Liquidity Risk and the Dynamics of Arbitrage Capital

PÉTER KONDOR

London School of Economics

DIMITRI VAYANOS

London School of Economics

- When non-financial firms/individuals trade, almost always some specialized agents like market makers, brokers, and hedge funds take the other side
- A view of financial markets: non-financial firms/individuals face various risks which financial firms are willing to partially absorb for compensation
 - $\bullet \rightarrow$ main issue: no immediate new inflows of financial capital (even if returns are high)
- We take this view in this paper and characterize the joint dynamics of asset prices and financial capital
- Main application: outcome generate "liquidity facts" in essentially frictionless economy

Motivation					
00					
	1°. (

Liquidity facts

- assets' illiquidity: difficulty to sell
 - measures: price impact/ negative autocorrelation/ spread
- Liquidity varies over time and in correlated manner across assets (aggregate illiquidity)
- Liquidity can be priced risk factor: higher expected return for
 - ...stocks paying off when liquidity high?
 - ...stocks more liquid when liquidity high?
 - ...stocks more liquid when aggregate return high?
- Aggregate illiquidity depends on financial institutions' level of capital (Market makers, arbitrageurs, speculators, hedge funds, trading desks of investment banks...)

A dynamic model of risk-sharing

• Continuous time, infinite horizon, $t \in [0,\infty)$.

Hedgers.(e.g. non-financial firms, farmers, individuals)

• Endowment $u^{\top} dD_t$ at $t + dt \Rightarrow$ hedging demand at t, where

$$dD_t = \bar{D}dt + \sigma^{\top}dB_t,$$

and B_t is *N*-dimensional Brownian motion. Payoff covariance matrix $\Sigma \equiv \sigma^{\top} \sigma$.

• Mean-variance preferences over change dv_t in wealth between t and t + dt

$$\frac{\mathbb{E}_t(dv_t)}{dt} - \frac{\alpha}{2} \frac{\mathbb{V}\mathrm{ar}_t(dv_t)}{dt}$$

 \Rightarrow Demand for insurance is constant over time.

Arbitrageurs.(e.g. dealers, brokers, hedge funds, insurance companies, etc..)

• CRRA preferences over intertemporal consumption

$$\mathbb{E}_t\left(\int_t^\infty \frac{c_s^{1-\gamma}}{1-\gamma}e^{-\rho(s-t)}ds\right)$$

 \Rightarrow Supply for insurance is time-varying because of wealth effects.

00	0	0

Assets.

- (for now), N short-lived risk-sharing contracts at each time t.
 - Payoff dD_t at time t + dt
 - Price $\pi_t dt$ at time t.
 - Zero net supply.
 - (we'll introduce long-lived financial assets in a bit)
- exogenous riskless rate r

Equilibrium Prices and Positions

• Arbitrageur positions:

$$y_t = \frac{\alpha}{\alpha + A(w_t)}u.$$

- Arbitrageurs hold fraction of portfolio *u* that hedgers want to sell.
- Standard risk-sharing rule, but with effective risk aversion $A(w_t)$.

$$A(w_t) \equiv \underbrace{\frac{\gamma}{w_t}}_{\text{Static ARA}} - \underbrace{\frac{q'(w_t)}{q(w_t)}}_{\text{Intertemporal hedging}}$$

Asset prices:

$$\pi_t = \bar{D} - \frac{\alpha A(w_t)}{\alpha + A(w_t)} \Sigma u.$$

• Portfolio *u* that hedgers want to sell is single pricing factor.

Effective Risk Aversion

is effective risk aversion

- Logarithmic preferences ($\gamma = 1$).
 - consumption proportional to wealth
 - Effective risk aversion is

$$A(w_t)=\frac{1}{w_t}.$$

• Static ARA. No intertemporal hedging.

	Closed forms			
	000000			

• Risk-neutral preferences ($\gamma \rightarrow 0$) and riskless rate $r \rightarrow 0$.

