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1 Introduction

The interconnectedness of financial institutions is a key feature of the modern financial system.

Linkages are formed by a diverse range of transactions and contracts that connect firms to each

other. A growing literature identifies these linkages as a major source of systemic risk (e.g. Allen

and Gale (2000), Brunnermeier (2009), and Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015)).

The insights are evident in the financial crisis: initial losses caused the financial distress of

a few firms, which then spread via the links that connect the distressed firms with otherwise

healthy ones, resulting in systemic failures. Yet, these studies analyze contagion in given network

structures and do not consider firms’ strategic formation of links.

In this paper, I focus on endogenous linkage formation which allows firms to strategically

build connections for profit and risk diversification purposes. A recent literature examines link-

age formation among homogeneous firms and concludes that either over- or under-connections

prevail in the financial system (e.g. Castiglionesi and Navarro (2011) and Farboodi (2014)).1

In contrast, this paper studies the linkage formation among firms differing in financial distress

levels. Such framework provides novel implications for efficiency and systemic risk by generating

over- and under-connections simultaneously.

I show that the endogenously formed network features inefficiency and leads to systemic risk

measured by the probability of joint failures. A link between two non-distressed firms creates

value from risk-sharing, whereas a link with a distressed firm can be socially costly as it raises

systemic risk through balance sheet interdependence. I find that, when firms are highly dispersed

in financial distress, the network composition is distorted in two ways: there are too many links

with distressed firms and too few risk-sharing links among non-distressed firms. The inefficiency

arises as firms write bilateral contracts that are not contingent on the entire network structure.

Hence, the non-distressed firms have incentives to link with distressed firms for profit, while

failing to internalize negative spillovers. Such inefficient network generates contagion and loss in

risk-sharing, creating excessive systemic risk. By embedding heterogeneity as a new dimension

of links, my model provides unique predictions on the efficiency of network composition.

In my model, financial firms face costly liquidation risks and strategically trade assets,

1For example, Castiglionesi and Navarro (2011) show that decentralized network is under-connected when
counterparty risk is high. Farboodi (2014) illustrates over-connection in an endogenous core-periphery network.
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thereby forming a network. There are a finite number of firms financed by short-term debt

and each invests in a long-term asset. A random fraction of the asset is liquid and can be used

to repay debt. As in Allen, Babus, and Carletti (2012), if the amount of liquid asset falls short

of the debt level, a costly liquidation is triggered.2 To hedge the idiosyncratic liquidation risk,

firms can strategically enter into bilateral forward contracts to trade liquid assets. A two-sided

link in a network is formed when both parties decide to purchase a fraction of each other’s

liquid asset claims. Firms differ ex ante in how liquid their assets are expected to be and thus

in the liquidation probability. This generates the key feature of the model: cross-sectional het-

erogeneity in financial distress levels. Difference in asset liquidity also implies a price of trade

in each contract. Motivated by the incomplete contract literature, I assume that prices in the

bilateral trades are not contingent on the entire network structure. Specifically, I consider local

contingency, that is, prices are contingent on which firms the two parties directly trade with.

Given the network formed, the liquid asset holding of a firm depends not only on who its direct

counterparties are, but rather on the entire network structure.3 As a benchmark for efficiency,

I solve for the optimal network that minimizes total bank liquidations.

The pairwise stable network formed in equilibrium can be inefficient relative to the optimal

benchmark: there can be excess links with distressed firms and insufficient risk-sharing links

among non-distressed firms. When distress dispersion is high across firms, the optimal network

requires that the non-distressed firms form risk-sharing links and that the most distressed firm be

isolated. In contrast, the equilibrium network with four or more firms shows that the distressed

firm is always connected with the most liquid firm. This suboptimal link between the liquid and

the distressed firm (“distress link” hereafter) transmits risky assets in the network and leads to

systemic risk, measured by the chances that all firms fail at the same time.

The inefficiency is caused by network externalities. Linking with a distressed firm potentially

avoids liquidation, thus is ex ante profitable for the most liquid firm. However, when a firm is

too distressed, linking with it can be socially costly because distressed assets are then shared

jointly by all connected firms and so the balance sheets of other banks in the network are

contaminated. Essentially, a liquid firm forming a distress link imposes a network externality.

2A firm with a low level of liquid asset has difficulty in repaying short-term debt and hence is distressed.
3Following Cabrales, Gottardi, and Vega-Redondo (2014), I model this balance sheet interdependence as an

iterative swap process which represents asset securitization.
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This externality in turn reduces risk-sharing participation among non-distressed firms. As such,

two forces reinforce and lead to inefficiency: the transmission of distressed assets that should

have been isolated and the insufficient risk-sharing among non-distressed firms.

The necessary ingredients for the externalities are interconnectedness, distress heterogeneity,

and local contingency. Interconnectedness transmits risky assets, thus enabling the spillover.

Firm heterogeneity generates distress dispersion and different incentives to form links. When

there are only two firms or multiple identical firms, there is no externality. However, when

there are multiple firms differing in distress levels, the most liquid firm can profit from trading

with the distressed firm and can shift risks away to its direct and indirect counterparties. It

therefore has a greater incentive to link with the distressed firm than is socially desirable. But

interconnectedness and heterogeneity are not enough. The externalities fail to be internalized

because of local contingency. Firms that bear the externalities cannot jointly give incentives

to the liquid firm via contingent payments. This failure occurs as long as one of the indirect

counterparties of the most liquid firm cannot condition payments on the distress link.

While the prior literature largely focuses on the average soundness of the financial sector,4

my second primary result identifies a novel indicator for the level of network inefficiency: the

distress dispersion across financial firms. In my model, inefficiency arises when the distress

dispersion is sufficiently high and increases with the level of dispersion thereafter. This positive

relation owes to the disparity between individual and social incentives to form a distress link.

When distress dispersion is higher, the cross-sectional distribution has more distressed firms in

the left tail and more liquid ones in the right tail. It is precisely then that the most liquid firm

has an incentive to form the socially costly distress link.

Using insights from the model, I discuss policy implications for financial stability. The

links with distressed firms in the model can be interpreted as acquisitions of distressed firms.

This interpretation is reasonable because distressed financial firms are commonly acquired by

healthier institutions in the same industry.5 More than 1000 distressed financial firms were

4Atkeson, Eisfeldt, and Weill (2014) measure the median Distance to Insolvency of largest financial firms
based on the Leland’s model of credit risk. Gilchrist and Zakrajsek (2012) show that the average credit spreads
on outstanding corporate bonds has predictive power for economic activity. Rampini and Viswanathan (2014)
focus on how the net worth of a representative intermediary and a corporate sector jointly affect the cost of
financing; a constant returns to scale assumption makes the distribution of intermediaries’ net worth irrelevant.

5Acharya, Shin, and Yorulmazer (2010) argue that if a bank needs to restructure or be sold, the potential
buyers are generally other banks. Almeida, Campello, and Hackbarth (2011) document that distressed firms
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acquired during 2000-2013, including Countrywide Financial and Riggs Bank.6 Despite the

fact that acquisitions are a prevailing regulatory approach to improve financial stability,7 my

findings imply that excess acquisitions may emerge precisely when more banks are distressed,

thus increasing systemic risk rather than reducing failures. Based on this result, regulators can

restore efficiency by supervising the acquisitions of distressed firms and using the purchase and

assumption (P&A) method for distress resolution.

Finally, I provide empirical evidence that the distress dispersion across financial institutions

provides a novel indicator for systemic risk. Following Laeven and Levine (2009), I measure

distress by estimating Z-scores of financial firms. The time series of distress dispersion shows

large variations over time. It also has a countercyclical pattern and appears to lead recessions.

Consistent with the model predictions, the empirical dispersion series significantly comoves

with future economic activities and systemic risk, bank failures, acquisitions of distressed firms,

and interbank risk sharing. Moreover, I run forecasting regressions to evaluate whether the

dispersion series conveys new information about aggregate indicators beyond what is contained

in the average distress and existing systemic risk measures. The estimates confirm that the

dispersion series has high predictive power for future systemic risk.

