 \[
 \phi_t = \frac{l_t}{\zeta} (r_t^i - \zeta + \mathcal{F}(e_t, b_t^b))
 \]

- Banks optimally either borrow ϕ_t, or completely “sell” their loans and lend the proceeds, depending on q^l, with cutoff
 \[
 \bar{q}_t^l = r_t^i / r_t^l
 \]

- Resulting allocation
 - Low-q^l lenders earn $r_t^i l_t$ in interbank market
 - High-q^l borrowers earn $r_t^l q^l (l_t + \phi_t) - r_t^i \phi_t$
 - Market clearing $(1 - \mu_l(\bar{q}_t^l)) \phi_t = \mu_l(\bar{q}_t^l) l_t$
Interbank Market: Key Effects

\[\phi_t = \frac{\ell_t}{\zeta}(r_t^i - \zeta + F(e_t, b_t^b)) \]

\[\bar{q}_t^\ell = \frac{r_t^i}{r_t^\ell} \]

1. **Precautionary** equity holdings

2. Pecuniary **externality**

3. **Selection** effect on lending efficiency
Interbank Market: Key Effects

\[\phi_t = \frac{\ell_t}{\zeta} (r^i_t - \zeta + \mathcal{F}(e_t, b^b_t)) \]
\[\bar{q}_t^\ell = r^i_t / r^\ell_t \]

1. **Precautionary** equity holdings
 - Equity relaxes funding constraint
 - Banks do not know \(q^\ell \)-type when raising equity \(\Rightarrow \) hold equity to be able to borrow more in case of high \(q^\ell \) draw

2. Pecuniary **externality**

3. **Selection** effect on lending efficiency
Interbank Market: Key Effects

\[\phi_t = \frac{\ell_t}{\zeta} (r_i^t - \zeta + \mathcal{F}(e_t, b_t)) \]
\[\bar{q}^\ell_t = r_i^t / r^\ell_t \]

1. **Precautionary** equity holdings
 - Equity relaxes funding constraint
 - Banks do not know \(q^\ell \)-type when raising equity \(\Rightarrow \) hold equity to be able to borrow more in case of high \(q^\ell \) draw

2. Pecuniary **externality**
 - Greater equity would increase interbank demand and bid up rate \(r_i^t \)
 - This would further relax constraint

3. **Selection** effect on lending efficiency
Interbank Market: Key Effects

\[\phi_t = \frac{\ell_t}{\zeta}(r_i^t - \zeta + F(e_t, b_t^t)) \]

\[\bar{q}_t^\ell = \frac{r_i^t}{r_t^\ell} \]

1. **Precautionary** equity holdings
 - Equity relaxes funding constraint
 - Banks do not know \(q^\ell \)-type when raising equity \(\Rightarrow \) hold equity to be able to borrow more in case of high \(q^\ell \) draw

2. Pecuniary **externality**
 - Greater equity would increase interbank demand and bid up rate \(r_i^t \)
 - This would further relax constraint

3. **Selection** effect on lending efficiency
 - In either case, \(\phi_t \uparrow \Rightarrow r_i^t \uparrow \Rightarrow \bar{q}_t^\ell \uparrow \)
 - Loans allocated to more efficient holder!
Main Trade-off

- Tighter cap req lifts interbank trade \Rightarrow more efficient allocation among banks,
Main Trade-off

- Tighter cap req lifts interbank trade ⇒ more efficient allocation among banks,
- which reduces DWL in banking sector,
Main Trade-off

- Tighter cap req lifts interbank trade \(\Rightarrow \) more efficient allocation among banks,
- which reduces DWL in banking sector,
- but raises DWL on HH side due to equity transaction cost
Main Trade-off

- Tighter cap req lifts interbank trade \Rightarrow more efficient allocation among banks,
- which reduces DWL in banking sector,
- but raises DWL on HH side due to equity transaction cost
- At optimum, get smaller but more efficient banking sector
Comment #1: Direct Evidence on Mechanism

- “Interbank” market in paper involves three real markets
 1. Wholesale funding market (e.g. commercial paper, repo)
 2. Secondary market for loans (e.g. syndicated loans)
 3. Interbank market (e.g. federal funds market)
Comment #1: Direct Evidence on Mechanism

- “Interbank” market in paper involves three real markets
 1. Wholesale funding market (e.g. commercial paper, repo)
 2. Secondary market for loans (e.g. syndicated loans)
 3. Interbank market (e.g. federal funds market)

- Main mechanism connects all three markets: greater bank equity increases banks capacity to borrow non-deposit funds (wholesale funding market), which they only raise from other banks (interbank market), and they use these funds to participate in the secondary market for loans
Comment #1: Direct Evidence on Mechanism

- “Interbank” market in paper involves three real markets
 1. Wholesale funding market (e.g. commercial paper, repo)
 2. Secondary market for loans (e.g. syndicated loans)
 3. Interbank market (e.g. federal funds market)

- Main mechanism connects all three markets: greater bank equity increases banks capacity to borrow non-deposit funds (wholesale funding market), which they only raise from other banks (interbank market), and they use these funds to participate in the secondary market for loans

- Empirical question to which extent these connections exist
 - Sensible that equity alleviates credit constraints for non-deposit borrowing
 - But banks raise lots of non-deposit funds from non-banks
 - Greater use of non-deposit funds linked to participation in secondary market for loans?
 - Interbank market mainly about insuring liquidity shocks (no direct connection to secondary loan market)
Comment #2: Benefits and Costs of Regulation

- Paper proposes novel trade-off

- But what about costs and benefits of capital regulation more broadly?

