### **Blockchain Economics**

#### Joseph Abadi & Markus Brunnermeier

#### (Preliminary and not for distribution)

March 9, 2018

Abadi & Brunnermeier

Blockchain Economics

March 9, 2018 1 / 35

- ∢ ∃ ▶

### Motivation

Ledgers are "written" and maintained by

#### • Centralized intermediaries (traditional)

- maintained by single, centralized agent
- private
- trusted because of franchise value

#### • Blockchain technology (new alternative)

- maintained by many anonymous agents
- publicly viewable
- agreed-upon ledger
- Large computational costs instead of franchise value

# When Centralized Intermediary, when Blockchain?

Main question: When is it cheaper to secure transactions via blockchain?



► < Ξ >

# When Centralized Intermediary, when Blockchain?



## What is a Blockchain?

- Blockchain is a ledger in which agents known as writers (or nodes) take turns writing on it.
  - ▶ Many ways to choose which writer records the state discussed later.
- Ledger consists of a tree of blocks.
- Current state =
  - Iongest "valid" chain.
  - = entire chain of transactions leading up to that block.
- Validity of a chain is determined by public consensus
  - Writers signal their acceptance of a block as valid by extending the chain corresponding to that block.
  - Writers earn rewards when their block is on the longest chain, so there are incentives for coordination.

# What is a Blockchain? (cont.'d)



Abadi & Brunnermeier

Blockchain Economics

March 9, 2018 6 / 35

< 4 ₽ > < 3

э

### Incentives Across the Spectrum



- ∢ ≣ →

Image: A math a math

### Incentives Across the Spectrum



# Types of Blockchains

#### Private Blockchain:

- Written by a centralized entity, but possibly Readable in real-time by the public or a regulator.
- Disciplined by readers of ledger (threat to leave blockchain)

### Permissioned Blockchain:

- Write privileges granted to consortium of entities *Read privileges* may be unrestricted.
- Writers are disciplined by those with read privileges and other nodes.

### Public Blockchain:

- Write and read privileges are unrestricted  $\Rightarrow$  Free entry!
- Writers are disciplined as in permissioned blockchains.
- Needs identity management: proof-of-work, proof-of-stake, etc.
  - Otherwise, Sybil attack: Create thousands of nodes to write the history you want.
  - real computational resource costs to add block (except if useful computations, like DNA decoding)
  - ► Compensation scheme ⇐ free entry condition

## When is Proof-of-Work Necessary?

- If readers/users refuse to trade on any ledger that's been attacked ⇒ Private blockchain
- If writers refuse to build on any invalid block
  ⇒ Permissioned blockchain
- Proof-of-Work:
  - Readers/users can be "fooled" and trade on invalid ledgers.
  - Writers are able to collude and steal from readers/users.

### Relation to Literature

- Rationale of PoW in many CS studies: PoW to defend against "double-spending" attacks
  - Writers obtain 51% of the network's computing power and build long chains on which they didn't spend certain coins.
- Most blockchain studies (CS and Econ): nobody can steal your assets or create new ones out of thin air.
- This paper:
  - mechanism to defend against arbitrary attacks
    - \* Writers can write whatever they want (not just double-spending).
    - ★ Readers/users can freely choose (competing) ledger.
  - No need to assume fraction of "honest writers."
  - ► No need to assume collusion is impossible ex-ante.

### Overview of Results

- Basic trade-offs (fee to incentivize writers)
  - Static: writer(s) "distort"  $\Rightarrow$  readers/users leave with higher prob.
  - Dynamic: franchise values
- Security of blockchain is guaranteed for two reasons:
  - Joint attacks by several writers are unprofitable because writers don't internalize the effects of their actions on others' profits.
  - 2 Collusion in repeated setting is ruled out because of free entry
- Efficiency of blockchain > monopolistic intermediation (in static setting) when
  - The sensitivity of consensus to a writer's actions is small;
  - Franchise values are insensitive to deviations by the intermediary.
  - $\blacktriangleright \Rightarrow \mathsf{Optimal} \text{ number of writers/monitors/miners}$

#### • Ownership vs. Possession

- Blockchains don't guarantee secure transfer of possession, just ownership.
- Blockchains with several writers are unable to discipline issuers of promises when they default.
- Blockchains can't prevent monopolistic "enforcers" from selectively enforcing contracts.

### Roadmap

- What is a blockchain?
- Pee needed for "trustworthy" / incentivized
  - Blockchain with *M* miners/writers
  - Intermediary with 1 central record keeper
- Ownership vs. possession (enforcement)

# Public Blockchain- Model Setup

- Agents:
  - ▶ Writers, *M*, who search for blocks
  - Free entry of writers  $\Rightarrow$  no dynamic play
  - Readers who "accept" blocks
- Time: continuous,  $t \in [0,\infty)$
- Blockchain:

Tree of blocks  $B^t = (B_1, \ldots, B_n)$  with a partial order  $\prec_t$  satisfying the usual properties of a tree.

