Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000	00000	000000	00000000	000	0000	00

Aggregate Bank Capital and Credit Dynamics

N. KlimenkoS. PfeilJ.-C. RochetG. De Nicolò(Zürich)(Bonn)(Zürich, SFI and TSE)(IMF and CESifo)

March 2016

The views expressed in this paper are those of the authors and do not necessarily represent those of the IMF.

<ロト < 母 ト < 主 ト < 主 ト ミ の < C 1/34

Motivation ●○○○	Model 00000	One-period example 000000	Competitive equilibrium	Long run 000	Capital regulation	Conclusion 00

MOTIVATION

- Financial regulators and central banks now control powerful macro-prudential tools for promoting systemic stability.
- ► Long-term impact on growth and financial stability?
- Standard DSGE models cannot really help: they were designed to reproduce short-term reactions of prices and output to monetary policy decisions.
- Monetary Policy and Macroprudential Policy have different objectives, different horizons and different instruments.
- ► To study the **long-term impact** of macro-prudential policies on output and financial stability, one needs a different type of model.
- We provide an example of such a model.

Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000	00000	000000	00000000	000	0000	00

OUR CONTRIBUTION

- General equilibrium dynamic model with financial frictions, in the spirit of *Brunnermeier-Sannikov* (2014) and *He-Krishnamurthy* (2013).
- ► Banks are explicitly modeled.
- Bank capital serves as a loss-absorbing buffer and determines the volume of lending.
- Model allows the analysis of the long-run effects of minimum capital requirements on lending and systemic stability (ergodic distribution).
- Main implications are in line with empirical evidence.

Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000	00000	000000	00000000	000	0000	00

RELATED LITERATURE

1. Macro-finance in continuous time

Brunnermeier-Sannikov (2014, 2015), *He-Krishnamurthy* (2012, 2013), *Di Tella* (2015), *Phelan* (2015).

4 ロ ト 4 日 ト 4 三 ト 4 三 ト 三 の Q C 4/34

2. Welfare impact of capital requirements

- ► Van den Heuvel (2008)
- ► Martinez-Miera and Suarez (2014)
- ► DeNicolò-Gamba-Lucchetta (2014)
- ▶ Nguyen (2014)
- ▶ Begenau (2015)

Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000	00000	000000	00000000	000	0000	00

ROADMAP

- 1. Model
- 2. Competitive equilibrium
- 3. Long run dynamics
- 4. Application to macro prudential policy analysis

Motivation 0000	Model ●○○○○	One-period example 000000	Competitive equilibrium	Long run 000	Capital regulation	Conclusion 00

Model

- General equilibrium model: real sector and banking sector.
- One physical good, can be consumed or invested.
- ► Households invest their savings in bank deposits and bank equity.
- ► Banks invest in (risky) loans to entrepreneurs and reserves (can be <0).
- Entrepreneurs have no capital and must borrow from banks, who monitor them: no direct finance.
- Central bank provides reserve and refinancing facilities to equilibrate the interbank lending market.

Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000	0000	000000	00000000	000	0000	00

GLOBAL PICTURE

Remark: equity acts as a buffer to guarantee safety of deposits (no deposit insurance) and interbank borrowings.

<ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < つ < で 7/34

Motivation 0000	Model ○○●○○	One-period example 000000	Competitive equilibrium	Long run 000	Capital regulation	Conclusion 00

Model

- Households and entrepreneurs are risk neutral and discount future consumption at rate *ρ*.
- Interbank rate *r* is fixed and less than ρ .
- Households receive interest r_D on deposits. At equilibrium $r_D = r$.
- ► Households derive utility from holding riskless deposits (*transactional demand for safe assets* as in Stein (2012)).
- Supply of deposits is fixed and is a decreasing function of (ρr) .
- For simplicity, $r \equiv 0$ in this presentation.
- Easy to extend for r > 0.