This paper builds on network theory and its applications in economics and finance.8 Pio-

neered by Allen and Gale (2000) and Freixas, Parigi, and Rochet (2000), a growing literature

argues that certain financial network structures can lead to risks of contagion.9 While powerful

for analyzing how risks propagate under different connection properties, this stream of research

treats the network structures as given. My paper studies network formation, hence contributes

to the analysis of how links evolve in response to changes in policies or aggregate conditions.

The main contribution of this paper is to embed distress heterogeneity in linkage formation

and to study the implications on efficiency and systemic risk. As such, my paper belongs to

are acquired by liquid firms in their industries for financial synergies. Such acquisitions are more likely when
industry-level asset specificity is high and firm-level asset specificity is low, which applies to the financial sector.

6The asset size of these acquisitions was $2.2 trillion, about half the size of all current banking deposits.
7White and Yorulmazer (2014) provide a summary of resolution options for bank distress/failure. An acquisi-

tion “imposes the least cost since the franchise value is preserved, there is no disruption to the bank’s customers
or the payment system itself, and there are no fiscal costs.” For this reason, acquisition is the primary choice by
resolution authorities whenever there are willing acquirers.

8See surveys by Jackson (2003, 2008) and Allen and Babus (2009).
9See Eisenberg and Noe (2001), Dasgupta (2004), Nier, Yang, Yorulmazer, and Alentorn (2007), Gai, Hal-

dane, and Kapadia (2011), Greenwood, Landier, and Thesmar (2015), Caballero and Simsek (2013), Acemoglu,
Ozdaglar, and Tahbaz-Salehi (2015), Elliott, Golub, and Jackson (2014), and Glasserman and Young (2015).
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the recent research on financial network formation, which examines how inefficient networks

form due to various frictions.10 Castiglionesi and Navarro (2011) show network fragility when

undercapitalized banks gamble with depositors’ money. Di Maggio and Tahbaz-Salehi (2014)

emphasize the role of secured interbank lending in overcoming moral hazard. Zawadowski (2013)

studies a type of risk shifting stemming from banks’ underinsurance of counterparty risk. Cas-

tiglionesi and Wagner (2013) show conditions when banks underinsure each other using credit

lines. Gofman (2011) highlight that bargaining friction and intermediation lead to welfare loss.

In the network formation literature, my paper is closest to Farboodi (2014) who illustrates

that a core-periphery intermediation structure arises inefficiently due to a lending constraint and

the opportunity to earn intermediation rent. While my paper also generates excessive systemic

risk due to certain types of inefficient links, I differ by studying linkage formation among firms

differing in financial distress. Inefficiency arises from the incentive of liquid firms to link with

distressed firms for profit under contract incompleteness. Moreover, I model links on the asset

side of the balance sheet. The resulting asset cross-interdependence structure can be used to

regulate bank acquisitions. Finally, the finding that the distress dispersion is a critical state

variable allows for a closer link to the data in forecasting systemic risk.

The key friction underlying the network inefficiency here is the failure to offer incentives

conditional on the entire network structure. In this sense, my paper is related to the literature on

incomplete contracts.11 From Hart and Moore (1988), agents cannot write contracts contingent

on states that cannot be clearly specified, even if the states are perfectly foreseeable. The reason

is that the states written in the contracts must be verifiable in court. In my setting, given that

the links entered by other firms are not specifiable or verifiable, bilateral prices are contingent

only on who the two firms directly trade with. This assumption is in line with Acemoglu,

Ozdaglar, and Tahbaz-Salehi (2014) who show that inefficient networks can emerge in interbank

lending markets with contingency debt covenants.

Finally, this paper adds to the studies on the trade-off between diversification and contagion.

Banal-Estanol, Ottaviani, and Winton (2013) evaluate conglomeration with default costs facing

10See Lagunoff and Schreft (2001), Castiglionesi and Navarro (2011), Gofman (2011), Babus (2015), Blume,
Easley, Kleinberg, Kleinberg, and Tardos (2013), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2014), Zawadowski
(2013), Castiglionesi and Wagner (2013), Cabrales, Gottardi, and Vega-Redondo (2014), Di Maggio and Tahbaz-
Salehi (2014), and Farboodi (2014).

11See for example Hart and Moore (1988, 1999), Tirole (1999), Maskin and Tirole (1999), and Segal (1999).
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this trade-off. I follow Cabrales, Gottardi, and Vega-Redondo (2014) and study the trade-

off in a network setting. Acharya (2009), Wagner (2010), and Ibragimov, Jaffee, and Walden

(2011) show that diversification may lead to greater systemic risk as banks tend to over-diversify

by holding similar portfolios. While these papers study costly joint failures among ex ante

homogeneous agents, my paper complements by showing that links among heterogeneous firms

can result in both over and under diversification.

The rest of the paper proceeds as follows. Section 2 lays out the model environment and

defines the equilibrium. Section 3 demonstrates the network inefficiencies. Section 4 examines

the role of distress dispersion. Section 5 discusses the policy implications in the context of

acquisitions of distressed firms. Section 6 presents empirical evidence, and Section 7 concludes.

2 Model

This section describes a model of network formation in which financial firms strategically trade

assets via bilateral forward swap contracts.

2.1 Environment

Consider a four-date economy with a finite number of levered financial firms, denoted by i =

1, ..., N . All agents are risk neutral and there is no discounting.

Figure 1 shows the model timeline. At date 0, each firm borrows 1 unit of short-term debt

from a continuum of creditors and invests in an asset with fixed return R. The asset has liquidity

risk. A random component ai becomes liquid at date 2 and can be used to repay debt, whereas

the rest R − ai is illiquid and matures at date 3. Given this financing structure, a maturity

mismatch arises. A firm can be interpreted as a financial institution, e.g., an investment firm

investing in a certain class of securities, or a commercial bank issuing an unsecured loan.

At date 1, firms learn the vector ν, a public signal about how much liquid asset each firm ex-

pects to receive. Then they simultaneously decide to enter into bilateral forward swap contracts

for risk-sharing purpose, thus forming links. Each forward swap contract promises a claim to a

fraction of each other’s liquid assets. This is the only date a strategic decision is made.

At date 2, firms observe the amount of their liquid assets, given by ai = νi + σεi. The id-
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t = 0 t = 1 t = 2 t = 3

return R

- firms borrow $1 debt

- invest in project with

- observe expected liquid

return νi = E[ai]

⇒ (heterogeneity)

- enter forward contracts

⇒ form financial links

- idiosyncratic liquidity

shock εi arrives:

⇒ ai = νi + σεi
- firms trade assets

- pay debt using liquidity

- liquidation may occur

- illiquid return (if not yet

liquidated) R− ai matures

- pay prices of forward

contracts to counterparties

Figure 1. Model Timeline.

iosyncratic shock εi is i.i.d. standard normal and is independent of νi.
12 Firms fulfill the forward

swap contracts. Based on the overall linkage structure, firms obtain potentially diversified liquid

asset holdings, which they use to repay short-term debt.13 If the liquid asset holdings fall short

of debt, the firm liquidates its illiquid asset at a fixed cost c, for instance selling at a discount

to industry outsiders as in Shleifer and Vishny (1992) and Diamond and Rajan (2005).14

At date 3, if not liquidated, the illiquid component R − ai of the asset matures. Using this

return, the payments associated with the forward swap contracts are paid in full.

