

The "Reversal Rate" Effective Lower Bound on Monetary Policy

Markus K. Brunnermeier & Yann Koby

Princeton University

Motivating Questions

- New Keynesian models: ZLB = Liquidity trap
- Is zero special? Are negative rates special?
 - Ignoring headline risk
- Lower bound or Reversal Rate
 - Rate at which accommodative policy becomes contractionary (possibly due to financial instability)
 - Does strict financial regulation reduce effectiveness or reverse MoPo?
- What factors determines the Reversal Rate?
 - Market structure
 - Banks' equity
 - Interaction with prudential regulation
 - Interaction with QE

Motivation

- Interest rate cut
 - Substitution effect: safe asset → risky loans
 - Wealth effect: negative rate = tax
 - Not in representative agent analysis

Figure 38: The introduction of negative rates has tended to lead to underperformance by banks relative to their domestic markets

Source: Thomson Reuters, Credit Suisse research

Motivation

- Interest rate cut
 - Substitution effect: safe asset → risky loans
 - Wealth effect: negative rate = tax

Exhibit 2: US NIMs have been eroded post QE

Source: Company data, Reuters, Morgan Stanley estimates

Figure 41: ...but Swedish net interest margins have proved relatively resilient despite a policy rate at -0.5%

Source: Swedish Riksbank, Thomson Reuters, Credit Suisse research

Banks' balance sheet

■ Two-sided market

Output: loans, reserves

deposits • Input:

Model

Loan market

•
$$\boldsymbol{L}(r_L) = \int_0^1 l^i(r_L) di$$
 $L(r_L) = \boldsymbol{L}(r_L)/I$

Deposit market

•
$$\boldsymbol{D}(r_D; \boldsymbol{r_f}) = \int_0^1 d^i(r_D; \boldsymbol{r_f}) di \quad D(r_L; r_f) = \boldsymbol{D}(r_L; r_f) / I$$

• $d^{i}(r_{d}; r_{f}) = \operatorname{argmax} U(W, \mathcal{L}(c, d))$

Liquidity service

- Bank competition
 - I banks
 - Bertrand competition
 - ... but house bank advantage

Model

- Loan market
 - $\boldsymbol{L}(r_L) = \int_0^1 l^i(r_L) di$

$$L(r_L) = L(r_L)/I$$

- Deposit market
 - $\boldsymbol{D}(r_D; \boldsymbol{r_f}) = \int_0^1 d^i(r_D; \boldsymbol{r_f}) di \quad D(r_L; r_f) = \boldsymbol{D}(r_L; r_f) / I$ • $D(r_D; r_f) = \int_0^\infty u_{(r_D, r_f)}$ • $d^i(r_d; r_f) = \operatorname{argmax} U(W, \mathcal{L}(c, d))$

- I banks
- Bertrand competition
- ... but house bank advantage

policy rate cut

Impact on profit/equity

Impact on lending/credit growth

Roadmap

policy rate cut

Impact on profit/equity

- Impact on lending/credit growth
- Determinants of Reversal Rate
 - Interaction with financial regulation
 - Interaction with QE optimal sequencing

Roadmap

policy rate cut

- Impact on profit/equity
 - Perfect competition

perfect pass through

House bank driven markups

perfect pass through

quantity adjustment

Local monopolist/monopsonist

mark-up depends on semi-elasticities

$$\epsilon_{L}(r_{L}) \coloneqq \left| \frac{\partial \log L}{\partial r_{L}} \right|$$

$$\epsilon_{D}(r_{D}, r_{f}) \coloneqq \left| \frac{\partial \log D}{\partial r_{D}} \right|$$

$$\epsilon_{D,r_{f}}^{*}(\cdot) \coloneqq \left| \frac{\partial \log D(r_{D}^{*}; r_{f})}{\partial r_{f}} \right|$$

■ Perfect competition → pass through

- $r_f = r_L = r_D$ perfect pass through
- 1. Profits from ongoing business/interest rate margins = 0
- 2. Re-evaluation gains $-Bdr_f$
 - ullet Funding of bonds B that yield r_B is now lower by dr_D

Interest rate cut = "stealth recapitalization" Emphasis in "I Theory of Money"

I *κ*-mark-ups

 $r_L = r_f + \kappa_L$

$$r_D = r_f - \kappa_D$$

- 1. Profits from ongoing business change since loan quantity and deposits adjust
- 2. Re-evaluation gains $-Bdr_f$

Monopoly & general case

- Loan problem is separate from deposit problem
 - Why? Reserve holdings is in between
- **Loan rate** after mark-up μ_L

$$r_L^* = r_f + \mu_L^*(r_L^*), \qquad \mu_L^*(r_L^*) \coloneqq \min\{\kappa_L, \frac{1}{\varepsilon_L(r_L^*)}\}$$

■ Deposit rate after "mark-down" μ_D

$$r_D^* = r_f + \mu_D^*(r_D^*, r_f), \qquad \mu_D^*(r_D^*, r_f) \coloneqq \min\{\kappa_D, \frac{1}{\varepsilon_D(r_D^*, r_f)}\}$$

