

Banking Regulation, Market Liquidity, and the Macroeconomy

Frédéric Boissay (BIS), Fabrice Collard (TSE), Ulf Lewrick (BIS)

BIS Research Network Meeting — Basel, 28 September 2018

The views expressed in this presentation are our own and do not necessarily reflect those of the BIS.

Backdrop / Motivation (I)

US Non–Financial Corporations' funding

Debt securities-to-loan ratio

Source: US Financial Accounts

- In the US, banks play a crucial role in corporate bond markets: 95% of trading volume is intermediated by banks
- For US NFCs, market funding has recently become twice as large as bank funding

Backdrop / Motivation (II)

- On the one hand, regulatory reforms make banks' traditional activities (risk, liquidity, maturity transformation) more efficient/resilient
- On the other hand, some reforms (like the leverage ratio) may have unintended adverse consequences on banks' market-making activities, and corporate bond markets
 - By forcing banks to fund all assets, regardless of their underlying risk and purpose, with a minimum of —costly— equity, the leverage ratio may discourage banks from holding bonds for market–making purposes, reduce market liquidity, and raise firms' cost of funding
 - Greenwood, Hanson, Stein, Sunderam (2017): "the Supplementary Leverage Ratio is (...) discouraging some banks from investing in the safest assets (...). We would urge that the SLR be dialed back (...)"
 - FT (24 Sept 2018): "Regulatory changes have made it more expensive for banks to hold large inventories of bonds, which has hindered their role as liquidity providers in fixed income markets"

- Does leverage ratio regulation hinder the functioning of bond markets?
 - Does it push up bid-ask spreads? Does it reduce trading volumes?
- Taking these effects into account, what is the net impact of banking regulation on the economy and welfare?
- Study these questions through the lens of a [dynamic] general equilibrium model
 - Novelty: the dual role of banks as both lenders and market-makers

- Regulation has a varied impact on measures of corporate bond market liquidity
 - $\rightarrow\,$ It raises the bid–ask spread
 - $\rightarrow~$ But it also raises the volume of trades
- The regulator accepts a higher bid-ask spread, to improve banks' funding liquidity and the efficiency of financial intermediation
 - $\rightarrow\,$ The impact on market liquidity is not necessarily an unintended consequence
- Exempting bonds from the leverage ratio would only marginally reduce the bid-ask spread and have no effect on the real economy and welfare after re-calibration

Macro-model: real flows between agents

 a_t : Savings; e_t : Equity; d_t : Deposits; b_t : Bonds; ℓ_t : Loans

Macro-model: real flows between agents

Frictions on the secondary bond market \rightarrow Bond inventory constraint: $b_t^b \ge (1 + \kappa) b_t^h$

 a_t : Savings; e_t : Equity; d_t : Deposits; b_t : Bonds; ℓ_t : Loans

Macro-model: real flows between agents

Frictions on the secondary bond market \rightarrow Bond inventory constraint: $b_t^b \ge (1 + \kappa)b_t^h$ Frictions on the interbank market \rightarrow Regulatory leverage constraint: $\frac{e_t}{d_{t+e_t}} \ge \tau$

 a_t : Savings; e_t : Equity; d_t : Deposits; b_t : Bonds; ℓ_t : Loans

Households' "preferred habitat"

- A continuum of households incur idiosyncratic financial transaction costs
- Household " (q^d, q^e, q^{b^h}) " earns net returns $q^d r_t^d$, $q^e r_t^e$ and $q^{b^h} r_t^{b^h}$ on deposits, equity, and bonds, and invests in the asset with the highest net return \approx "preferred habitat"

$$\max_{\{a_{t+1},c_t\}_{t=0,\ldots,\infty}} \mathbb{E}_q \left[\mathbb{E}_t \left(\sum_{i=0}^{\infty} \beta^{\tau} \max_{\{\mathbf{l}_{t+1+i}^j\}_{j \in \{b^h,d,e\}}} u(c_{t+i}) \right) \right]$$

$$s.t.: c_t + a_{t+1} = r_t a_t + \pi_t \text{ with } r_t \equiv \mathbb{Q}_t^d r_t^d \frac{d_t}{a_t} + \mathbb{Q}_t^{b^h} r_t^{b^h} \frac{b_t^h}{a_t} + \mathbb{Q}_t^e r_t^e \frac{e_t}{a_t}$$

