Banking Regulation, Market Liquidity, and the Macroeconomy

by Frédéric Boissay, Fabrice Collard and Ulf Lewrick

Discussion by Tim Landvoigt Wharton & NBER

8th BIS Research Network Meeting September 28, 2018

Idea of Paper

- Scope for macro-prudential policy in models with
 - pecuniary externalities in constraints (e.g. Lorenzoni 2008)
 - moral hazard due to bailout guarantees (e.g. Bianchi 2016)

Idea of Paper

- Scope for macro-prudential policy in models with
 - pecuniary externalities in constraints (e.g. Lorenzoni 2008)
 - moral hazard due to bailout guarantees (e.g. Bianchi 2016)
- Bank regulation is specific macro-pru policy
 - Capital requirement can make financial system safer, but may also reduce its output,
 - Risky lending vs. liquidity provision (e.g. Begenau 2015, Davidyuk 2017)
 - Severity of crises vs. size of economy (e.g. Elenev, Landvoigt, Van Nieuwerburgh 2018)
 - Substitution towards shadow banks?

Idea of Paper

- Scope for macro-prudential policy in models with
 - pecuniary externalities in constraints (e.g. Lorenzoni 2008)
 - moral hazard due to bailout guarantees (e.g. Bianchi 2016)
- Bank regulation is specific macro-pru policy
 - Capital requirement can make financial system safer, but may also reduce its output,
 - Risky lending vs. liquidity provision (e.g. Begenau 2015, Davidyuk 2017)
 - Severity of crises vs. size of economy (e.g. Elenev, Landvoigt, Van Nieuwerburgh 2018)
 - Substitution towards shadow banks?
- This paper explores new mechanism through which capital regulation may be welfare improving
 - Better risk sharing in interbank market when banks have more capital
 - Spill-overs to corporate bond market?

Outline

- Review model setup
- Key mechanism and result
 - Capital regulation and the interbank market
 - Lending efficiency vs. funding mix
- Comments
 - 1. Where could we look for evidence on mechanism?
 - 2. Benefits and costs of capital regulation
 - 3. Role of bond market
 - 4. Calibration

- 1. Neoclassical producers
 - Fully depend on credit finance $r_t^\ell = r_t^b = \mathsf{MPK}_t$

- 1. Neoclassical producers
 - ▶ Fully depend on credit finance $r_t^{\ell} = r_t^b = \mathsf{MPK}_t$
- 2. Households consume and invest in bank equity, deposits, and corporate bonds
 - Portfolio choice in steady-state through transaction cost functions $\mu_j(q^j)$, for $j=e,d,b^h$
 - Transaction costs are true resource costs

- 1. Neoclassical producers
 - ▶ Fully depend on credit finance $r_t^{\ell} = r_t^b = \mathsf{MPK}_t$
- 2. Households consume and invest in bank equity, deposits, and corporate bonds
 - Portfolio choice in steady-state through transaction cost functions $\mu_i(q^j)$, for $j=e,d,b^h$
 - ▶ Transaction costs are true resource costs
- 3. Banks lend to firms and raise equity and deposits from HH
 - lacktriangle No equity issuance cost ightarrow one-period banks
 - ▶ Originate and hold loans ℓ_t "on balance sheet"
 - ▶ Buy b_t^b bonds and pass through s_t bonds to HH
 - Need to keep bond inventory proportional to volume $b_t^b \geq (1+\kappa)s_t$

- 1. Neoclassical producers
 - ▶ Fully depend on credit finance $r_t^{\ell} = r_t^b = \mathsf{MPK}_t$
- 2. Households consume and invest in bank equity, deposits, and corporate bonds
 - ▶ Portfolio choice in steady-state through transaction cost functions $\mu_j(q^j)$, for $j = e, d, b^h$
 - Transaction costs are true resource costs
- 3. Banks lend to firms and raise equity and deposits from HH
 - No equity issuance cost → one-period banks
 - ▶ Originate and hold loans ℓ_t "on balance sheet"
 - ightharpoonup Buy b_t^b bonds and pass through s_t bonds to HH
 - Need to keep bond inventory proportional to volume $b_t^b \geq (1+\kappa)s_t$
 - ► Trade loans in interbank market

Interbank Market: Setup

▶ After making loans ℓ_t , but before interbank trade, each bank draws shock q^{ℓ} such that effective payoff $q^{\ell}r_t^{\ell}\ell_t$