Motivation Model	One-period example 000000	Competitive equilibrium	Long run 000	Capital regulation	Conclusion 00

MODEL: FIRMS

Firms:

- can borrow 1 unit of productive capital from banks at time *t*, must repay $1 + R_t dt$ at t + dt
- ► if borrow, produce *xdt* unit of good, where *x* is distributed over $[0, \overline{R}]$ with density f(x)
- borrow when x > R_t; aggregate demand for loans is a decreasing function of loan rate R

$$L(R) = \int_{R}^{\overline{R}} f(x) dx$$

productive capital is destroyed (default) with probability

$$pdt + \sigma_0 dZ_t$$
,

where $\{Z_t, t \ge 0\}$ is a standard Brownian motion (aggregate shocks)

Motivation 0000	Model ○○○○●	One-period example 000000	Competitive equilibrium	Long run 000	Capital regulation	Conclusion 00

MODEL: BANKS

- Aggregate shocks in the real sector translate into banks'profits/losses
- Book equity of an individual bank evolves:

where k_t is the volume of lending to firms at time t

Aggregate bank equity evolves:

return on total loans

dividends recapitalizations

where K_t is aggregate lending

▶ Main friction: issuing new equity entails proportional cost γ

Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000	00000	•00000 -	00000000	000	0000	00

ONE-PERIOD EXAMPLE

- 2 dates: t = 0 and t = 1, length of time period h = 1.
- ► Firms' default probability:

 $\begin{cases} p - \sigma_0, & \text{with probability } 1/2 \text{ (positive shock)} \\ p + \sigma_0, & \text{with probability } 1/2 \text{ (negative shock)} \end{cases}$

- ► At *t* = 0 a typical bank starts with equity *e*,
 - may distribute dividends $\delta \ge 0$ or issue new equity $i \ge 0$,
 - ► borrows *d* > 0 from depositors,
 - ► lends *k*.
- *Main friction:* issuing new equity entails proportional cost γ .

AN INDIVIDUAL BANK'S PROBLEM

► At *t* = 1 profits/losses are realized, bank equity becomes:

$$e^{+} \equiv (e - \delta + i) + k [R - (p - \sigma_0)]$$

$$e^{-} \equiv (e - \delta + i) + k [R - (p + \sigma_0)],$$

Bank capital must be sufficiently high to cover the worst possible loss:

$$e^- \ge 0$$

Shareholders' problem:

$$v = \max_{\delta, i, k} \left\{ \delta - (1+\gamma)i + \frac{\left(\frac{1}{2}\right)e^+ + \left(\frac{1}{2} + \theta\right)e^-}{1+\rho} \right\},$$

 θ denotes the Lagrange multiplier associated with constraint $e^- \ge 0$.

Motivation Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
00000 00000	000000	00000000	000	0000	00

AN INDIVIDUAL BANK'S PROBLEM

Shareholders' problem is separable:

$$v = eu + \max_{\delta \ge 0} \delta \big[1 - u \big] + \max_{i \ge 0} \quad i \big[u - (1 + \gamma) \big] + \max_{k \ge 0} \quad k \Big[\frac{(R - p)(1 + \theta) - \theta \sigma_0}{1 + \rho} \Big],$$

where

$$u \equiv \frac{1+\theta}{1+\rho}$$

is the *Market-to-Book ratio*.

► FOCs:

$$\begin{aligned} 1-u &\leq 0 \quad (= \text{ if } \delta > 0) \\ u-(1+\gamma) &\leq 0 \quad (= \text{ if } i > 0) \\ -\frac{R-p}{R-(p+\sigma_0)} &\geq \theta \quad (= \text{ if } k > 0) \end{aligned}$$

4 ロ ト 4 母 ト 4 差 ト 差 の 4 で 13/34

Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000	00000	000000	00000000	000	0000	00

AN INDIVIDUAL BANK'S PROBLEM

- $u \ge 1 \Rightarrow \theta > 0 \Rightarrow$ non-default constraint binds on individual and **aggregate** level
- Dividends are distributed ($\delta > 0$) when $E \ge E_{max}$, where

$$u(E_{max})=1$$

• New equity is raised (i > 0) when $E \le E_{min}$, where

$$u(E_{min}) = 1 + \gamma$$

<ロ > < B > < E > < E > E の へ ? 14/34

Motivation Me	odel On	e-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000 00	000 00	00000	00000000	000	0000	00

ONE-PERIOD EXAMPLE: COMPETITIVE EQUILIBRIUM

a) The loan rate $R \equiv R(E)$ is a decreasing function of aggregate capital and it is implicitly given by

$$E + L(R(E))[R(E) - (p + \sigma_0)] = 0$$

b) All banks have the same market-to-book ratio of equity that belongs to $[1, 1 + \gamma]$ and is a decreasing function of aggregate capital.

$$u(E) = \left(\frac{1}{1+\rho}\right) \left(\frac{-\sigma_0}{R(E) - (p+\sigma_0)}\right)$$

c) Banks pay dividends when $E \ge E_{max} \equiv u^{-1}(1)$ and recapitalize when $E \le E_{min} \equiv u^{-1}(1 + \gamma)$.

Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000	00000	000000	00000000	000	0000	00

ONE-PERIOD EXAMPLE: TAKE AWAY

- 1. Only the level of aggregate bank capital *E* matters for banks' policies
- 2. Banks' recapitalization and dividend policies are of the "barrier type" and are driven by the market-to-book value
- 3. Loan rate is decreasing in aggregate bank capital E

MotivationModelOne-period exampleCompetitive equilibriumLong runCapital regulationConclusion00000000000000000000000000000

AN INDIVIDUAL BANK'S PROBLEM

- Markovian competitive equilibrium: $R_t = R(E_t)$ and $K(E_t) = L(R(E_t))$
- An individual bank chooses lending, dividend and recapitalization policies to maximize shareholder value:

$$v(e_t, E_t) = \max_{k_s, d\delta_s, di_s} \mathbb{E} \Big[\int_t^{+\infty} e^{-\rho(s-t)} (d\delta_s - (1+\gamma) di_s) \Big]$$

Shareholder value is linear in e:

$$v(e,E) \equiv eu(E),$$

where u(E) is the *Market-to-Book ratio*.

Only aggregate capital E matters for banks' policies.

DIVIDEND AND RECAPITALIZATION POLICIES

Dividend/recapitalization policies of a "barrier" type:

- ▶ banks distribute dividends when $E_t = E_{max}$, such that $u(E_{max}) = 1$
- banks recapitalize when $E_t = E_{min} = 0$

Remark: E_{max} and E_{min} are determined by equilibrium forces on the market for bank equity.

EQUILIBRIUM LOAN RATE

Positive loan spread, decreasing with E:

$$R(E) - p = \sigma_0^2 K(E) \left[-\frac{u'(E)}{u(E)} \right], \quad \text{where} \quad u'(E) < 0$$

 Source of lending premium: *implied risk-aversion* of bankers with respect to variations in aggregate capital

<ロ > < 回 > < 三 > < 三 > < 三 > < 三 > へ C 19/34

COMPETITIVE EQUILIBRIUM (CE)

Aggregate bank capital evolves according to:

$$dE_t = L(R(E_t)) \Big[(R(E_t) - p) dt - \sigma_0 dZ_t \Big],$$

with reflection at $E_{min} = 0$ (recapitalizations) and E_{max} (dividends)

▶ The loan rate function $R(E) : [0, E_{max}] \rightarrow [p, R_{max}]$ solves

$$R'(E) = -\frac{2\rho\sigma_0^2 + (R-p)^2}{\sigma_0^2[L(R) - (R-p)L'(R)]}, \qquad R(E_{max}) = p$$

• R_{max} and E_{max} increase with financing friction γ

Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000	00000	000000	00000000	000	0000	00

TESTABLE PREDICTIONS

Testable predictions: equilibrium loan rate and market-to-book ratio are decreasing functions of aggregate capital

Motivation 1	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000 0	00000	000000	00000000	000	0000	00

EMPIRICAL EVIDENCE: DATA DESCRIPTION

- Panel of publicly traded banks in 43 advanced and emerging market economies (1992-2012):
 - ► U.S. banks (728 banks)
 - ► Japan (128 banks)
 - Banks in advanced economies (248 banks)
 - Banks in emerging market economies (183 banks)

Identifier	Variable	Measurement
ret	bank gross return on assets	total interest income/earning assets
mtb	market-to-book equity ratio	market equity/book equity
logta	bank size	Log(assets)
loan asset	% of loans to assets	total loans/total assets
bequity	bank book equity	bank book equity
npl	non-performing loans	non-performing loans in % of total assets
TBE	total bank equity	sum of bequity

Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000	00000	000000	00000000	000	0000	00