- There is a minimal block and each block has a unique predecessor.
- ► The tree can only be extended; blocks can't be erased or rearranged.
- Sequencing:
  - Writers' actions X (more later)
  - Readers choose chain of blocks

    - \* Readers' acceptance probability p(x),
      - = function of writers' actions on a given chain
  - payoff's realize

- 4 週 ト - 4 三 ト - 4 三 ト

# Summary



• *x* how much to distort

.∃ >

# Blockchains and Funding Limits

### • Lesson 1:

Financial frictions are necessary for a blockchain to function!

- Writers exert costly computing power in order to "find" blocks. In each block, writers receive some transaction fees.
- Suppose writers have access to unlimited funding  $\Rightarrow$  single writer
  - ▶ If *M* writers each value their computers at *Q*, a single writer values *M* computers strictly more than *MQ*.
  - If a single writer owns all the computers, she extracts fees + monopolistic rents.

#### • Assumption:

Each potential writer can only "afford" the same limited computing power.

# Setup – Writers

- k blocks that randomly arrive within window of random length  $1/\mu$
- Writers expend *c* units of computing resources in order to find blocks
  - arrive at rate  $\frac{\eta}{M}$  for an individual writer.
- Assume there are two chains of blocks: valid chain *V* and invalid chain *I*.
- Writing strategy:  $m_i \in \{V, I\}$
- Writer's action strategy:  $x_i \in [0, \overline{x}]$ 
  - x = deviation from truth
- n<sub>V</sub>, n<sub>I</sub> = number of blocks found on the valid and invalid chains, by a writer who plays action x. That writer's payoffs are
  - $\phi n_V$  if the valid chain is accepted
  - $(\phi + x)n_I$  if the invalid chain is accepted
- Free entry to become a writer:  $\frac{\eta\phi}{M}=c$

### Setup – Readers

- Readers choose whether to accept the valid or invalid chain.
- If valid chain is longer, they accept it automatically.
- If invalid chain is longer, they accept it w/ exogenous prob.  $1 p(\hat{x})$ 
  - $\hat{x} =$  average action taken by writers
  - p(x̂) = 0, readers detect deviation immediately
    ⇒ blockchain is automatically secure against any attack even with M = 1.

• Recall at 
$$\hat{x} = \overline{x}$$
,  $p(\overline{x}) = 0$ .

# Summary



• *x* how much to distort

.∃ >

# Equilibrium

#### Lemma

In any equilibrium, all writers play on the same chain.

- Intuition: One writer can always mimic another writer's action and receive at least the same payoff.
- By playing on the same chain as another writer, the chance that the chain is accepted increases.
  - $\blacktriangleright \Rightarrow$  Higher payoffs for all writers on that chain
- Readers' preference for consensus (long chains) implies writers have an incentive to coordinate.

# Static Equilibrium Conditions

In an equilibrium in which all writers play on the invalid chain, a writer's optimization problem is

$$\max_{x}(\phi+x)E\left[\left(1-p\left(\frac{k-n}{k}x^{*}+\frac{n}{k}x\right)\right)n\right]$$

The first-order condition in a symmetric equilibrium is

$$1 = \underbrace{\frac{p'(x^*)}{p(x^*)}}_{K(M)} \frac{1}{\kappa(M)} (\phi + x^*)$$

hazard rate

where

$$\frac{1}{\kappa(M)} = \frac{1}{M} + \frac{M-1}{M} \frac{1}{E[k]}$$

#### Lemma

When expected number of blocks, E[k], is sufficiently large, there is **no** equilibrium in which writers play on the **invalid chain** for large M.

Abadi & Brunnermeier

# Why Are Attacks Unprofitable?

- Each writer doesn't internalize the effect his action has others' profits
- Writers steal more than is optimal in aggregate;
- The probability that readers reject the ledger increases;
- Expected revenues on the invalid chain become lower than revenues on the valid chain;
- Writers switch to the valid chain.

Why Are Attacks Unprofitable? (cont.'d)



### Roadmap

- What is a blockchain?
- Ø Model setup
- See needed for "trustworthy" / incentivized
  - Blockchain with *M* miners/writers
  - Intermediary with 1 central record keeper
- Ownership vs. possession (enforcement)

### Monopolistic Intermediary Benchmark

- no free entry  $\Rightarrow$  dynamic incentivization through franchise value
- Consider a monopolist who maintains a ledger and solves
  - Discount factor  $\delta$
  - Deviation x discovered with probability p(x)
  - Intermediary forgiven with probability q on discovery

$$\max_{x} (\phi + x) + \delta (1 - p(x)(1 - q))(\phi + x) + \dots$$
$$\max_{x} \frac{\phi + x}{1 - \delta(1 - p(x)(1 - q))}$$

#### Lemma

The intermediary chooses x = 0 iff  $\phi \ge \frac{1-\delta}{\delta(1-q)}\overline{x} \equiv \underline{\phi}'$ .

