The “Reversal Rate”
Effective Lower Bound on Monetary Policy

Markus K. Brunnermeier & Yann Koby
Princeton University
Motivating Questions

- New Keynesian models: ZLB = Liquidity trap

- Is zero special? Are negative rates special? **No**
 - Ignoring headline risk

- Lower bound or **Reversal Rate**
 - Rate at which accommodative policy becomes contractionary (possibly due to financial instability)
 - Does strict financial regulation reduce effectiveness or reverse MoPo?

- What factors determines the Reversal Rate?
 - Market structure
 - Banks’ equity
 - Interaction with prudential regulation
 - Interaction with QE
Motivation

- Interest rate cut
 - Substitution effect: safe asset → risky loans
 - Wealth effect: negative rate = tax
 - Not in representative agent analysis

![Figure 38: The introduction of negative rates has tended to lead to underperformance by banks relative to their domestic markets](source: Thomson Reuters, Credit Suisse research)
Motivation

- **Interest rate cut**
 - Substitution effect: safe asset → risky loans
 - Wealth effect: negative rate = tax

Exhibit 2: US NIMs have been eroded post QE

Figure 41: ...but Swedish net interest margins have proved relatively resilient despite a policy rate at -0.5%

Source: Company data, Reuters, Morgan Stanley estimates

Source: Swedish Riksbank, Thomson Reuters, Credit Suisse research
Banks’ balance sheet

- **Two-sided market**
 - Output: loans, reserves
 - Input: deposits
Model

- **Loan market**
 - \(L(r_L) = \int_0^1 l^i(r_L)di \) \(L(r_L) = L(r_L)/l \)

- **Deposit market**
 - \(D(r_D; r_f) = \int_0^1 d^i(r_D; r_f)di \) \(D(r_L; r_f) = D(r_L; r_f)/l \)
 - \(d^i(r_d; r_f) = \arg\max U(W, L(c, d)) \)

- **Bank competition**
 - \(I \) banks
 - Bertrand competition
 - ... but house bank advantage
Model

- Loan market
 - $L(r_L) = \int_0^1 l^i(r_L) di$
 - $L(r_L) = L(r_L)/I$

- Deposit market
 - $D(r_D; r_f) = \int_0^1 d^i(r_D; r_f) di$
 - $D(r_L; r_f) = D(r_L; r_f)/I$
 - $d^i(r_d; r_f) = \text{argmax } U(W, \mathcal{L}(c, d))$

- Bank competition
 - I banks
 - Bertrand competition
 - ... but house bank advantage

\[r_f + \kappa_L \]

\[r_f - \kappa_D \]

\[r_f + \mu_L \]

\[r_f - \mu_D \]
Roadmap

- Impact on profit/equity

- Impact on lending/credit growth
Roadmap

- Impact on profit/equity

- Impact on lending/credit growth

- **Determinants of Reversal Rate**
 - Interaction with financial regulation
 - Interaction with QE – optimal sequencing
Roadmap

• Impact on profit/equity
 • Perfect competition: perfect pass through
 • House bank driven markups: perfect pass through
 • Local monopolist/monopsonist: mark-up depends on semi-elasticities

\[
\begin{align*}
\epsilon_L(r_L) & := \left| \frac{\partial \log L}{\partial r_L} \right| \\
\epsilon_D(r_D, r_f) & := \left| \frac{\partial \log D}{\partial r_D} \right| \\
\epsilon_D^*(r_f) & := \left| \frac{\partial \log D(r_D^*; r_f)}{\partial r_f} \right|
\end{align*}
\]
Perfect competition \[\rightarrow \] pass through

- \(r_f = r_L = r_D \) \quad \text{perfect pass through}

1. Profits from ongoing business/interest rate margins = 0
2. Re-evaluation gains \(-Bdr_f\)
 - Funding of bonds \(B \) that yield \(r_B \) is now lower by \(dr_D \)

Interest rate cut = “stealth recapitalization”
\(\kappa \)-mark-ups \(\rightarrow \) pass through

\[
\begin{align*}
\text{Reserves } C_t @ r_f \\
\text{Bonds } B_t @ r_B \\
\text{Loans } L_t @ r_L \\
\text{Deposits } D_t @ r_D \\
\text{Net worth } E_0
\end{align*}
\]

- \(r_L = r_f + \kappa_L \) \quad \text{and} \quad \kappa_D \quad \text{and} \quad r_D = r_f - \kappa_D

1. Profits from ongoing business change since loan quantity and deposits adjust

2. Re-evaluation gains \(-Bd r_f\)
Monopoly & general case

- Loan problem is separate from deposit problem
 - Why? Reserve holdings is in between
- Loan rate after mark-up μ_L
 \[r_L^* = r_f + \mu_L^*(r_L^*), \quad \mu_L^*(r_L^*) := \min\{\kappa_L, \frac{1}{\varepsilon_L(r_L^*)}\} \]
- Deposit rate after “mark-down” μ_D
 \[r_D^* = r_f + \mu_D^*(r_D^*, r_f), \quad \mu_D^*(r_D^*, r_f) := \min\{\kappa_D, \frac{1}{\varepsilon_D(r_D^*, r_f)}\} \]