- Consumption is zero for $w_t \in (0, \bar{w})$ and at infinite rate for $w_t \in (\bar{w}, \infty)$.
- Effective risk aversion is

$$A(w_t) = \frac{\alpha}{1+z} \left(\sqrt{z} \cot\left(\frac{\alpha w_t}{\sqrt{z}}\right) - 1 \right) \quad \text{for} \quad w_t \in (0, \bar{w}),$$

where $z \equiv \frac{\alpha^2 u^\top \Sigma u}{2\rho}$ and $\cot\left(\frac{\alpha \bar{w}}{\sqrt{z}}\right) \equiv \frac{1}{\sqrt{z}}$.

• Static ARA=0. Only intertemporal hedging.

00 00 0 0000 00000 0000 0 0 0 0				Closed forms					
	00	000	0	000000	00000	0000	00	0	0

Effective Risk Aversion

00	000	0	000000	00000	0000	00	0	0	-

Stationary Distribution

- Self-correcting dynamics: Arbitrageur Sharpe ratio (SR)
- Depends only on $z \equiv \frac{\alpha^2 u^\top \Sigma u}{2(\rho-r)}$.

		$\bar{z} < z$
w_t converges to 0	decreasing pdf	bimodal pdf

- $\bar{z} = \frac{27}{8}$ in logarithmic case, $\bar{z} = 4$ in risk-neutral case decreases in wealth.
- z pushes distribution to the left in a Monotone Likelihood Ratio-sense
- bimodal distribution, sign of sytemic risk?

			Closed forms					
00	000	0	000000	00000	0000	00	0	0

Shape of Stationary Density

Unconditional objects

		Long Lived Assets		
		00000		

Long-Lived Assets

- N risky assets.
 - Price S_t at time t.
 - Payoff $dD_{t'}$ for times t' > t. (Infinite stream of short-lived assets' payoffs.)
 - Zero net supply.
- Comparison with short-lived assets:
 - Same allocation of risk and market prices of risk.
 - But an asset ≠ a claim on unit risk: return depends on (endogenous) price-dynamics → Liquidity risk.
 - Zero with short-lived assets.
 - Time-varying volatilities and correlations.
 - Constant with short-lived assets.
 - key: how dD_t shocks are transformed to wealth shocks and how this affects expected returns.

Endogenous wealth shocks and expected returns

			Long Lived Assets			
Fauili	hrun	n				

• Asset prices proportional to Σu $(g(0) = 0, \frac{\alpha}{r} > g(w_t) > 0, g'(w_t) > 0)$:

• expected return also proportional to Σu :

$$\frac{\mathbb{E}_t(dR_t)}{dt} = \underbrace{\frac{\alpha A(w_t)}{\alpha + A(w_t)} \left[\frac{\alpha g'(w_t) u^\top \Sigma u}{\alpha + A(w_t)} + 1 \right]}_{\text{scalar, hump-shaped in}} \Sigma u.$$

• Arbitrageurs' holding in assets is also proportional to u and grows from 0 to u

				Long Lived Assets			
Close	d-Fo	rm Sol	utions				

- Compute $g'(w_t)$ in logarithmic and risk-neutral cases when $r \to 0$.
- Volatilities are hump-shaped in arbitrageur wealth.
 - Price volatility = Volatility of arb. wealth \times Price sensitivity to wealth.
 - $w_t \approx 0 \Rightarrow$ Volatility of arb. wealth ≈ 0 .
 - w_t large \Rightarrow Price sensitivity to wealth ≈ 0 .
- Expected returns are also hump-shaped
 - Price of risk still decreasing but volatility is hump-shaped
- Non-fundamental covariance because of wealth shocks: humped shape in wealth
 - effect all returns the most when their non-fundamental volatility is highest

Motivation Set up Equilibrium Closed forms Long Lived Assets Model and Liquidity Facts Robustness Literature Conclusion 00 000 0 00000 00000 0000 00 0

Illiquidity of an asset: Kyle's lambda

• Define illiquidity λ_{nt} of asset *n* as price change per unit of quantity traded, following shock to u_n , hedgers' willingness to hold asset *n*

• Kyle's lambda:
$$\lambda_{nt} \equiv rac{\frac{\partial S_{nt}}{\partial u_n}}{\frac{\partial X_{nt}}{\partial x_{nt}}}$$

- Can also interpret λ as concerning price difference between asset pair with different *u*'s.
- Illiquidity λ_{nt} of asset *n* is equal to

$$\left(1+\frac{A(w_t)}{lpha}+g'(w_t)u^{\top}\Sigma u\right)\left(rac{lpha}{r}-g(w_t)
ight)\Sigma_{nn}.$$

- Depends on *n* through variance Σ_{nn} of asset's payoff (consistent with Stoll (1978), Chen,Lesmond and Wei (2007) etc).
- Decreasing in arbitrageur wealth.