Firms differ at date 1 in the amount of expected liquid asset ν. This generates heterogeneity

in financial distress. I follow Roy (1952) and define a distress statistic, zi, as the number of

standard deviations that firm i is expected to be away from liquidation (zi ≡ νi−1
σ ). A firm

with high zi has highly liquid asset and low financial distress. We say such a firm is liquid. In

contrast, a firm is distressed if it has a low zi. To highlight the role of heterogeneity, let the

vector z have mean z̄ and be equally spaced with step size δ ≥ 0, i.e.

zi = z̄ +
N + 1− 2i

2
δ, i = 1, ..., N. (1)

z̄ measures the average distance from liquidation. Let z̄ > 0 so that firms invest in positive

NPV projects on average. δ is proportional to the cross-sectional standard deviation of zi and

proxies for the degree of distress dispersion.15

12ai being negative means further liquidity input is needed in the asset investment.
13Introducing debt roll-over, renegotiation, or endogenous default boundary do not change the qualitative

features. To separate from risk-shifting due to agency conflict between shareholders and depositors (Jensen and
Meckling (1976)), limited liability is not particularly imposed for firm owners.

14James (1991) finds using US data 1985-1988 that substantial value is preserved if a failed bank is sold to
another bank, but lost if liquidated by the FDIC. The cost can result from deadweight loss in liquidation due to
asset specificity, loss of franchise value, or disruption of credit and payment services associated with relationship
banking (see White and Yorulmazer (2014)).

15I rank firms by zi merely for expository purpose. Distress is modeled as exogenous, while in reality firms choose
liquidity holding and risk-taking which endogenously determine distress levels. Acharya, Shin, and Yorulmazer
(2010) argue that liquid banks hoard cash for potential gains from asset sales. This implies that an otherwise
endogenous setting would generate even bigger heterogeneity during an aggregate liquidity shortage.
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2.2 Network Formation

At date 1, firms strategically decide to enter into bilateral forward swap contracts. In this net-

work formation game, each firm simultaneously proposes to contract with other firms. A strategy

of firm i includes links li = (li1, ..., li,i−1, li,i+1, ..., liN ) and prices pi = (pi1, ..., pi,i−1, pi,i+1, ..., piN ).

Firm i proposes to buy lij ∈ {0, l̄},16 where l̄ ∈ (0, 1), fractions of liquid asset from firm j at

date 2, offering to pay a unit price pij at date 3. The prices can be made contingent on the

links.

A contract is signed (a two-sided link is formed) when both firms decide to swap asset claims

at the offered prices. Let the matrix L represent the linkage structure; its element satisfies

Lij = Lji = min{lij , lji}. (2)

Firms i and j are directly linked (Lij = l̄) only if lij = lji = l̄. This specification ensures that no

firms end up being a net asset seller or buyer so each firm still holds one unit of liquid asset. It

also captures an important aspect of the OTC derivatives market: firms have large gross notional

positions and small net positions. After the asset swaps, each firm holds a non-negative share of

its own asset, i.e. Lii = 1−∑j 6=i Lij ≥ 0. As such, L is a symmetric, doubly stochastic matrix

by construction.17 When Lii = 1, firm i is isolated.

The set of N firms and the links between them define the network. Depending on the distress

level of the two connecting firms, the network is composed of risk-sharing links which connect

two non-distressed firms, and distress links which connect a liquid and a distressed firm.

2.3 Payoffs and Firm Value

Firms’ liquid asset holdings, denoted by vector hi(a, L), depend on not only their direct counter-

parties, but rather how firms are interconnected. As such, the linkage creates cross-interdependence

from the asset side of firms’ balance sheets. I model links via asset swaps because prior studies

highlight that correlated portfolio exposures are the main source of systemic risk in the financial

sector.18 In addition, asset swaps simplify the calculation of final asset holdings and systemic

16From Lemma 1, all results would remain if instead firms have a continuum strategy space, i.e. lij ∈ [0, 1).
17A square matrix is doubly stochastic if all its entries are non-negative and the sum of the entries in each of

its rows or columns is 1.
18See for example Elsinger, Lehar, and Summer (2006) and DeYoung and Torna (2013).
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risk by avoiding value discontinuities in cascades such as in Elliott, Golub, and Jackson (2014).19

At date 3, firms deliver payment transfers according to the forward swap contracts. Their

final payoffs Π are thus given by the liquid asset values a, the network L, and the prices p,

Πi(a, L, p) = hi(a, L) +R− ai − 1︸ ︷︷ ︸− 1(hi(a,L)<1)c︸ ︷︷ ︸ − ∑
j 6=i

(pij − pji)Lij︸ ︷︷ ︸
,

asset net of debt liquidation cost net payments from swaps

(3)

Firm value at date 1 equals the expected value of Πi(a, L, p),

Vi(z, L, p) = E1 [hi(a, L)] +R− νi − 1− Pr (hi(a, L) < 1) c−
∑
j 6=i

(pij − pji)Lij . (4)

2.4 Bilateral Prices and Asset Swaps

The key features of a network formation game are the payoff functions and the payment transfers.

To further specify these terms in my framework, I next discuss assumptions on the bilateral prices

and the asset swap process.

Local Contingency Who have the power to decide on a link between two firms is crucial

to linkage formation. The bilateral prices allow for contingent transfer payments among firms,

which in turn define the decision power to form links. Given that a link Lij “alters the payoffs

to others, it seems reasonable to suppose that other firms, especially the [direct counterparties

of firms] i and j should have some say in the formation of a link between i and j”(Goyal (2009)).

Following this spirit, I assume that prices are set under local contingency.

Assumption 1 (Local Contingency) The bilateral price pij is contingent on the direct links

entered by the two firms. Let Li be the i-th row of L, then

pij (Li, Lj , Lk) = pij

(
Li, Lj , L̂k

)
, ∀k, ∀L̂k 6= Lk. (5)

In words, firm i offers prices pij based on its own links Li and the links of its direct counterparty

Lj . Even if firm i foresees that it indirectly connects to a third firm k (Lij > 0, Ljk > 0), the

price it offers cannot vary with the links of firm k.

Assumption 1 is the key friction in the model. The motivation lies in an inherent feature

of the financial industry: when firms write bilateral contracts in an interconnected setting, it

19The asset swaps may capture in a broad sense cross holdings of deposits in Allen and Gale (2000).
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is difficult for institutions to specify in every contract detailed contingencies for every possible

network structure. One reason is that institutions do not publicly disclose the identities of their

counterparties. As in Hart (1993), even if the bilateral relations they form could be foreseeable

by other institutions, “they might be difficult to specify in advance in an unambiguous manner.

[Hence], a contract that tries to condition on these variables may not be enforceable by a court.”

This is essentially an example of incomplete contracts.20

Price Offering Rules In each bilateral contract, what matters for firm payoffs is the net

transfer payment (pij − pji)Lij . The same net payment can be achieved by a continuum of

gross payments; hence, to ensure a unique set of equilibrium prices, I assume that buyer i

proposes price pij to j as a take-it-or-leave-it offer. The proposed price cannot be lower than

firm j’s reservation price pjj . Formally,

pij ≥ pjj , ∀i 6= j, (6)

where pjj equals j’s outside option when it cannot form any links, i.e.

pjj(zj) = Vj (z, L, p |Lj = 0) . (7)

Asset Swap Process I model the cross-interdependence of liquid asset holdings h(a, L) by an

iterative asset swap process: firm i swaps liquid asset with its direct counterparties iteratively.

This iterative process is instantaneous and does not affect the payment of prices. Given the

linkage matrix L, the vector of asset holdings after the first round of swap is h(1) = La. Applying

L to h(1) gives the second round of swap, h(2) = Lh(1) = L2a, where L2 denotes L × L. It

captures the securitization process such as the origination and trades of asset-backed securities.21

Specifically, I assume that the iteration goes on for infinitely many rounds.

Assumption 2 (Iterative Swap Process) Firms swap liquid assets according to the linkage ma-

trix L iteratively for infinite rounds. The final asset holdings h are given by

h(a, L) = lim
K→∞

LKa. (8)

20An alternative motivation relates to transaction costs à la Williamson (1975). As the size and complexity of
the network builds up, it would be prohibitively costly to include every possible structure in every contract by
every firm. This is consistent with the fact that we do not observe such types of contracts in practice.

