The Bank of England's forecasting platform

Francesca Monti

8 March 2018

The forecast process: key features

► Each quarter, the Bank publishes an *Inflation Report*, including 'fan charts' that depict

the **MPC's best collective judgement** about the most likely paths for inflation, output and unemployment, and the uncertainties surrounding those central projections.

- ► Forecasts are
 - Owned by the MPC
 - Conditional on the paths for the interest rate, the exchange rate, government spending
 - Ultimately determined by judgement, not models
- Forecasting platform
 - Collection of models and tools
 - ► Supports staff in facilitating MPC discussions

Key elements of forecast platform design

- ► Single model cannot perform well in all roles
 - ▶ "Essentially, all models are wrong, but some are useful." George Box (1987)
- Central model to 'organise' the forecast
 - Provides baseline framework for consistency of analysis
 - ► Guiding principles: Theoretical consistency, tractability, flexibility
 - ► ⇒ COMPASS: Medium-scale new-Keynesian open-economy DSGE model
- Use a suite of models
 - Help cope with misspecification of central model
 - Structural and reduced-form models, ranging from single-equation models to alternative versions of COMPASS (e.g. COMPASS with energy)
 - Provide cross checks on analysis from central model
 - ► Recent effort to revamp suite of state-of-the-art forecasting/nowcasting models

Building blocks COMPASS

COMPASS flows and sectors schematic

Key behavioural equations and parameters

- ► Phillips curves for prices of value-added, consumption, import, exports and labour
 - ▶ Price adjustment costs (Calvo in the current version of COMPASS)
 - ► Indexation parameters and share of firms that follow rule-of-thumb pricing
 - Elasticity of labour supply
- Euler equations for consumption and investment
 - Investment adjustment cost parameter (Tobin's q)
 - ► External habits and share of rule-of-thumb consumers
- ► The world
 - Exogenous to UK economy
 - ► SVAR of world GDP, world prices and world interest rates
- Export demand
 - Price elasticity of export demand
- ► Import demand, which arises from the cost minimisation of final goods producers
- ► UIP condition

Households 🜔 🕨 Firms 🔪 (🕨 Tre

Monetary and fiscal policy

- Monetary policy follows a reaction function responding to output gap and CPI inflation, with interest rate smoothing
- Simple articulation of fiscal policy
 - ► Government spending modelled as stochastic process around trend
 - ► Lump sum taxes levied on unconstrained households: implies a form of Ricardian equivalence
 - ► Assume budget balanced each period for simplicity
- Forecasts conditioned on implications of announced fiscal plans and measure of market expectations of Bank Rate

Estimation

- Model is estimated on first differences for all I(1) variables
- Bayesian estimation methods
 - Combine prior information on the parameters with information about the relevant data series
- ► Data sample 1993Q1-2016Q4 for following variables
 - Real GDP, consumption, (business) investment, government spending, exports & imports
 - ► CPI, import prices, export prices
 - ► nominal exchange rate, "shadow" Bank Rate
 - ► Total hours worked, wages (AWE)
 - ► World demand, world export prices

Building blocks COMPASS

Policy Analysis in COMPASS

Responses to a 50bp increase in the policy rate

Building blocks COMPASS

Policy Analysis in COMPASS

Building blocks COMPASS

Stochastic Simulations in COMPASS

 COMPASS simulations used to assess if the private sector perceived the ZLB as a binding constraint on policy

Stochastic Simulations in COMPASS

- COMPASS simulations used to assess if the private sector perceived the ZLB as a binding constraint on policy
- Compared deflation probabilities from COMPASS with deflation probability measure from professional forecasters and financial markets
 - Professional forecasters and financial markets identify 2009 and 2015 as periods of heightened deflation risk
 - ► Model simultations produced with no ZLB also identify 2009 and 2015, while model with an ZLB also picks up 2012-2013
 - ► While 2009 and 2015 deflation risk is mainly driven by weak inflation outlook, the 2012-2013 is driven by presence of the ZLB
- COMPASS sims suggest the private sector did not perceive the ZLB to pose a significant constraint on policy
- ► Haberis, Masolo, Reinold (forthcoming IJCB)