Illiquidity factor

• consider one of A-P illiquidity betas (covariance of asset's return and aggregate illiquidity, $\Lambda_t = -\frac{\sum \lambda_{nt}}{N}$):

$$\beta_n(w) \equiv \mathbb{C}\mathrm{ov}(d\Lambda_t, dR_{nt})$$

- as Λ_t monotonic in wealth and wealth shocks affect prices proportional to Σu , we have $\beta_n(w) = \beta^C(w)\Sigma u$ (while illiquidity proportional to Σ_{nn})
- as expected returns are also proportional to Σu we can write

$$\frac{\mathbb{E}_t(dR_nt)}{dt} = \Pi(w)\beta_n(w)$$

with $\Pi(w)$ premium for illiquidity risk

- \Rightarrow Asset *n*'s expected return is explained by:
 - Covariance between asset's return and aggregate liquidity.
 - Not by covariance between asset's liquidity and aggregate liquidity or return.

Illiquidity Factor: Covariance and Premium

 $w_t \approx 0$: Illiquidity is large and highly sensitive to $w_t \Rightarrow$ Covariance is large and premium is small.

		Model and Liquidity Facts		
		0000		

Intuition

- as arbitrageurs' take one side of each trade, their f.o.c determines prices: their portfolio is the pricing factor
- Assets covarying most with hedgers' portfolio:
 - Have high expected returns.
 - And drop the most when arbitrageur wealth decreases.
- empirical measures of illiquidity factor are proxying this pricing factor

Infinitely lived CARA hedgers and positive supply

- add a positive supply vector of assets, and...
- CARA preferences over intertemporal consumption:

$$\mathbb{E}_t\left(\int_t^\infty -\exp(-\alpha\hat{c}_s)e^{-\hat{\rho}(s-t)}ds\right).$$

- Preserves no wealth effects for hedgers.
- Adds intertemporal hedging demand.
 - Hedge against changes in arbitrageur wealth: effective risk-aversion for hedgers depends on w_t also
- Solutions become numerical (ODE), but main results remain the same.

Infinitely lived CARA hedgers and positive supply

Related Literature

Arbitrageur Capital, Asset Prices and Liquidity.

- Constraints on equity capital: Shleifer-Vishny (1997), He-Krishnamurthy (2012,2013a).
- Wealth effects: Kyle-Xiong (2001), Xiong (2001), Basak-Pavlova (2013).
- Margin/VaR constraints: Gromb-Vayanos (2002), Brunnermeier-Pedersen (2009), Garleanu-Pedersen (2011), Chabakauri (2013), Danielsson-Shin-Zigrand (2013).
- Holding costs: Tuckman-Vila (1992), Kondor (2009).
- Macro: Brunnermeier-Sannikov (2013), He-Krishnamurthy (2013b).
- Survey by Gromb-Vayanos (2010).

Dynamic Risk-Sharing with CRRA Agents.

- Production economy: Dumas (1989).
- Endowment economy: Wang (1996), Chan-Kogan (2002), Bhamra-Uppal (2009), Garleanu-Panageas (2013), Longstaff-Wang (2013).

Conclusion						Conclusion
	Conc	lucio				

- Continuous-time, multi-asset model of liquidity provision with wealth effects.
- Implications for: Expected asset returns, volatilities, correlations, arbitrageur positions, short-run and long-run dynamics.
- Pricing of illiquidity factors:
 - as arbitrageurs' take one side of each trade, their f.o.c determines prices: their portfolio is the pricing factor
 - Assets covarying most with hedgers' portfolio:
 - Have high expected returns.
 - And drop the most when arbitrageur wealth decreases.
 - empirical measures of illiquidity factor are proxying this pricing factor
- Extensions in online appendix (positive supply assets, long-horizon hedgers, stochastic *u*_t)