21“These exchanges of assets can be viewed as reflecting a process of repeated rounds of securitization and trade
of the assets of a financial firm in order to diversify its risks.” (Cabrales, Gottardi, and Vega-Redondo (2014)).
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Under Assumption 2, final holdings h depend on the liquid returns of both direct and indirect

counterparties. Take for instance a network with N = 3 and L12 = L23 = l̄, L13 = 0. After

the first round, h
(1)
1 =

(
1− l̄

)
a1 + l̄a2. After infinite rounds, h1 = h2 = h3 = 1

3a1 + 1
3a2 + 1

3a3;

hence, firm 1 holds 1
3 shares of a3 even if it does not directly link with firm 3. The following

lemma formalizes this property of the final asset holdings.

Lemma 1 (Complete risk-sharing) lim
K→∞

LK is doubly stochastic and coincides with complete

risk-sharing among all firms connected in the same component.22 I.e. the holdings of each firm

are equally weighted by the liquid assets of all firms directly or indirectly connected to it.

From Lemma 1, it is the linkage structure (whether Lij = 0 or Lij > 0) rather than the

amount of swap that determines the final holdings of each firm. As such, the results would still

hold if instead lij ∈ [0, 1), that is, if we allow firms to make linkage decisions in a continuum

space. This rationalizes the simplification that lij is a binary variable. Moreover, the holding of

own asset Lii = 1−∑j 6=i Lij ≥ 0 implies that the maximum number of links a firm can form is

1/l̄. If 1/l̄ is very large, the number of possible network structures is 2
N(N−1)

2 , which increases

exponentially with N . To maintain tractability, from here onwards I follow a similar assumption

in Allen, Babus, and Carletti (2012) and restrict the number of links a firm can form.

Assumption 3 (Chain Networks) Each firm can form a maximum of two links, i.e. l̄ = 1
2 .

Possible network topologies therefore limit to an arbitrary collection of circles and chains.23

Notice that only chains satisfy minimality whereas circles do not. This is because from Lemma

1, the asset holdings from a circle would remain if a chain is formed instead by deleting one

link. Since zero value is created from this link, assuming a epsilon-positive cost of linking would

justify the minimality requirement. Hence we only solve chains and discuss results under general

network structures in subsection 3.5. The number of firms here can be interpreted as the longest

path in an otherwise general network, such as the core-periphery structure empirically observed

in the Fed funds market (Bech and Atalay (2010)), municipal bonds (Li and Schurhoff (2014)),

and derivative securities (Hollifield, Neklyudov, and Spatt (2014)).24

22A component of a network is a maximally connected collection of firms: each firm in the component can reach
any other firm in the same component following one or more links.

23A chain in a network is a sequence of firms and links that start with firm i and end with firm j 6= i.
24For papers analyzing the endogenous formation of core-periphery networks among banks or dealers see for

instance Farboodi (2014), Neklyudov (2014), and Chang and Zhang (2015).
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2.5 The Equilibrium

At t = 1, firms simultaneously choose linkage decisions l and contingent price offerings p to

maximize their expected firm values V (z, L, p). Next I define the equilibrium notion of pairwise

stability with transfers. I embed Jackson and Wolinsky (1996) pairwise stability with bilateral

prices along the lines of transfers in Bloch and Jackson (2007).

Definition 1 The equilibrium of a network formed by bilateral forward swap contracts is char-

acterized by the linkage structure Le and the set of bilateral prices pe, such that

• Optimality: each firm i takes as given other firms’ strategies (lj , pj) , ∀j 6= i, and chooses

its own strategy (li, pi) to optimize its firm value, i.e.

Vi (z, Le, pe) = max
(lij∈{0,l̄},pij)

j 6=i

Vi (z, L, p) , (9)

subject to (2), (4), and constraints (5) - (8).

• Pairwise stability: denote Le−ij as the matrix Le by deleting Leij, and similar notations

apply to the prices. Then ∀Leij > 0 and ∀(p̂ij , p̂ji) 6= (peij , p
e
ji),

Vi (z, Le, pe) ≥ Vi
(
z, Le−ij , p

e
−{ij,ji}, p̂ij , p̂ji

)
, (10)

Vj (z, Le, pe) ≥ Vj
(
z, Le−ij , p

e
−{ij,ji}, p̂ij , p̂ji

)
; (11)

and ∀Leij = 0 and ∀(p̂ij , p̂ji) 6= (peij , p
e
ji)

Vi

(
z, Le−ij , Lij = l̄, pe−{ij,ji}, p̂ij , p̂ji

)
> Vi (z, Le, pe) , (12)

⇒ Vj

(
z, Le−ij , Lij = l̄, pe−{ij,ji}, p̂ij , p̂ji

)
< Vj (z, Le, pe) . (13)

• Feasibility:

L× 1N×1 = L> × 1N×1 = 1N×1. (14)

The notion of pairwise stability with transfers states that given the contingent price offerings

by other counterparties, two firms i and j connect if and only if they can generate positive

bilateral surplus from Lij . Pairwise stability with transfers naturally applies to this setting as

the goal here is to understand which networks arise and remain stable when firms can share

rents with local counterparties through bilateral payments.
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2.6 Discussions

Synergy from links The two types of links, risk-sharing links and distress links, generate

different sources of synergy. A risk-sharing link always generates a positive surplus by reducing

the volatility of liquid assets. For instance, a link between two ex ante identical non-distressed

firms reduces the liquidation probability of each firm.25 In comparison, a distress link has an

extra source of synergy from the distress heterogeneity. Take two firms with νi = 1.5, νj = 0.8.

Even when σ = 0, there is gain as the liquidation of firm j can be avoided surely. More generally,

the surplus from the reduction of total liquidation costs of firms i and j is shown to increase with

their distress dispersion |zi − zj |.26 Note that only firms liquid enough are able to profit from

such a link. This can be seen as when zj < −1, the surplus is positive only if zi > 0− zj > 1.

Payment seniority In the model, debt is paid at date 2 using liquid holdings after asset

trades. Payments for the forward swap contracts are paid in full at date 3 using yields from the

long-term assets. This specification assumes that short-term creditors have seniority over the

OTC derivative counterparties. The motivation is that derivatives seniority here would create

additional inefficiency in risk-sharing similar to that in Bolton and Oehmke (2014). Following

the example above, let instead ν1 = 1.2, ν2 = 0.8, and εi = ε2 = 0. When net payment

is transferred at date 3, both firms avoid liquidation. But whenever firm 2 has to transfer a

positive net payment to firm 1 at date 2, firm 2 incurs liquidation. So my specification helps to

isolate from other inefficiency channels associated with the derivatives payments.

Algorithm for linkage formation There are multiple ways to determine which network

emerges given a set of contingent transfer payments (prices). I illustrate the following one. Under

rational expectations, firms form a common belief about the equilibrium linkage structure Lb.

Based on this belief, firms simultaneously submit strategies li(L
b) and pi =

(
pij(z, L

b
i , L

b
j)
)
j 6=i

.

Given the strategies, the realized equilibrium network is consistent with the initial belief Le = Lb.

An alternative guess-and-verify approach is described in Bloch and Jackson (2007).

25The total expected liquidation costs of two stand alone firms are 2 Pr (ai < 1) c = 2Φ(−zi)c. In a for-
ward swap contracts, total expected costs for two connected firms are 2Φ(−2zi)c. The total surplus equals
2(Φ(−zi)− Φ(−2zi)) c > 0.

26The synergy equals the reduction of liquidation costs of the two firms Φ (−zi) c+ Φ (−zj) c− 2Φ (−zi − zj) c.
The derivative of synergy with respect to |zi − zj |, holding the sum |zi + zj | fixed, is positive.
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3 Network Inefficiency

In this section, I examine the efficiency of the equilibrium network relative to a benchmark that

minimizes total liquidation costs. I show that the equilibrium network is inefficient when the

dispersion of financial distress is high: there are more distress links and fewer risk-sharing links.