• For a household, it is costly to move away from its preferred habitat

Banks arbitrage between loans and bonds

- Banks maximize profits by choosing *ex ante* whether they invest in loans (ℓ_t) or bonds (b_t^b)
- Once banks have lent to the firm, they learn their idiosyncratic "loan servicing cost"
 - Bank q^ℓ gets unit return $q^\ell r_t^\ell$, with $q^\ell \in [0,1]$
 - High- q^{ℓ} banks purchase loans from low- q^{ℓ} banks on an "interbank" market, against claims that promise return $r_t^i \rightarrow$ the minimum return of a loan is r_t^j
 - There is a threshold $\overline{q}_t^{\ell} = \frac{r_t^i}{r_t^{\ell}}$, above (below) which banks borrow (lend) from (to) other banks
- Banks face a bond portfolio management cost and get unit return $\mathbb{Q}^{b^b} r^b_t$ on bonds
- If $r_t^i > \mathbb{Q}^{b^b} r_t^b$, then banks prefer to invest in loans, rather than in bonds

- Banks sell bonds to households, but must hold an inventory of κ per intermediated bond
- They charge households a fee ω_t for making the bond market ("bid-ask" spread):

$$\omega_{t} = \kappa \underbrace{ \overbrace{\mathbb{E}_{t-1} \left(\Psi_{t-1,t} (1 + \Delta_{t}) \left(\mathbf{r}_{t}^{i} - \mathbb{Q}^{b^{b}} \mathbf{r}_{t}^{b} \right) \right)}^{\text{Opportunity cost of holding bonds}}}_{\mathbb{E}_{t-1} \left(\Psi_{t-1,t} (1 + \Delta_{t}) \mathbf{r}_{t}^{b} \right)}$$

- Frictions hinder *ex post* reallocation of corporate loans from low- q^{ℓ} to high- q^{ℓ} banks
 - The loan servicing cost q^ℓ is private information
 - Banks can terminate loans early, get private benefits ζ , and abscond/default
- High- q^{ℓ} banks have to limit their borrowing to ϕ_t :

$$\phi_t = \frac{\ell_t}{\zeta} \left(r_t^i - r_t^d \frac{1 - \frac{e_t}{d_t + e_t}}{1 - \frac{b_t^b}{d_t + e_t}} + \dots \right)$$

- Pecuniary externality: More capital $\left(\frac{e_t}{d_t+e_t}\right)$ raises the borrowing limit (ϕ_t) , which raises the equilibrium interbank rate (r_t^i) , improves lending efficiency (\overline{q}_t^ℓ) , raises the borrowing limit,...
- As price takers, banks do not internalise these effects and have too little capital ex ante
- \rightarrow Regulation requires banks to hold a minimum level of capital: $\frac{e_t}{d_t+e_t} \ge \tau \Leftrightarrow \frac{e_t}{\ell_t+b_t^b} \ge \tau$

Key mechanism 1: the regulator's trade-off

• A regulator sets τ^{\star} to maximize welfare, i.e. to minimize aggregate transaction costs:

- Lower costs for banks are balanced against higher costs for households
- Savers bear the cost of regulation (not firms or banks)

Key mechanism 2: general equilibrium effects of capital regulation

ightarrow Leverage regulation induces households to demand more bonds, which lowers the equilibrium bond yield

Key mechanism 3: banking regulation and market liquidity

Regulation: bank-based versus market-based intermediation

Bank-based intermediation:

Market-based intermediation:

Optimal leverage ratio

Banks' versus households' transaction costs

Welfare

Narrow versus comprehensive leverage regulation

- Should the regulator exempt bonds (and re-calibrate)?
- $\frac{e_t}{\ell_t} \ge \theta$ ("Narrow") versus $\frac{e_t}{\ell_t + b_t^b} \ge \tau$ ("Comprehensive")

Narrow leverage regulation, - - - Leverage regulation, */* Optimal requirements,
non regulated equilibrium.