 - where κ_L, κ_D are new relationship costs outside of “house bank”
 - $\kappa_L, \kappa_D = 0$ perfect competition
 - $\kappa_L, \kappa_D = \infty$ segmented markets & monopolies

- Profit has four parts:
 \[\Pi_1(r_f) = \mu_L^*(r_L^*)L^* + \mu_D^*(r_D^*, r_f)D^* + (r^B - r_f)B - \pi_E E_0 \]
 Implicit assumption: Price stickiness
Impact on PROFIT – unconstrained case

- Proposition (general case):

\[
\frac{d\Pi_1}{dr_f} = \left(\epsilon_D^* - \epsilon_{D,r_f}^*\right)\mu^*D^* - \epsilon_L^*(r_f)\mu^*_L L^* - \frac{B}{\text{Net interest margin business}}
\]

- Perfect competition

\[
= -B
\]

- \(\kappa\) mark-ups (set \(\epsilon_{D,r_f}^* = 0\))

\[
= \kappa_D \frac{D^*}{1/\epsilon_D^*} - \kappa_L \frac{L^*}{1/\epsilon_L^*} - B
\]

- “Local” monopoly (set \(\epsilon_{D,r_f}^* = 0\))

\[
= D^* - L^* - B = C^* - E_0
\]

Measurable!
Impact on PROFIT – constrained case

- Economic or regulatory constraint

\[\gamma (L(r_L) + \phi B) \leq E_0 + \Pi_1 = E_1 \]

- If constraint binds:
 interest rate cut can’t lead to a substitution from \(C \) to \(L \)

- Loan mark-up even larger than in monopoly case
 - Ongoing business vs. re-evaluation effect

- Deposit margin is not affected
 - Since constraint only binds \(L \) & loan and deposit decisions separable
Impact on PROFIT – constrained case

- Amplification/spiral

\[
\frac{d\Pi_1}{dr_f} = \frac{\gamma}{\gamma - \lambda} \left(C^* - E_0 - \frac{\epsilon_D^*, r_f}{\epsilon_D^*} D^* \right)
\]

where \(\lambda = r_L^0 - r_L^* = L^{-1} \left(\frac{E_0 + \Pi_1}{\gamma} - \phi B \right) - r_L^* \)
Impact on LENDING

- Constraint \(\gamma (L(r_L) + \phi B) \leq E + \Pi_1 \)

\[
\frac{dL}{dr_f} = \frac{1}{\gamma} \frac{d\Pi_1}{dr_f}
\]

- Sum up:
 - Interest rate cut can lead to more or less lending (depending how large \(B \) is)
 - Need data on banks’ interest rate sensitivity (Sraer et al. 2015, Piazzesi et al. 2015)
Numerical example

- Constant $\epsilon_L, \epsilon_D = \frac{1}{\alpha + \beta r_D}, \kappa_L = \kappa_D = \infty$, for different B
QE: Optimal sequencing

1. Induce banks to hold more long-run assets B
2. Interest rate cut “stealth recapitalization”
3. QE: banks sell now highly priced long-run assets to CB
4. Further interest rate cut is less effective/contractionary

“Reloading strategy”

1. if banks suffer losses (e.g. delinquencies) & RR rises $> r_f$
2. Raise policy rate (to increase banks’ interest margin)
3. “Reverse QE” or another LTRO
Interaction with QE and VLRTRO

- Re-evaluation effect depends on B
- QE lowers (aggregate) B and increases R

- One bullet – reload with interest rate rise + 2nd QE + cut
Literature

- **Theory**
 - Oligopoly: Business margin: Monti-Klein model \((B = 0)\)
 - Competitive: Re-evaluation: BruSan “I theory of money”

- **Interest rate sensitivity of banks’**
 - Lending: Landier et al. (2015)
 - Deposits: Drechsler et al. (2015),

- **Deposit rate pass through**
 - Competition: Maudos & de Guevarra (2005)
 - Delay: DeBondt (2005)
Conclusion

- Zero/negative interest rates are not special!

- Interest rate cut
 - Substitution effect: safe asset → risky loans
 - Wealth effect: "tax" + prudential regulation
Conclusion

- Zero/negative interest rates are not special!

- Interest rate cut
 - Substitution effect: safe asset \rightarrow risky loans
 - Wealth effect: “tax” + prudential regulation
 - Reverses substitution effect + amplification
Conclusion

- Zero/negative interest rates are not special!

- Interest rate cut
 - Substitution effect: safe asset ⇄ risky loans
 - Wealth effect: “tax”
 + prudential regulation
 - Reverses substitution effect + amplification

- What determines the “Reversal Rate”?
 - Market structure and pass through of rates
 - Interaction with prudential regulation
 - Banks’ equity capitalization – countercyclical regulation
 - Duration risk of banks (long-dated assets)
 - Interaction with QE ... (correct sequencing)