3.1 Optimal Network

Under the model specifications for links and the asset swap process, the optimal network is

chosen to minimize total liquidation costs (i.e. to maximize total values).

Definition 2 The optimal network L∗ minimizes total expected liquidation costs, i.e.

L∗ = arg min
Lij∈{0,l̄}

N∑
i=1

Pr (hi < 1) c, (P1)

subject to the conditions of two-sided links Lij = Lji, iterative procedure (8), and feasibility (14).

I then solve P1 and characterize the properties of L∗ in the two dimensional space of z̄ and

δ.

Proposition 1 (Optimal Network) ∃z̄1, z̄2, z̄1 > z̄2 ≥ 0, ∃ cutoff function δ1 (z̄) > 0 such that

• ∀z̄ ≥ z̄1, δ ≥ 0 or z̄ ∈ [z̄2, z̄1] , δ ∈ [0, δ1 (z̄)], all firms are connected in one component;

formally, either L∗ij > 0 or there exists a path between i and j, i.e. L∗ik1
, ..., L∗kmj > 0;

• ∀z̄ ∈ [z̄2, z̄1] , δ > δ1 (z̄), the distressed firm N is isolated (L∗NN = 1), whereas all other

firms are connected in one component.

Proposition 1 states that the optimal network is characterized by the two moments of distress

distribution, {z̄, δ}. All firms diversify maximally by connecting in one component in an economy

with high enough z̄ (low average distress), or with low z̄ and low enough distress dispersion δ. In

contrast, when distress dispersion δ is high and z̄ is not sufficiently high, the most distressed firm

N should be isolated, whereas all other firms are connected in one component. These patterns

are shown in Figure 2 for N = 4, 5.27 The intuition for Proposition 1 is the trade-off between

27The cutoff value z̄2 is zero for N = 4, and is positive for N ≥ 5. For z̄ < z̄2, there are regions when L∗

isolates more than one firm: in Figure 2 Panel B, both firms 4 and 5 are isolated in the hump-shaped region in
the lower left corner. As δ increases further, L∗ switches from isolating two firms to one firm. This is because
the total expected liquidity of the first N-1 firms increases with δ which mechanically results from the structure
in equation (1). I show in the Appendix a general analysis for N > 5 and plot figures for N = 6, 7, 8.
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Figure 2. Optimal Network. This figure shows the optimal risk-sharing network charac-
terized in Proposition 1 for N = 4 and N = 5. The horizontal and vertical axes represent the
mean and dispersion of firm distress statistic z. In the white region, all firms are linked in one
component. In the dark region (z̄ ∈ [z̄2, z̄1] , δ > δ1 (z̄)), firm N is isolated.

diversification and risks of contagion.28 In an economy with high dispersion δ and low average

z̄, firm N is heavily distressed as from equation (1). The contamination cost of linking firm

N with all other firms dominates the risk-sharing benefit, which rationalizes isolating it to be

socially optimal.

The model specifications on links and asset swaps do not deviate the optimal network from

the best possible risk-sharing outcome. In Online Appendix A.1, I show that under the iterative

swap procedure, the asset holdings implied by the optimal network are equivalent to the optimal

allocations if the social planner were to directly choose asset holdings for each firm. Hence, total

liquidation costs achieve the minimum as long as the network is optimal.

3.2 Excess Distress Link

The question I address next is whether the optimal network can be decentralized in the network

formation, and if not, in which ways the equilibrium network is inefficient.

Proposition 2 (Excess Distress Link) For N = 4, Le12 = Le23 = Le14 = l̄: all firms connect in

one chain in equilibrium with firm 1 linking with 4.

28The trade-off between risk-sharing and contagion is in line with Cabrales, Gottardi, and Vega-Redondo (2014),
who find that, when shock distribution has thin tails, firms should be connected in one component, whereas when
shock distribution has fat tails, maximum segmentation into small components is optimal.
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Figure 3. Equilibrium Network (N = 4). This figure shows the equilibrium four-firm
chain network. Firms are ranked by the level of distress, and firm 4 is distressed. A solid line
represents a link between two firms. A $ arrow indicates the direction of net payment transfers
via bilateral prices.

Proposition 2 states that for all parameter values, all firms are connected in one component in

equilibrium including the most distressed firm via a distress link. Comparing propositions 1 and

2, when z̄ is low and dispersion δ is high, the optimal network has no distress link (
∑
i 6=N

L∗iN = 0);

however, the equilibrium network is inefficient and features excess distress link (
∑
i 6=N

LeiN > 0).

Figure 3 illustrates the intuition. Under reservation prices pij = pjj , firm 1 deviates to link

with firm 4 to obtain a large profit. Then firm 2 wants to sever the 1 − 2 link as the cost

of indirectly holding a faction of a4 gets high. To prevent 2 from disconnecting, firm 1 offers

a contingent premium price in the form of net transfer p12 − p21. The minimum net transfer

equates the value of firm 2 to its outside option: the best it can get upon withdrawing. This

results in over-connection at equilibrium: the distressed firm 4 should have been isolated but

is linked with the rest. Firm 2 cannot afford to pay a premium price high enough to prevent

1 from connecting with 4. This is because the benefit of isolating 4 is shared by both 2 and 3,

and so firm 2 would be worse-off paying the required premium on its own.

The question is why firm 2 would not link with 4 to compete against 1 and hence reduce 1’s

profit. First, in the inefficiency region where δ is large, we can show that the bilateral surplus

between 2 and 4 is negative. This means that 2 does not have incentive to connect with 4 unless

connected with 1 as in [4−2−1−3]. However, 1 is then better off deleting 1−2 link, rendering

the 2 − 4 link not stable. Importantly, the degree of heterogeneity plays an important role in

making the 1−N link profitable by eliminating potential competitions.

3.3 Risk Sharing Loss

As the chain network gets longer, the excess distress link can crowd out valuable risk-sharing

links, thus giving rise to an additional channel of inefficiency from the loss of risk-sharing.
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Figure 4. Equilibrium Network (N = 5). This figure shows the equilibrium five-firm
network. The horizontal and vertical axes represent the mean and dispersion of firm distress
statistic z. In blue and red regions, the optimal network isolates firm 5. Blue (lighter) region
denotes over-connection, and red (darker) region denotes inefficient network composition.

Proposition 3 (Risk Sharing Loss) For N = 5, there is excess distress link (
∑
i 6=N

LeiN > 0,
∑
i 6=N

L∗iN =

0) when z̄ ∈ [z̄2, z̄1], δ > δ1(z̄). In particular ∃ η(z̄) as a cutoff function such that

• ∀δ ∈ [δ1(z̄), η(z̄)], all firms are connected in one chain, so there is over-connection;

• ∀δ > max {δ1(z̄), η(z̄)}, non-distressed firms are not connected in one chain: the network

has inefficient composition due to both excess distress link and insufficient risk-sharing.

Proposition 3 formalizes two channels of inefficiency: over-connection from the excess distress

link and under-connection from risk-sharing loss. When z̄ is low and dispersion δ is high,

the distressed firm, which should be isolated, is linked by firm 1 via the excess distress link.

This occurs in the colored regions in Figure 4 where z̄ ∈ [z̄2, z̄1] and δ > δ1(z̄). Particularly,

if dispersion is in a middle range (δ ∈ [δ1(z̄), η(z̄)]), all firms are linked in one component,

so inefficiency only results from over-connection. As we move to the upper left region (δ >

max {δ1(z̄), η(z̄)}), some risk-sharing links sever: a non-distressed firm becomes isolated or the

non-distressed firms separate into multiple components. The externality from the distress link

crowds out potential gains from risk-sharing. In this case, the equilibrium features inefficient

composition with over- and under-connections simultaneously.
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Figure 5. Inefficient Network Composition (N = 5). This figure shows the equilibrium
connection structure 1, 2− 3, 4, 5 with inefficient network composition that features both over-
and under-connections.