Interbank Market: Setup

- ▶ After making loans ℓ_t , but before interbank trade, each bank draws shock q^{ℓ} such that effective payoff $q^{\ell}r_t^{\ell}\ell_t$
- Credit frictions in interbank market
 - Efficient holder of all loans is bank with highest q^{ℓ}
 - But due to moral hazard, banks can at most borrow

$$\phi_t = \frac{\ell_t}{\zeta} (r_t^i - \zeta + \mathcal{F}(e_t, b_t^b))$$

▶ Banks optimally either borrow ϕ_t , or completely "sell" their loans and lend the proceeds, depending on q^{ℓ} , with cutoff

$$ar{q}_t^\ell = r_t^i/r_t^\ell$$

Interbank Market: Setup

- ▶ After making loans ℓ_t , but before interbank trade, each bank draws shock q^{ℓ} such that effective payoff $q^{\ell}r_t^{\ell}\ell_t$
- Credit frictions in interbank market
 - Efficient holder of all loans is bank with highest q^{ℓ}
 - But due to moral hazard, banks can at most borrow

$$\phi_t = \frac{\ell_t}{\zeta} (r_t^i - \zeta + \mathcal{F}(e_t, b_t^b))$$

▶ Banks optimally either borrow ϕ_t , or completely "sell" their loans and lend the proceeds, depending on q^{ℓ} , with cutoff

$$ar{q}_t^\ell = r_t^i/r_t^\ell$$

- Resulting allocation
 - ▶ Low- q^{ℓ} lenders earn $r_t^i \ell_t$ in interbank market
 - High- q^{ℓ} borrowers earn $r_t^{\ell} q^{\ell} (\ell_t + \phi_t) r_t^{i} \phi_t$
 - Market clearing $(1 \mu_{\ell}(\bar{q}_{t}^{\ell}))\phi_{t} = \mu_{\ell}(\bar{q}_{t}^{\ell})\ell_{t}$

$$\phi_t = \frac{\ell_t}{\zeta} (r_t^i - \zeta + \mathcal{F}(e_t, b_t^b))$$
$$\bar{q}_t^\ell = r_t^i / r_t^\ell$$

1. Precautionary equity holdings

2. Pecuniary externality

3. **Selection** effect on lending efficiency

$$\begin{aligned} \phi_t &= \frac{\ell_t}{\zeta} (r_t^i - \zeta + \mathcal{F}(\mathbf{e_t}, b_t^b)) \\ \bar{q}_t^\ell &= r_t^i / r_t^\ell \end{aligned}$$

- 1. **Precautionary** equity holdings
 - ► Equity relaxes funding constraint
 - ▶ Banks do not know q^{ℓ} -type when raising equity \Rightarrow hold equity to be able to borrow more in case of high q^{ℓ} draw
- 2. Pecuniary **externality**

3. **Selection** effect on lending efficiency

$$\begin{aligned} \phi_t &= \frac{\ell_t}{\zeta} (r_t^i - \zeta + \mathcal{F}(\mathbf{e}_t, b_t^b)) \\ \bar{q}_t^\ell &= r_t^i / r_t^\ell \end{aligned}$$

Precautionary equity holdings

- Equity relaxes funding constraint
- ▶ Banks do not know q^{ℓ} -type when raising equity \Rightarrow hold equity to be able to borrow more in case of high q^{ℓ} draw

2. Pecuniary **externality**

- Greater equity would increase interbank demand and bid up rate rⁱ_t
- ▶ This would further relax constraint
- 3. **Selection** effect on lending efficiency

$$\begin{split} \phi_t = & \frac{\ell_t}{\zeta} (\mathbf{r_t^i} - \zeta + \mathcal{F}(\mathbf{e_t}, b_t^b)) \\ \bar{q}_t^\ell = & \mathbf{r_t^i} / r_t^\ell \end{split}$$

1. Precautionary equity holdings

- ► Equity relaxes funding constraint
- ▶ Banks do not know q^{ℓ} -type when raising equity \Rightarrow hold equity to be able to borrow more in case of high q^{ℓ} draw

2. Pecuniary externality

- Greater equity would increase interbank demand and bid up rate rⁱ_t
- This would further relax constraint

3. Selection effect on lending efficiency

- In either case, $\phi_t \uparrow \Rightarrow r_t^i \uparrow \Rightarrow \bar{q}_t^\ell \uparrow$
- Loans allocated to more efficient holder!