- where κ_L , κ_D are new relationship costs outside of "house bank"
 - κ_L , $\kappa_D = 0$ perfect competition
 - κ_L , $\kappa_D = \infty$ segmented markets & monopolies
- Profit has four parts:

$$\Pi_1(r_f) = \mu_L^*(r_L^*)L^* + \mu_D^*(r_D^*, r_f)D^* + (r^B - r_f)B - \pi_E E_0$$

Implicit assumption: Price stickiness

Impact on PROFIT – unconstrained case

Proposition (general case):

$$\frac{d\Pi_1}{dr_f} = \underbrace{\left(\epsilon_D^* - \epsilon_{D,r_f}^*\right)\mu^*D^* - \epsilon_L^*(r_f)\mu_L^*L^*}_{\text{Net interest margin business}} - \underbrace{B}_{\text{reevaluation}}$$

Perfect competition

$$=-B$$

• κ mark-ups (set $\epsilon_{D,r_f}^* = 0$) $= \kappa_D \frac{D^*}{1/\epsilon_D^*} - \kappa_L \frac{L^*}{1/\epsilon_L^*} - B$

• "Local" monopoly (set
$$\epsilon_{D,r_f}^*=0$$
)
$$= D^* - L^* - B = C^* - E_0$$
 Measurable!

■ Impact on PROFIT – constrained case

Economic or regulatory constraint

$$\gamma(L(r_L) + \phi B) \le \underbrace{E_0 + \Pi_1}_{=E_1}$$

- If constraint binds: interest rate cut can't lead to a substitution from *C* to *L*
- Loan mark-up even larger than in monopoly case
 - Ongoing business vs. re-evaluation effect
- Deposit margin is not affected
 - ullet Since constraint only binds L & loan and deposit decisions separable

■ Impact on PROFIT – constrained case

Amplification/spiral

$$\frac{d\Pi_1}{dr_f} = \frac{\gamma}{\gamma - \lambda} \left(C^* - E_0 - \frac{\epsilon_{D,r_f}^*}{\epsilon_D^*} D^* \right)$$

where
$$\lambda = r_L^o - r_L^* = L^{-1}(\frac{E_0 + \Pi_1}{\gamma} - \phi B) - r_L^*$$

I Impact on LENDING

• Constraint $\gamma(L(r_L) + \phi B) \leq E + \Pi_1$

$$\frac{dL}{dr_f} = \frac{1}{\gamma} \frac{d\Pi_1}{dr_f}$$

- Sum up:
 - Interest rate cut can lead to more or less lending (depending how large B is)
 - Need data on banks' interest rate sensitivity (Sraer et al. 2015, Piazzesi et al. 2015)

Numerical example

■ Constant ϵ_L , $\epsilon_D = \frac{1}{\alpha + \beta r^D}$, $\kappa_L = \kappa_D = \infty$, for different B

QE: Optimal sequencing

- 1. Induce banks to hold more long-run assets B
- Interest rate cut "stealth recapitalization"
- 3. QE: banks sell now highly priced long-run assets to CB
- 4. Further interest rate cut is less effective/contractionary

"Reloading strategy"

- 1. if banks suffer losses (e.g. delinquencies) & RR rises > r_f
- 2. Raise policy rate (to increase banks' interest margin)
- 3. "Reverse QE" or another LTRO

Interaction with QE and VLRTO

- \blacksquare Re-evaluation effect depends on B
- \blacksquare QE lowers (aggregate) B and increases R

One bullet – reload with interest rate rise + 2nd QE + cut

Literature

- Theory
 - Oligopoly: Business margin: Monti-Klein model (B = 0)
 - Competitive: Re-evaluation: BruSan "I theory of money"
- Interest rate sensitivity of banks'
 - Stock price: Flannery & James (1984), Begenau et al. (2015)
 - Lending: Landier et al. (2015)
 - Deposits: Drechsler et al. (2015),
- Deposit rate pass through
 - Competition: Maudos & de Guevarra (2005)
 - Delay: DeBondt (2005)

Conclusion

- Zero/negative interest rates are not special!
- Interest rate cut
 - Substitution effect: safe asset isky loans
 - Wealth effect: "tax"
 - + prudential regulation

Conclusion

- Zero/negative interest rates are not special!
- Interest rate cut
 - Substitution effect: safe asset risky loans
 - Wealth effect: "tax"+ prudential regulation
 - Reverses substitution effect + amplification

Conclusion

- Zero/negative interest rates are not special!
- Interest rate cut
 - Substitution effect: safe asset risky loans
 - Wealth effect: "tax" + prudential regulation
 - Reverses substitution effect + amplification
- What determines the "Reversal Rate"?
 - Market structure and pass through of rates
 - Interaction with prudential regulation
 - Banks' equity capitalization countercyclical regulation
 - Duration risk of banks (long-dated assets)
 - Interaction with QE ... (correct sequencing)