Without loss of generality, firms start from an ordered chain 1−2−3−4−5 when δ = 0.29 As

dispersion increases, firm 5 becomes distressed. The 4− 5 link terminates and the distress link

1− 5 forms: equilibrium network 1− 2− 3− 4, 5 thus generates over-connection. As dispersion

rises further, the required premium price to keep firm 2 connected is higher and firm 1 is better

off cutting the 1−2 link. Firm 3 then optimizes by disconnecting the 3−4 link. The equilibrium

therefore becomes 1, 2− 3, 4, 5, as shown in Figure 5.

3.4 The Key Friction

The inefficiency is caused by network externalities. Due to local contingency in Assumption 1,

the liquid firm 1 fails to internalize the negative externalities to its direct and indirect coun-

terparties. When Assumption 1 is relaxed, bilateral prices pij (z, L) can induce the efficient

network, which indicates that the incomplete contingency on the network structure is the mere

underlying friction.

Recall the N = 4 case. When δ is high, linking with the distressed firm 4 by 1 imposes an

externality to both 2 and 3. To prevent this distress link, firms 2 and 3 need to jointly offer

incentives to 1. In Online Appendix A.2, I formally show that, if and only if L∗14 = 0, there

exist unique premium prices p∗21 and p∗32 such that Le14 = 0. In particular, p∗32 is a function

of L14, implying that firm 3 pays a premium to firm 2 when L14 = 0. Essentially, the price

offered by firm 3 is contingent not only on the link between 2 and 3, but also on the links of the

counterparty’s counterparty.

3.5 General Network Structures

The above results are based on the chain assumption 3. A chain of four firms is the minimal

structure I need to illustrate network inefficiency. Firm number N here can be seen as the

29I solve the equilibrium starting from each possible order in the chain. I confirm that the equilibrium is the
same for large enough δ because the deviation incentives (endogenous outside options) for each firm is the same
across different orders.
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Figure 6. General Network Structures.

longest path of a general non-star network. However, even with a star network, a similar type

of externality occurs. Figure 4 Panel A shows a star network with N = 4 and firm 1 in the

center. Same as before, firm 1 has incentive to link with 4 while imposing externality to 2 and

3. To prevent this link, both 2 and 3 need to jointly offer incentives to 1 so p31 + p21 equals the

rent of firm 1. And firm 3 only pays a premium contingent on L14 = 0 and that firm 2 pays

a high enough premium. Essentially, the price offered by 3 depends on the strategy of 2, its

countryparty’s countryparty. For details see Online Appendix A.3. In Panel B with N = 5 and

a “line+star” network, the logic of local contingency follows.

4 The Distress Dispersion

In this section, I investigate factors that indicate the level of network inefficiency. While prior

literature has largely focused on the first moment of financial distress, I show that the distress

dispersion across firms is a critical indicator for inefficiency, measured by value loss and excess

systemic risk. Using comparative statics, I validate the role of distress dispersion by associating

network inefficiency to changes in the network composition.

4.1 Measures of Network Inefficiency

In the model, the first measure for network inefficiency is the loss of total firm value. Define value

loss, ∆V , as the difference in total expected firm values between the optimal and the equilibrium

networks. Then let ∆V% be the percentage value loss, which is simply the percentage of value

loss over total firm values under the optimal network. The expressions are specified as follows,

∆V =

N∑
i=1

Vi (z, L∗, p∗)−
N∑
i=1

Vi (z, Le, pe) ; ∆V% =
∆V∑N

i=1 Vi (z, L∗, p∗)
, (15)

where ∆V > 0 whenever Le 6= L∗. Since prices are bilateral transfers between firms, value loss

equals the increment of total liquidation costs. This is a natural measure of the effectiveness of
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risk sharing among firms.

The second measure focuses on the probability of joint liquidation event. Define systemic

risk, denoted by PrLsys, as the probability that the majority (more than 1
2N) of firms liquidate

at the same time, i.e.,

PrLsys = Pr
(∑N

i=1 1(hi(a,L)<1) >
1
2N
)
. (16)

In a network where there exists a component with more than 1
2N firms connected, systemic

risk equals the liquidation probability of any firm in this component because all connected firms

hold exactly the same diversified assets. Define excess systemic risk as the difference between

systemic risk at the equilibrium network compared to the optimal network, i.e.,

∆ Prsys = PrL
e

sys−PrL
∗

sys . (17)

The excess systemic risk is positive whenever the network is inefficient.

4.2 Inefficiency, Dispersion, and Network Composition

With the two measures defined, next I characterize the properties of value loss and excess

systemic risk as functions of the two moments of firm distress distribution, (z̄, δ).

Proposition 4 (Distress Dispersion) When equilibrium network is inefficient, value loss and

excess systemic risk increase with dispersion δ, decrease with average z̄, and decrease with z̄

faster when δ is higher. Formally, for z̄ ∈ [z̄2, z̄1], δ > δ1(z̄), ∂∆V
∂z̄ ≤ 0, ∂∆V

∂δ ≥ 0, and ∂2∆V
∂z̄∂δ ≤ 0;

∂∆ Prsys

∂z̄ ≤ 0, ∂∆ Prsys

∂δ ≥ 0, and ∂2∆ Prsys

∂z̄∂δ ≤ 0.

Overall, Proposition 4 shows that firm distress dispersion δ is a key indicator for both

measures of inefficiency. First, value loss and excess systemic risk increase with dispersion δ;30

Second, value loss and excess systemic risk decrease with average z̄ only when dispersion δ is

large enough. When the dispersion is high, firm N is so distressed that linking it with other

firms generates large contagion risk and high chances of joint liquidation. Consequently, the

cost from such a distress link causes higher loss in total firm values, thus increases inefficiency.

To further inspect the role of dispersion, I analyze how the equilibrium network responds to

changes in δ relative to the optimal network. Specifically, I relate the two inefficiency measures

30With no linkages, total liquidation costs increase monotonically with dispersion because more firms are dis-
tressed. However, when firms form links optimally, total liquidation costs decrease monotonically with dispersion.
Hence, increasing dispersion alone does not imply worse outcome.
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Figure 7. Increase in Dispersion. This figure shows the properties of the five-firm chain
network when we raise dispersion δ. I plot the values in the equilibrium network with solid red
and the optimal network with dashed black.

with changes in the network composition in terms of distress links and risk-sharing links. Figure

7 plots the value loss (Panel A), excess systemic risk (Panel B), distress links (Panel C), and risk-

sharing links (Panel D) as functions of δ in a five-firm chain network. As δ increases, inefficiency

becomes positive and increases thereafter with a jump when δ is high enough. These patterns

are due to the formation of excess distress link together with the loss of risk-sharing when

dispersion gets higher. This can be seen from changes in the network composition in Panels C

and D. Corresponding to where the inefficiency becomes positive, the equilibrium network has

one extra distress link between 1 and 5. As δ gets higher (at where the jumps are in Panels

A and B), the equilibrium network has two risk-sharing links fewer than the optimal network

(dashed minus solid curves in Panel D). The risk sharing loss from the severance of the 1-2

and 3-4 links creates an extra channel for inefficiency. Hence, the observed positive relation of

inefficiency and δ is associated with changes in the network composition.
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To summarize, the above comparative statics exercise shows that an increase in δ is associated

with: (1) higher value loss and higher systemic risk, (2) more distress links, and (3) fewer risk-

sharing links.

5 Policy Implications on the Acquisitions of Distressed Firms

In this section, I apply the model to a setting where links with distressed firms are interpreted

as acquisitions. Two reasons support this particular application. First, in the data a major

example of links with distressed firms is through acquisitions. Acharya, Shin, and Yorulmazer

(2010) and Almeida, Campello, and Hackbarth (2011) show evidence that firms with enough

liquidity make windfall profits by purchasing assets from distressed firms when there is liquidity

scarcity. Second, compared with OTC derivative contracts which are challenging to supervise,

acquisitions in the financial sector are subject to regulatory approval, making policy interventions

feasible.