► Tighter cap req lifts interbank trade ⇒ more efficient allocation among banks,

- ► Tighter cap req lifts interbank trade ⇒ more efficient allocation among banks,
- which reduces DWL in banking sector,

- ► Tighter cap req lifts interbank trade ⇒ more efficient allocation among banks,
- which reduces DWL in banking sector,
- but raises DWL on HH side due to equity transaction cost

- ► Tighter cap req lifts interbank trade ⇒ more efficient allocation among banks,
- which reduces DWL in banking sector,
- but raises DWL on HH side due to equity transaction cost
- ▶ At optimum, get smaller but more efficient banking sector

Comment #1: Direct Evidence on Mechanism

- "Interbank" market in paper involves three real markets
 - 1. Wholesale funding market (e.g. commercial paper, repo)
 - 2. Secondary market for loans (e.g. syndicated loans)
 - 3. Interbank market (e.g. federal funds market)

Comment #1: Direct Evidence on Mechanism

- "Interbank" market in paper involves three real markets
 - 1. Wholesale funding market (e.g. commercial paper, repo)
 - 2. Secondary market for loans (e.g. syndicated loans)
 - 3. Interbank market (e.g. federal funds market)
- Main mechanism connects all three markets: greater bank equity increases banks capacity to borrow non-deposit funds (wholesale funding market), which they only raise from other banks (interbank market), and they use these funds to participate in the secondary market for loans

Comment #1: Direct Evidence on Mechanism

- ▶ "Interbank" market in paper involves three real markets
 - 1. Wholesale funding market (e.g. commercial paper, repo)
 - 2. Secondary market for loans (e.g. syndicated loans)
 - 3. Interbank market (e.g. federal funds market)
- Main mechanism connects all three markets: greater bank equity increases banks capacity to borrow non-deposit funds (wholesale funding market), which they only raise from other banks (interbank market), and they use these funds to participate in the secondary market for loans
- ▶ Empirical question to which extent these connections exist
 - Sensible that equity alleviates credit constraints for non-deposit borrowing
 - ▶ But banks raise lots of non-deposit funds from non-banks
 - Greater use of non-deposit funds linked to participation in secondary market for loans?
 - Interbank market mainly about insuring liquidity shocks (no direct connection to secondary loan market)

Comment #2: Benefits and Costs of Regulation

- Paper proposes novel trade-off
- But what about costs and benefits of capital regulation more broadly?
- Underestimate benefits: avoiding financial crises
 - Was hoping for crises a la Boissay, Collard, Smets 2016!
 - ▶ In practice, biggest benefit emphasized by regulators
 - Currently only steady-state analysis, so no trade-off between mean and volatility of consumption
- Overestimate costs: no equity finance for firms
 - ▶ Leverage of non-financial corporate sector in U.S. is 35-40%
 - ► Equity (retained earnings) most important source of funds
 - ▶ In model, firms 100% credit financed

- Model predicts substitution to bonds
 - Decreased deposit demand from banks pushes down deposit rate
 - Households shift portfolio to bonds
 - Depends on elasticity of substitution between bonds and deposits in household transaction cost functions

- Model predicts substitution to bonds
 - Decreased deposit demand from banks pushes down deposit rate
 - Households shift portfolio to bonds
 - Depends on elasticity of substitution between bonds and deposits in household transaction cost functions
- Possible empirical target: business cycle elasticity of substitution between bonds and loans documented in Becker and Ivashina 2014

- Model predicts substitution to bonds
 - Decreased deposit demand from banks pushes down deposit rate
 - Households shift portfolio to bonds
 - Depends on elasticity of substitution between bonds and deposits in household transaction cost functions
- Possible empirical target: business cycle elasticity of substitution between bonds and loans documented in Becker and Ivashina 2014
- ▶ Model: loans and bonds perfect substitutes for firms, $r_t^\ell = r_t^b$

- Model predicts substitution to bonds
 - Decreased deposit demand from banks pushes down deposit rate
 - Households shift portfolio to bonds
 - Depends on elasticity of substitution between bonds and deposits in household transaction cost functions
- Possible empirical target: business cycle elasticity of substitution between bonds and loans documented in Becker and Ivashina 2014
- ▶ Model: loans and bonds perfect substitutes for firms, $r_t^\ell = r_t^b$
- Schwert 2018: $r_t^\ell r_t^b = 140$ bps spread for same firm
 - Bank loans come bundled with services, credit lines, renegotiation options (Berg, Saunders, Steffen 2014)
 - ▶ Xiang 2018: complementarity at the firm level