- Market liquidity is part of the regulatory trade-off
- The cost of regulation is borne by savers, and regulation has distributional effects among them (e.g. depositors versus bondholders versus shareholders)
- Calibrated general equilibrium effects of regulation are material
- Dynamics [TBC]

Timeline

• Firms finance their production with bonds and loans, and maximize their expected profit

$$\max_{k_t,b_t,\ell_t} \mathbb{E}_{t-1} \left(\Psi_{t-1,t} \left(z_t k_t^{\alpha} + (1-\delta) k_t - r_t^{\ell} \ell_t - r_t^{\delta} b_t \right) \right)$$

$$\begin{aligned} k_t &= \ell_t + b_t \\ r_t^b &= r_t^\ell \\ r_t^\ell &= \alpha z_t k_t^{\alpha - 1} + 1 - \delta \end{aligned}$$

Banks' maximisation problem

• Banks choose deposits and bond holdings to maximise their expected return on equity:

$$\max_{d_t, b_t^b} \mathbb{E}_{t-1} \left(\Psi_{t-1,t} \Big[r_t^i \ell_t + \left(1 - \mu\left(\overline{q}_t^\ell\right)\right) \left(\mathbb{Q}_t^\ell r_t^\ell - r_t^i \right) (\ell_t + \phi_t) + \mathbb{Q}^{b^b} r_t^b \left(b_t^b - b_t^h \right) + \omega_t r_t^b b_t^h - r_t^d d_t \Big] \right)$$

$$s.t.: \ell_t = d_t + e_t - b_t^b$$
 and $b_t^b \geq (1+\kappa)b_t^h$ and $e_t \geq au(\ell_t + b_t^b)$

$$\Rightarrow \omega_{t} = \kappa \underbrace{\frac{\mathbb{E}_{t-1}\left(\Psi_{t-1,t}(1+\Delta_{t})\left(r_{t}^{i}-\mathbb{Q}^{b^{b}}r_{t}^{b}\right)\right)}{\mathbb{E}_{t-1}\left(\Psi_{t-1,t}(1+\Delta_{t})r_{t}^{b}\right)}}$$

Targets

Parameters

Target	Values	Data sources		Parameter	Value
r^b	1.0428	Federal Reserve Bank of Saint Louis FRED database;	Intertemporal Elast. of Subst.	σ_c	4.5000
		Moody's seasoned Baa corporate bond yield [©] ; BAA	Capital elasticity	α	0.3000
r^i	1.0194	Federal Reserve Bank of Saint Louis FRED database;	Capital depreciation rate	δ	0.0600
		Federal funds effective rate; RIFSPFF_N.A	Exogenous TFP	z	1.0000
b/ℓ	1.3019	US Financial Accounts; Firms;	D 1 1 1		0.004.4
		Bond-to-loan ratio; FL104122005.A/FL104123005.A	Regulatory leverage ratio	τ	0.0814
e/(d+e)	0.0814	US Financial Accounts; Depository institutions;	Private benefit	ς	0.0545
		Leverage ratio; (FL704194005.A-FL704190005.A)/FL704194005.A	Bond inventory	κ	0.0318
$(b^b - s_t)/(d + e)$	0.0386	US Financial Accounts; Depository institutions;	Distribution – $\mu(q^{\ell})$	λ_{ℓ}	44.0351
		Liquidity ratio; FL703063005.A/FL704194005.A	Distribution – $\mu_d(q^d)$	λ_d	25.7263
ω	0.0100	Adrian et al. (2017)	Distribution $-\mu_e(q^e)$	λ_e	0.2324
		Bid-ask spread on corporate bonds	Distribution $-\mu_{b^h}(q^{b^h})$	λ_{h^h}	20.3558
$\chi^i/(d+e)$	0.0230	FDIC Tables CB07 and CB09; banks' total non–interest expenses to total assets	/ U (1 /	\mathbb{Q}^{b^b}	0.6633
χ^a/a	0.0250	Foerster et al. (2017); Households;	Bond management cost	Q.	
		$Asset-management-expenses-to-total-asset\ ratio$	Discount factor	β	0.9926

Regulation: households' portfolio re-balancing and returns on assets

Deposits

0.415 -

0.410

0.405

0.400

0.395

0.390

0.075

Portfolio re-balancing:

Returns on assets:

Funding Liquidity, Market Liquidity, and Optimal Regulation

Exogenous variation in market liquidity (variation in κ)

Exogenous variation in funding liquidity (variation in ζ)