Based on the model result, regulations that prevent the inefficient distress links generate

social gains. I begin by proposing one such regulation using an acquisition tax. Then I study an

extension of the model that allows for analyzing government interventions both before and after

the linkage formation. Results indicate that, if the excess acquisition is not effectively prevented

ex ante, the too-connected-to-fail problem arises: liquidating the distressed firm is too costly

due to spillovers to its existing counterparties. I argue that government interventions such as

bailout and subsidies are ex post optimal, thereby rationalizing these actions observed during

the recent financial crisis.

5.1 Ex ante Acquisition Tax

Acquisition is currently regarded as the primary approach to resolve firm distress because it

incurs the least fiscal cost. However, my results imply that acquisitions of distressed firms

should be regulated accounting for the externalities in financial linkage formation. If contingent

taxes can be imposed, then a tax formula that varies with the distress distribution can induce

the optimal level of acquisitions and restore the efficient network. Next I formally characterize

the tax.

Proposition 5 (Acquisition Tax) In an N-firm chain with z̄ ∈ [z̄1, z̄2], the optimal network can
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be decentralized by a tax τ imposed to firm 1 contingent on its acquisition of firm N ,

τ = (N − 3)

(
1

2
δσ + Φ

[√
N (−z̄)

]
c− Φ

[√
N − 1(−z̄ − 1

2
δ)

]
c

)
, (18)

where Φ[.] is the c.d.f. of the standard normal distribution. τ satisfies τ > 0 when L∗NN = 1,

∂τ
∂δ > 0, and ∂τ

∂z̄ < 0.

The acquisition tax equals precisely the negative externalities to all indirect counterparties

(firms i = 3, ..., N − 1) which cannot be corrected by local contingent contracts; thus, the indi-

vidual and social incentives for acquisition are aligned. The tax is a function of the distribution

of distress across firms in terms of {N, z̄, δ}. When dispersion is higher, the negative external-

ities are bigger; hence, we require bigger tax in order to correct for the incentive mismatch. A

similar argument holds for the relation with the average distress. Note that the tax is imposed

contingent on the excess acquisition. So no tax is physically collected from the acquirers because

the inefficient acquisition is effectively prevented ex ante.

The model provides theoretical guidance on how to regulate acquisitions. In particular,

intervening based on firm distress distribution complements the current regulatory metrics.

The concern towards “financial stability” when evaluating acquisitions was included for the

first time by the Dodd-Frank Act.31 In the recent orders approving acquisitions, for instance

Capital One’s acquisition of ING Bank, the Fed describes the new financial stability metrics

per Dodd-Frank’s mandate, covering size, substitutability, interconnectedness, complexity, and

cross-border activity.32 The discussion regarding the interconnectedness factor, however, only

covers the degree of interconnectedness of the resulting firm, rather than considering the entire

linkage structure and possible externalities through indirect linkages.

The key issue is how to implement such a tax. The regulators need to account for the

distribution of financial distress. One feasible approach detailed in Section 6 is to estimate

quarterly Z-scores of financial firms. Among the limitations of this measure are the low frequency

and the opacity of balance sheets. Using exclusive regulatory data, the banking supervisors can

potentially achieve better estimates by using higher frequency data or alternative models such

31The Dodd-Frank Act in Section 604(d) amends Section 3(c) of the Bank Holding Company Act of 1956 and
requires the Fed to consider “the extent to which a proposed acquisition, merger or consolidation would result in
greater or more concentrated risks to the stability of the United States banking or financial system.”

32www.federalreserve.gov/newsevents/press/orders/2012orders.htm
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as CAMELS ratings. If excess acquisitions are prevented, alternative resolution methods in case

of failure include liquidation or Purchase and Assumption (P&A) transactions.33

5.2 Ex post Government Policies

Several acquisition cases observed during the recent financial crisis render the baseline model

counterfactual, e.g. the acquisitions of Bear Stearns, Merrill Lynch, and National City. These

cases differ from the baseline setting in several dimensions. First, links with the target institu-

tions were formed before the distress conditions fully realized. Second, government interventions

such as bailout or subsidies took place. For instance, when two of Bear Stearns’ funds failed

in 2007, it already had many counterparties, most of whom remained in the counterparty rela-

tionship. When Bear Stearns suffered severe financial distress on March 2008, the Fed provided

assistance in the form of a $29 billion non-recourse loan to JP Morgan to make the acquisi-

tion. To rationalize such observed government interventions, I next extend the baseline model,

and the key deviation is that the timing of the network formation does not coincide with the

observation of distress.

Suppose links cannot be severed once formed at t = 1 when ν is learned. Further, assume

that the value of liquid asset is,

ai = νi + θi + σεi, i = 1, ..., N, (19)

where the additional term θi is realized at t = 11
2 after links are formed. Hence, νi and θi jointly

determine the chances of liquidation at t = 2. We focus on the over-connection region where

z̄ ∈ [z̄2, z̄1] and δ ∈ [δ1(z̄), η(z̄)] such that firm N should be isolated; nonetheless, all firms are

connected at equilibrium in the absence of a tax (Proposition 1 and 2). Now, assume firm N

receives a second negative liquidity shock. Let θ be a vector with θi = 0, ∀i = 1, ..., N − 1, and

θN = −kz̄σ,34 where k > N such that it drags the average firm distress down below zero. In

this case, links do not create positive surplus from risk-sharing any more.

33In a P&A transaction, a healthy institution assumes some or all of the obligations, and purchases some
or all of the assets, of the failed institution. The Federal Deposit Insurance Corporation Improvement Act
of 1991 mandates the FDIC to choose the resolution method least costly to the Deposit Insurance Fund. To
comply with this mandate, the FDIC chose P&A transactions as the resolution method for a great majority of
failing banks. For detailed institutional background on bank failures see White and Yorulmazer (2014), Granja,
Matvos, and Seru (2015), and the the Guidance for Developing Effective Deposit Insurance Systems from FDIC,
at http://www.fdic.gov/deposit/deposits/international/guidance/guidance/FailedResolution.pdf.

34In practice, distress signals are released gradually. The negative θN captures persistence in liquidity conditions.
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5.2.1 Government Bailout

Next I analyze conditions when government bailout is ex post (t = 11
2) optimal and how total

costs compare to those under the ex ante optimal policies (imposing acquisition tax at t = 1). To

this end, we allow for the option of government bailout in the form of costly liquidity injection.

Specifically, let Bσ denote the amount of government liquidity injection to the heavily distressed

firm N . Since all firms are connected and each holds the same diversified assets, they share the

same probability of liquidation Φ
[√

N(−z̄ + kz̄−B
N )

]
. Total costs here include expenses in both

liquidation and bailout.

Government liquidity injection that covers at least total liquidity shortfall (B∗ > (k −N)z̄)

is ex post optimal in an over-connected network as long as the liquidation cost is not very small,

c >
√

2πσ√
N

. (See Online Appendix A.4, Proposition 7.) This lower bound is smaller when the

distressed firm has more counterparties or when asset volatility is lower. Now, if θN is not

sufficiently bad so k ≤ N , the lower bound of liquidation cost to justify government bailout is

higher. In other words, the worse shock the connected banking system gets, the more likely

government bailout is ex post optimal. This relation is consistent with the empirical observation

that bailout only occurs in rare occasions with severe distress.

Even though government bailout can be ex post optimal, I show that, it is in general (as long

as the cost of bailout is not very low) more costly than ex ante preventing the acquisition (see

Proposition 8 in Online Appendix A.4). This result captures one critical issue in the current

policy-making: the time-inconsistency problem.35 A liquid firm makes profit by acquiring a

distressed target while generating externalities. Precisely owing to the excess acquisition link,

liquidation of the distressed firm gets too costly. In consequence, government bailout becomes

ex post efficient and ex ante inefficient.