Target	Values	Data sources
r^b	1.0428	Federal Reserve Bank of Saint Louis FRED database;
		Moody's seasoned Baa corporate bond yield©; BAA
r^i	1.0194	Federal Reserve Bank of Saint Louis FRED database;
		Federal funds effective rate; RIFSPFF_N.A
b/ℓ	1.3019	US Financial Accounts; Firms;
		$Bond-to-loan\ ratio;\ FL104122005.A/FL104123005.A$
e/(d+e)	0.0814	US Financial Accounts; Depository institutions;
		Leverage ratio; (FL704194005.A-FL704190005.A)/FL704194005.A
$(b^b - s_t)/(d+e)$	0.0386	US Financial Accounts; Depository institutions;
		Liquidity ratio; FL703063005.A/FL704194005.A
ω	0.0100	Adrian et al. (2017)
		Share of time deposits; FL703130005.A/(FL703130005.A+FL703127005.A)
$\chi^i/(d+e)$	0.0230	FDIC Tables CB07 and CB09; banks' total non-interest expenses to total assets
χ^a/a	0.0250	Foerster et al. (2017); Households;
		$As set-management-expenses-to-total-asset\ ratio$
Λ	0	The shadow cost of the leverage ratio rule is zero

Target	Values	Data sources
r^b	1.0428	Federal Reserve Bank of Saint Louis FRED database;
L,	1 ()1()	Moody's seasoned Baa corporate bond yield⊚; BAA
r^i	1.019	Bond market target rate seems to be risky
b/ℓ	1.301	long-term rate, but model only has one-
e/(d+e)	0.081	period short term debt Should adjust rate by credit and term spread
$(b^b - s_t)/(d+e)$	0.038	Will imply much less costly bond
ω	0.0100	intermediation Adman et al. (2017)
		Share of time deposits; FL703130005.A/(FL703130005.A+FL703127005.A)
$\chi^i/(d+e)$	0.0230	FDIC Tables CB07 and CB09; banks' total non–interest expenses to total assets
χ^a/a	0.0250	Foerster et al. (2017); Households;
		$As set-management-expenses-to-total-asset\ ratio$
Λ	0	The shadow cost of the leverage ratio rule is zero

Target	Values	Data sources
r^b	1.0428	Liquidity ratio serves as target for bank bond
r^i	1.0194	warehousing ratioMost likely treasury and agency securities
b/ℓ	1.3019	held for liquidity reasons?
e/(d+e)	0.0814	Not related to market making for corporate bonds?
$(b^b - s_t)/(d+e)$	0.0386	US Financial Accounts; Depository institutions;
		Liquidity ratio; FL703063005.A/FL704194005.A
ω	0.0100	Adrian et al. (2017)
		$Share\ of\ time\ deposits;\ FL703130005. A/(FL703130005. A+FL703127005. A)$
$\chi^i/(d+e)$	0.0230	FDIC Tables CB07 and CB09; banks' total non–interest expenses to total assets
χ^a/a	0.0250	Foerster et al. (2017); Households;
		$As set-management-expenses-to-total-as set\ ratio$
Λ	0	The shadow cost of the leverage ratio rule is zero

Target	Values	Data sources	
r^b	1.0428	Federal Reserve Bank of Saint Louis FRED database;	
r^i	1.0194	Moody's seasoned Baa corporate bond yield©; BAA Federal Reserve Bank of Saint Louis FRED database; Federal funds effective rate: RIFSPFF N.A.	
b/ℓ	1.3019	Banks' non-interest expenses and HH asset	
e/(d+e)	0.0814	management expenses are counted as deadweight losses	
$(b^b - s_t)/(d+e)$	0.0386	Not very generous view of financial industry!	
ω	0.0100	Probably some value-added; should rebate some of these expenses to households	. <i>A</i>)
$\chi^i/(d+e)$	0.0230	FDIC Tables CB07 and CB09; banks' total non–interest expenses to total	al assets
χ^a/a	0.0250	Foerster et al. (2017); Households; Asset-management-expenses-to-total-asset ratio	
Λ	0	The shadow cost of the leverage ratio rule is zero	

Summary

- ► Elegant GE model with new rationale for capital regulation
- Direct empirical evidence supporting mechanism needed
- Model should include crises a la Boissay, Collard, Smets 2016, and allow equity financing of firms
- Calibration based on counting all non-interest expenses of banks as DWL may overstate effects