## Monopolistic Intermediary Benchmark (cont.'d)



Abadi & Brunnermeier

March 9, 2018 26 / 35

## Fee Comparison

- Can writers on a blockchain be incentivized to play  $x^* = 0$  for a **lower (aggregate) fee** than a monopolist?
- Let  $\overline{M} = \frac{\eta}{c} \underline{\phi}^{I}$ . (How many miners can one afford instead of intermediary?) We want for some  $M \leq \overline{M}$ , deviation is not profitable, i.e.

$$(\phi(M) + x^*(M))(1 - \rho(x^*(M))) < \phi(M)$$

• *Example:* With  $p(x) = \pi x$ , this holds for some  $M \leq \overline{M}$  iff

$$\kappa(\overline{M}) < rac{\delta}{1-\delta}(1-q)$$

# Fee Comparison - Optimal Number of Writers

• Approximate  $\kappa(\overline{M}) \approx E[k] = \frac{\eta}{\mu}$  (holds for large  $\overline{M}$ )

$$E[k] pprox \kappa(\overline{M}) < rac{\delta}{1-\delta}(1-q)$$

 $\Rightarrow$  independent of sensitivity  $\pi$ . (Recall  $p(x) = \pi x$ .)

•  $\Rightarrow$  optimal number of writers:

$$M^* = \frac{1}{\pi cT}$$

where  $T \equiv 1/\mu$  is the average length of a period.

- High  $\pi \Rightarrow$  Unprofitable theft for low M
- High  $cT \Rightarrow$  Higher costs for the same M

### Roadmap

- What is a blockchain?
- Model setup
- Is Fee needed for stable
  - Blockchain with M miners/writers
  - Intermediary with 1 central record keeper
- Ownership vs. possession (enforcement)
  - Blockchain with a monopolistic enforcer (government)
  - Blockchain with defaultable promises

### Blockchain: Ownership vs. Possession

- Several blockchain proposals involve using blockchains as ownership databases for all kinds of assets- not just cryptocurrencies.
  - E.g. WSJ: "How Blockchain Can End Poverty"
- So far: ignored distinction between **ownership** and **possession**.
  - Ownership is traded in the secondary market
  - Possession is conferred by the previous possessor and enforced by some entity
- Currency is the outlier: no fundamental value.
- Blockchain is good for determining ownership but not possession.
  - ► No security against an enforcer who selectively enforces contracts.
  - Provides security when issuers want to coordinate with intermediaries.
  - No discipline for issuers who want to default.

# Blockchain and Enforcement

- There is an enforcer and M writers.
- The enforcer does not like enforcing contracts and chooses how many to enforce.
- Writers choose how much to cooperate with the enforcer and receive bribes for doing so.
  - E.g. writers could erase ownership records for land the government wants to seize.
  - More bribes  $\Rightarrow$  greater probability of detection
- Main result: The equilibrium is independent of the number of miners.
  - More miners  $\neq$  more security!
  - The enforcer can control the extent of deviations by choosing how much to bribe.
  - > The enforcer makes sure writers never steal too much and get detected.

## Intermediation with Defaultable Promises

- *M* writers
- Continuum of issuers
  - Each wants to default on promise on ledger
  - Try to bribe writers to cooperate with default
    - ★ Example:

Company bribes an exchange to lie, says shares it issues are authentic

- Two cases for issuers:
  - Issuers want to coordinate default with writers
    - $\Rightarrow$  Same problem as before
  - Default is dominant: can issuers be disciplined?
- Writers may choose to deny service to issuers  $\Rightarrow$  zero payoff
  - No denial of service in a static setting
    - $\Rightarrow$  Dynamic setting is needed

### Discussion

- Our examples follow from two main results:
  - Security:

Selfish incentives to steal make joint ledger distortion unprofitable.

O No Collusion:

Free entry  $\Rightarrow$  No off-equilibrium punishments/rewards.

- In contrast to CS literature
  - No need to assume fraction of "honest writers."
  - No need to assume collusion is impossible ex-ante.
    - \* This emerges naturally from the free entry condition.
    - ★ Ex-ante impossible collusion  $\Rightarrow$  No PoW.

## When anonymous PoW blockchain

- Markets where reputations are insensitive to deviations
  - E.g., TBTF
- Markets where issuers want to coordinate deviations with intermediaries
  - ► E.g. Title insurance, counterfeiting, IPOs
- Not with monopolistic enforcers.
  - E.g. Land registries
- Not when issuers need to be disciplined.
  - E.g. Consumer debt markets

## Conclusions