Building blocks COMPASS

Stochastic Simulations in COMPASS

Core COMPASS with myopic households

- ► COMPASS is also a laboratory.
- ► The assumption of full information rational expectations is often questioned by the Monetary Policy Committee.
 - ► MPC tend to believe model's responses are too front-loaded
 - The forward guidance puzzle suggests that indeed the role of expectations in the distant future is too strong
 - ► In the "natural experiment" of Brexit, consumers responded much less than expected.
- ► We have experimented with behavioural assumptions:
 - ► COMPASS with adaptive expectations for all variables but the exchange rate
 - ► Gabaix (2016)-style behavioral (stripped down version of) COMPASS

COMPASS Suite of models

Core COMPASS with myopic households

COMPASS: other development in train

- COMPASS with energy
 - Dynamic general equilibrium model that includes a wide range of potential channels through which energy price shocks may affect the economy
 - Households consume ofinal energy goods (petrol and utilities) separately from other goods and services
 - ► The production of energy and the way that energy enters the production processes of other non-energy goods and services is modelled explicitly.
- ► Time-varying COMPASS (Kapetanios, Masolo, Petrova, Waldron 2017)
 - Investigate structural change through the lense of COMPASS
 - ► Bayesian local likelihood methods (Galvao, Giraitis, Kapetanios and Petrova, 2017)
 - ► Gradual shift to a monetary policy regime characterised by a marked increase in the responsiveness of monetary policy to inflation alongside a decrease in the level of trend inflation down to the 2% target level.

COMPASS: other development in train

- COMPASS with energy
 - Dynamic general equilibrium model that includes a wide range of potential channels through which energy price shocks may affect the economy
 - Households consume ofinal energy goods (petrol and utilities) separately from other goods and services
 - ► The production of energy and the way that energy enters the production processes of other non-energy goods and services is modelled explicitly.
- ► Time-varying COMPASS (Kapetanios, Masolo, Petrova, Waldron 2017)
 - Investigate structural change through the lense of COMPASS
 - ► Bayesian local likelihood methods (Galvao, Giraitis, Kapetanios and Petrova, 2017)
 - ► Gradual shift to a monetary policy regime characterised by a marked increase in the responsiveness of monetary policy to inflation alongside a decrease in the level of trend inflation down to the 2% target level.
- ► COMPASS with financial frictions

Suite of models

- ► Set of empirical models to cross-check the MPC's forecast.
 - ► BVAR, Dynamic factor model, etc
- ► We are working on a DSGE-VAR for COMPASS (Del Negro and Schorfheide 2004)
- Exploring various models for Brexit
 - class of infinite-horizon nonlinear dynamic economic models in which preferences, technology and laws of motion for exogenous variables can change over time deterministically or stochastically (Maliar *et al.*, 2015)
 - ► Bilbiie-Ghironi-Melitz (2012) type models to capture the endogenous firm entry/exit dynamics.
- Other modelling approaches
 - Advanced Analytics Division working on agent-based models

COMPASS Suite of models

Additional slides

Households

- \blacktriangleright Share ω_o of households can access the financial markets and are able to save and borrow
 - choose how much to consume/invest/work/hold money to maximse their utility subject to the budget constraint
 - Key frictions they face:
 - external habits
 - wage rigidities à la Calvo
 - investment adjustment costs
- ▶ Share of households $1 \omega_o$ do not access financial markets
 - ► consume their labour income plus a transfer from the goverment
 - take wage set by the optimising households as given
 - ► supply the same amount of labour as optimising households

- ► There are 5 types of firms in COMPASS: final output producers, value-added producers, importers, exporters and retailers.
- ► All monopolistically competitive, bar the retailers.
- ► In the current version of COMPASS, we model price rigidities according to Calvo (1983).
- ► In addition to indexation, we also have a (small) share of firms in each sector that do rule-of-thumb pricing (Galì and Gertler, 1999)
- Retailers are perfectively competitive firms with different technologies applying to each separate sector, giving rise to different trend growth rates for consumption, investment, government and trade

Trends

- ► Model includes a permanent labour augmenting productivity shock
 - Expenditure, wages and GDP are all treated as I(1) and cointegrated
- Simple CRS retail sector incorporates deterministic technology trends that can vary by expenditure component
 - Real great ratios and relative prices are trended (trend stationary)

▶ back