EMPIRICAL EVIDENCE: SAMPLE STATISTICS

US				Japan		Advanced (ex. US and Japan)			Emerging			
Variable	Obs.	Mean	Std.Dev.	Obs.	Mean	Std.Dev.	Obs.	Mean	Std.Dev.	Obs.	Mean	Std.Dev.
ret	10213	6.49	1.57	2116	3.18	1.66	4779	7.34	4.09	3015	9.99	5.01
mtb	9542	1.42	0.71	2151	1.19	0.64	4788	1.4	0.85	2914	1.61	0.99
log ta	10991	13.54	1.65	2342	17.12	1.22	5148	16.26	2.39	3473	15.65	1.94
loanasset	10812	65.96	13.42	2091	68.25	9.98	4572	70.38	16.53	3074	66.43	15.74
bequity (US\$ billion)	10923	0.98	9.19	2318	2.83	7.61	5133	5.23	14.16	3419	2.87	11.49
n pl	10299	1.59	2.68	1770	4.11	2.89	2710	3.37	5.36	193.7	5.92	8.78
TBE (US\$ billion)	16742	486.69	352.6	3061	297.38	108.18	7185	59.77	76.73	5696	35.65	108.21

	wouvation	Conclusion
0000 000 0000 00000 00000 000 000 000	0000	00

Empirical model

$$Y_t = \alpha + \beta E_{t-1} + \gamma X_{t-1} + \eta Dummy_t + \epsilon_t$$

- Focus on coefficient β (must be negative)
- Dependent variables: Y = (ret, mtb)
- ► Bank specific effects: *X* = (*bequity*, *logta*, *loanasset*, *npl*)
- ► Time-varying country specific effects: *Dummy*

0000 0000 00000 000000 00000 000 000 0	Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
	0000	00000	000000	000000 0 0	000	0000	00

EMPIRICAL EVIDENCE: CONDITIONAL CORRELATIONS

	US		Japan		Advanced		Emerging	
					(ex US a	ind Japan)		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	ret	mtb	ret	mtb	ret	mtb	ret	mtb
EXPLANATORY VARIABLES								
тве	-0.00416***	-0.000139***	-0.0124***	-0.00466***	-0.0123***	-0.00374***	-0.00280***	-0.00215***
	[0.00]	[0.00]	[0.00]	[0.00]	[0.00]	[0.00]	[0.00]	[0.00]
bequity	0.00232**	-0.00945***	0.0254***	-0.00316*	0.0117***	-0.00113*	0.0167***	-0.00160*
	[0.01]	[0.00]	[0.00]	[0.07]	[0.00]	[0.08]	[0.00]	[0.10]
logta	-0.0454***	0.157***	0.0220	0.204***	-0.366***	-0.0164**	-0.370***	-0.00726
	[0.00]	[0.00]	[0.45]	[0.00]	[0.00]	[0.01]	[0.00]	[0.41]
loanasset	0.0228***	-0.000590	0.00561***	0.00388	-0.0282***	-0.00195***	-0.0357***	-0.000738
	[0.00]	[0.23]	[0.00]	[0.29]	[0.00]	[0.00]	[0.00]	[0.43]
npl	0.0274***	-0.0414***	0.0386***	0.0369***	0.0181*	-0.0110***	-0.0103	-0.00892***
	[0.00]	[0.00]	[0.00]	[0.00]	[0.09]	[0.00]	[0.16]	[0.00]
Constant	8.117***	-0.527***	6.897***	-1.002	16.88***	2.633***	24.22***	1.551***
	[0.00]	[0.00]	[0.00]	[0.11]	[0.00]	[0.00]	[0.00]	[0.00]
number of banks	728	728	128	128	248	248	183	183
Bank/years	9,736	8,899	1,534	1,598	2,600	2,600	1,772	1,772
R-squared	0.794	0.429	0.803	0.385	0.700	0.506	0.737	0.392
Robust pval in brackets								
*** p<0.01, ** p<0.05, * p<0.1								
Change in the dependent variable for a	-1,47	-0,07	-1,34	-0,50	-0,94	-0,29	-0,30	-0,23
1-standard deviation increase in TBE								

Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000	00000	000000	00000000	•00	0000	00