- Underestimate benefits: avoiding financial crises
 - Was hoping for crises a la Boissay, Collard, Smets 2016!
 - In practice, biggest benefit emphasized by regulators
 - Currently only steady-state analysis, so no trade-off between mean and volatility of consumption

- Overestimate costs: no equity finance for firms
 - Leverage of non-financial corporate sector in U.S. is 35-40%
 - Equity (retained earnings) most important source of funds
 - In model, firms 100% credit financed
Comment #3: Role of Bond Market

- Model predicts substitution to bonds
 - Decreased deposit demand from banks pushes down deposit rate
 - Households shift portfolio to bonds
 - Depends on elasticity of substitution between bonds and deposits in household transaction cost functions

- Possible empirical target: business cycle elasticity of substitution between bonds and loans documented in Becker and Ivashina 2014

- Schwert 2018: $r_\ell t - r_b t = 140$ bps spread for same firm

- Bank loans come bundled with services, credit lines, renegotiation options (Berg, Saunders, Steffen 2014)

- Xiang 2018: complementarity at the firm level
Comment #3: Role of Bond Market

- Model predicts substitution to bonds
 - Decreased deposit demand from banks pushes down deposit rate
 - Households shift portfolio to bonds
 - Depends on elasticity of substitution between bonds and deposits in household transaction cost functions

- Possible empirical target: business cycle elasticity of substitution between bonds and loans documented in Becker and Ivashina 2014
Comment #3: Role of Bond Market

- Model predicts substitution to bonds
 - Decreased deposit demand from banks pushes down deposit rate
 - Households shift portfolio to bonds
 - Depends on elasticity of substitution between bonds and deposits in household transaction cost functions

- Possible empirical target: business cycle elasticity of substitution between bonds and loans documented in Becker and Ivashina 2014

- Model: loans and bonds perfect substitutes for firms, \(r_t^L = r_t^B \)
Comment #3: Role of Bond Market

- Model predicts substitution to bonds
 - Decreased deposit demand from banks pushes down deposit rate
 - Households shift portfolio to bonds
 - Depends on elasticity of substitution between bonds and deposits in household transaction cost functions

- Possible empirical target: business cycle elasticity of substitution between bonds and loans documented in Becker and Ivashina 2014

- Model: loans and bonds perfect substitutes for firms, $r^l_t = r^b_t$

- Schwert 2018: $r^l_t - r^b_t = 140$ bps spread for same firm
 - Bank loans come bundled with services, credit lines, renegotiation options (Berg, Saunders, Steffen 2014)
 - Xiang 2018: complementarity at the firm level
Comment #4: Calibration

<table>
<thead>
<tr>
<th>Target</th>
<th>Values</th>
<th>Data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^b</td>
<td>1.0428</td>
<td>Federal Reserve Bank of Saint Louis FRED database; Moody’s seasoned Baa corporate bond yield; BAA</td>
</tr>
<tr>
<td>r^i</td>
<td>1.0194</td>
<td>Federal Reserve Bank of Saint Louis FRED database; Federal funds effective rate; RIFSPFF.N.A</td>
</tr>
<tr>
<td>b/ℓ</td>
<td>1.3019</td>
<td>US Financial Accounts; Firms; Bond–to–loan ratio; FL104122005.A/FL104123005.A</td>
</tr>
<tr>
<td>$e/(d + e)$</td>
<td>0.0814</td>
<td>US Financial Accounts; Depository institutions; Leverage ratio; (FL704194005.A-FL704190005.A)/FL704194005.A</td>
</tr>
<tr>
<td>$(b^b - s_t)/(d + e)$</td>
<td>0.0386</td>
<td>US Financial Accounts; Depository institutions; Liquidity ratio; FL703063005.A/FL704194005.A</td>
</tr>
<tr>
<td>ω</td>
<td>0.0100</td>
<td>Adrian et al. (2017); Share of time deposits; FL703130005.A/(FL703130005.A+FL703127005.A)</td>
</tr>
<tr>
<td>$\chi^i/(d + e)$</td>
<td>0.0230</td>
<td>FDIC Tables CB07 and CB09; banks’ total non–interest expenses to total assets</td>
</tr>
<tr>
<td>χ^a/a</td>
<td>0.0250</td>
<td>Foerster et al. (2017); Households; Asset–management–expenses–to–total–asset ratio</td>
</tr>
<tr>
<td>Λ</td>
<td>0</td>
<td>The shadow cost of the leverage ratio rule is zero</td>
</tr>
</tbody>
</table>
Comment #4: Calibration

- Bond market target rate seems to be risky long-term rate, but model only has one-period short term debt
- Should adjust rate by credit and term spread
- Will imply much less costly bond intermediation

<table>
<thead>
<tr>
<th>Target</th>
<th>Values</th>
<th>Data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^b</td>
<td>1.0428</td>
<td>Federal Reserve Bank of Saint Louis FRED database; Moody’s seasoned Baa corporate bond yield; BAA</td>
</tr>
<tr>
<td>r^t</td>
<td>1.019</td>
<td></td>
</tr>
<tr>
<td>b/ℓ</td>
<td>1.301</td>
<td></td>
</tr>
<tr>
<td>$e/(d+e)$</td>
<td>0.081</td>
<td></td>
</tr>
<tr>
<td>$(b^b - s_t)/(d + e)$</td>
<td>0.038</td>
<td></td>
</tr>
<tr>
<td>ω</td>
<td>0.0100</td>
<td>Adrian et al. (2017)
Share of time deposits; FL703130005.A/(FL703130005.A+FL703127005.A)</td>
</tr>
<tr>
<td>$\chi^i/(d+e)$</td>
<td>0.0230</td>
<td>FDIC Tables CB07 and CB09; banks’ total non-interest expenses to total assets</td>
</tr>
<tr>
<td>χ^a/a</td>
<td>0.0250</td>
<td>Foerster et al. (2017); Households;
Asset-management-expenses-to-total-asset ratio</td>
</tr>
<tr>
<td>Λ</td>
<td>0</td>
<td>The shadow cost of the leverage ratio rule is zero</td>
</tr>
</tbody>
</table>
Comment #4: Calibration

<table>
<thead>
<tr>
<th>Target</th>
<th>Values</th>
<th>Data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^b</td>
<td>1.0428</td>
<td></td>
</tr>
<tr>
<td>r^i</td>
<td>1.0194</td>
<td></td>
</tr>
<tr>
<td>b/ℓ</td>
<td>1.3019</td>
<td></td>
</tr>
<tr>
<td>$e/(d+e)$</td>
<td>0.0814</td>
<td></td>
</tr>
<tr>
<td>$(b^b - s_t)/(d+e)$</td>
<td>0.0386</td>
<td>US Financial Accounts; Depository institutions; Liquidity ratio; FL703063005.A/FL704194005.A</td>
</tr>
<tr>
<td>ω</td>
<td>0.0100</td>
<td>Adrian et al. (2017) Share of time deposits; FL703130005.A/(FL703130005.A+FL703127005.A)</td>
</tr>
<tr>
<td>$\chi^i/(d+e)$</td>
<td>0.0230</td>
<td>FDIC Tables CB07 and CB09; banks’ total non-interest expenses to total assets</td>
</tr>
<tr>
<td>χ^a/a</td>
<td>0.0250</td>
<td>Foerster et al. (2017); Households; Asset-management-expenses-to-total-asset ratio</td>
</tr>
</tbody>
</table>

Λ = 0 The shadow cost of the leverage ratio rule is zero.
Comment #4: Calibration

<table>
<thead>
<tr>
<th>Target</th>
<th>Values</th>
<th>Data sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^b</td>
<td>1.0428</td>
<td>Federal Reserve Bank of Saint Louis FRED database;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moody’s seasoned Baa corporate bond yield®; BAA</td>
</tr>
<tr>
<td>r^i</td>
<td>1.0194</td>
<td>Federal Reserve Bank of Saint Louis FRED database;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Federal funds effective rate: RIESPEF N.A</td>
</tr>
<tr>
<td>b/ℓ</td>
<td>1.3019</td>
<td></td>
</tr>
<tr>
<td>$e/(d + e)$</td>
<td>0.0814</td>
<td></td>
</tr>
<tr>
<td>$(b^b - s_t)/(d + e)$</td>
<td>0.0386</td>
<td></td>
</tr>
<tr>
<td>ω</td>
<td>0.0100</td>
<td></td>
</tr>
<tr>
<td>$\chi^d/(d + e)$</td>
<td>0.0230</td>
<td>FDIC Tables CB07 and CB09; banks’ total non–interest expenses to total assets</td>
</tr>
<tr>
<td>χ^a/a</td>
<td>0.0250</td>
<td>Foerster et al. (2017); Households; Asset–management–expenses–to–total–asset ratio</td>
</tr>
<tr>
<td>Λ</td>
<td>0</td>
<td>The shadow cost of the leverage ratio rule is zero</td>
</tr>
</tbody>
</table>

- Banks’ non-interest expenses and HH asset management expenses are counted as deadweight losses
- Not very generous view of financial industry!
- Probably some value-added; should rebate some of these expenses to households
Summary

- Elegant GE model with new rationale for capital regulation
- Direct empirical evidence supporting mechanism needed
- Model should include crises a la Boissay, Collard, Smets 2016, and allow equity financing of firms
- Calibration based on counting all non-interest expenses of banks as DWL may overstate effects