LOAN RATE DYNAMICS

• Loan rate $R_t = R(E_t)$ has **explicit** dynamics

$$dR_t = \boldsymbol{\mu}(\boldsymbol{R_t})dt + \boldsymbol{\sigma}(\boldsymbol{R_t})dZ_t, \qquad p \leq R_t \leq R_{max},$$

with

$$\boldsymbol{\sigma}(\boldsymbol{R}) = \frac{2\rho\sigma_0^2 + (R-p)^2}{\sigma_0 \left(1 - (R-p)\frac{L'(R)}{L(R)}\right)} \quad \text{and} \quad \boldsymbol{\mu}(\boldsymbol{R}) = \sigma(R)h(R),$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where h(.) is explicit.

Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000	00000	000000	00000000	000	0000	00

LONG RUN BEHAVIOR OF THE ECONOMY

- Full description of the long run behavior of the economy: stochastic steady state
- ► It is characterized by the **ergodic density** function of *R* or *E* (shows how frequently each state is visited in the long run)
- ► We can numerically solve for the ergodic density function of *R* (no need for simulations):

$$\frac{g'(R)}{g(R)} = \frac{2\mu(R)}{\sigma^2(R)} - \frac{2\sigma'(R)}{\sigma(R)}, \quad \text{on} \quad [p, R_{max}]$$

LONG RUN BEHAVIOR OF THE ECONOMY

Particular specification: linear demand for loans

Remark: the long run behavior of the economy is driven by the endogenous volatility.

<ロ > < 回 > < 三 > < 三 > < 三 > < 三 > の < ? 28/34

MotivationModelOne-period exampleCompetitive equilibriumLong runCapital regulationConclusion000000000000000000000000000000

APPLICATION: MINIMUM CAPITAL RATIO

▶ What happens if banks are subject to a minimal Capital Ratio (CR) Λ?

• Maximization problem of an individual bank:

$$v_{\Lambda}(e, E) = \max_{k_{t} \leq \frac{e}{\Lambda}, d\delta_{t}, di_{t}} \mathbb{E}\left[\int_{0}^{+\infty} e^{-\rho t} \left(d\delta_{t} - (1+\gamma)di_{t}\right)\right]$$

 $e_t \geq \Lambda k_t$

Homogeneity property is preserved:

$$v_{\Lambda}(e, E) \equiv e u_{\Lambda}(E)$$

- ▶ We find that CR constraint binds for low *E* and is slack for high *E*.
- *u*_Λ(.) and equilibrium loan rate *R*_Λ(.) have different expressions in constrained (*E* < *E*^Λ_c) and unconstrained (*E* ≥ *E*^Λ_c) regions.

Motivation Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000 00000	000000	00000000	000	0000	00

CAPITAL RATIO AND BANK POLICIES

- ► Banks increase their target level of capital $(E_{max}^{\Lambda} > E_{max})$ and recapitalize earlier $(E_{min}^{\Lambda} > 0)$.
- Small and moderate Λ: both the unconstrained and constrained regimes co-exist.

Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000	00000	000000	00000000	000	0000	00

CAPITAL RATIO AND LENDING

- Banks reduce lending not only in the constrained region, but also in the unconstrained one
- Lending $\downarrow \Rightarrow$ exposure to aggregate shocks $\downarrow \Rightarrow$ endogenous volatility \downarrow

Motivation Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000 00000	000000	00000000	000	0000	00

EXPECTED TIME TO RECAPITALIZATION

- ► Stability measure: T_γ(Ē) the average time to recapitalization starting from the average level of aggregate capital Ē
- $\Lambda \uparrow \Rightarrow$ endogenous volatility \downarrow + expected banks' profits $\uparrow \Rightarrow$ stability \uparrow

Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000	00000	000000	00000000	000	0000	•0

CONCLUSION

- Tractable dynamic macro model where aggregate bank capital drives credit volume.
- Asymptotic behavior described by the ergodic distribution.
- Model permits simple analysis of macro-prudential policy.
- Further investigations: market activities complementary to lending, endogenous risk-taking, banks' defaults.

Motivation	Model	One-period example	Competitive equilibrium	Long run	Capital regulation	Conclusion
0000	00000	000000	00000000	000	0000	0●

Thank you!

<ロ > < 戸 > < 三 > < 三 > < 三 > < 三 > < 三 > < 34/34