5.2.2 Government Subsidized Acquisition

Back to the Bear Stearns case, instead of directly injecting liquidity, the Fed extended a non-

recourse loan to the acquirer JP Morgan.36 With a slight variation, the extended model can

35For discussions on the time-inconsistency issue, see Acharya and Yorulmazer (2007), Spatt (2009), and Chari
and Kehoe (2013).

36The New York Fed initially agreed to provide a $25 billion collateralized loan to Bear Stearns for up to 28
days, but later decided that the loan was unavailable to them. This evidence showed that government bailout
was not preferred.
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rationalize this behavior. I show that, when there exist healthier institutions currently not

connected with the distressed firm, government subsidized acquisition is ex post optimal.

Consider another group of firms connected among themselves but are separate from the

existing ones. Suppose there are N firms i = N + 1, ..., 2N with the same average z̄ > 0 and

dispersion δ = 0 (without loss of generality), such that a complete risk-sharing network optimally

emerges. Let the additional signal be θN+1 = k̂z̄σ and θi = 0, ∀i = N + 2, ..., 2N , so firm N + 1

gets a positive shock in the liquid return. Next I analyze whether firm N + 1 has incentive to

acquire the distressed firm N after learning θ, and whether the acquisition is ex post socially

optimal.

The answer depends on how the liquidity surplus of firm N + 1 compares with the liquidity

shortage of firm N . Shown in Corollary 1 of Online Appendix A.4, the acquisition is ex post

socially optimal and occurs at equilibrium if and only if the average distress is above zero

(k̂ + 2N > k). Otherwise, the acquisition has negative surplus, and firm N + 1 does not

have incentive to link with N . In this case, subsidized acquisition via liquidity injection to

the acquirer is optimal if the liquidation cost is not very small (c >
√
πσ√
N

). The intuition is

that risk-sharing among the two groups of firms can reduce liquidation costs only when total

expected liquidity is positive. Government subsidy can push the average liquidity above zero.

The required government subsidy is lower when the positive liquidity shock of the potential

acquirer is higher. This result rationalizes the observation that subsidized acquirers during the

financial crisis are relatively liquid firms, such as JP Morgan and PNC (respectively acquirers

of Bear Stearns and National City).

Comparing the two ex post policy remedies, subsidized acquisition is less costly than bailout,

thus is always preferred. Nonetheless, if the excess link with the distressed firm has been

prevented in the first place, liquidation would not be as expensive; hence, neither subsidized

acquisition nor bailout would be necessary.

5.2.3 Government Pushed Acquisition

I have shown that when the two groups have the same cardinality, the acquisition link forms

at equilibrium if and only if it generates positive social surplus. However, this condition does

not hold when the two groups differ in cardinality. Essentially, the relative cardinality of the
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two groups determines the sign of the bilateral surplus which further implies whether or not

the ex post acquisition occurs at equilibrium. When the potential acquirer firm in the second

group has more counterparties, there are more firms to share the cost of acquisition than firms

in the first group to share the benefit. The bilateral surplus from the acquisition is greater than

the social surplus; hence, the acquisition link forms ex post whenever it is socially valuable.

When the potential acquirer firm in the second group has fewer counterparties, the bilateral

surplus is smaller than the social surplus. The bilateral surplus can be negative when the social

surplus is positive; thus, the acquisition might not occur at equilibrium even if it is ex post

socially optimal. In such circumstances, government pushed acquisition is recommended (see

Proposition 9, Online Appendix A.4).

There are many ways in which a government intervention can take place. One approach is by

exerting pressure to candidate acquirers. Examples include the Fed pressuring Bank of America

to acquire the distressed Merrill Lynch.37 The regulators can also subsidize the acquirer using

funds collected from the counterparties of the distressed firm. Alternatively, the regulators can

provide a coordination device for collective decision-making: let the potential acquirer and all

the counterparties of the distressed firm bargain over the payments. One such example is the

initiation of collective bailout of LTCM by the New York Fed in 1998.38

6 Empirical Evidence

The model predicts that network inefficiency increases with distress dispersion. In this sec-

tion, I document empirical evidence that the distribution of distress across financial institutions

provides a novel measure for systemic risk. I establish this result by first examining how the

cross-sectional mean and dispersion of distress correlate with indicators for aggregate systemic

risk, liquidation costs, distress links through acquisitions, and interbank risk-sharing. I then

confirm the findings using predictive regressions.

37As discussed in Spatt (2010), “secretary of the Treasury Henry Paulson indicated to [Bank of America CEO]
Lewis that banking supervisors would question his suitability to lead Bank of America if BoA backed out of the
merger and then needed more federal support, while federal authorities agreed to provide ‘ring-fencing’ of difficult
to value Merrill Lynch assets if Bank of America went ahead with the merger.”

38On Sept 23 1998, the New York Fed arranged a meeting for a group of LCTM’s major creditors at one of its
conference rooms. During this historic meeting, the creditors worked out a restructuring deal that recapitalized
LTCM and avoided its bankruptcy.
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6.1 Measurement and Data

The quarterly accounting data provide the basis for the measurement of financial distress. The

sample of financial institutions includes bank holding companies and all Federal Deposit In-

surance Corporation (FDIC) insured commercial banks and savings institutions. Data of bank

holding companies for the period of 1986-2013 are taken from FR Y-9C filings provided by the

Chicago Fed. Data for commercial banks (Call Reports) and savings institutions (Thrift Fi-

nancial Reports) are taken from the FDIC’s Statistics on Depository Institutions, available for

1976-2013. Next, I describe the measurement of financial distress.

6.1.1 Z-score

I measure financial distress by estimating the Z-score, which has been widely used in the litera-

ture as an indicator for a institution’s distance from insolvency (e.g. Roy (1952), Stiroh (2004),

Boyd and De Nicolo (2005) and Laeven and Levine (2009)). The Z-score combines accounting

measures of profitability, leverage and volatility, and is defined as the return on assets (ROA)

plus the capital-asset ratio divided by the standard deviation of ROA. Simply put, it equals

the number of standard deviations that an institution’s ROA has to drop below the expected

value before equity is depleted. For this reason, the Z-score provides a good proxy for financial

distress (the state variable zi in the model). In particular, the Z-score is estimated according to

Z-scorei,t =
1
T

∑T−1
τ=0 ROAi,t−τ + 1

T

∑T−1
τ=0 CARi,t−τ

σtt−T+1(ROAi)
, (20)

where ROAi,t and CARi,t are respectively the ROA (net income over total assets) and capital

asset ratio (total equity capital over total assets) for firm i in quarter t. Here I consider a rolling

window of eight observations. The estimated Z-score is highly skewed; hence, I follow Laeven

and Levine (2009) and Houston, Lin, Lin, and Ma (2010) and adopt the natural logarithm of

the Z-score as the distress measure.

The time series of the mean and dispersion of log Z-score are estimated by taking the average

and standard deviation across all financial firms in each quarter. Figure 8 plots the quarterly

series of dispersion, mean, and the 10-90 percentile range of log Z-score over the period of

1978-2013. From Figure 8, we can make the following observations. First, relative to the cross-

sectional mean, the dispersion of log Z-score displays a fair amount of variation and has an
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Figure 8. Log Z-score Moments across Financial Institutions. This figure plots the
quarterly time series of dispersion, mean, and the 10-90 percentile range of log Z-score across
all financial institutions over the period of 1978-2013. The series are normalized such that both
the dispersion and the mean are centered around one. Shaded bars indicate NBER recessions.

increasing trend. Second, the dispersion series demonstrates a countercyclical pattern: it in-

creases during the Savings and Loan crisis in the late-1980s, the Dot-com crash and the recession

afterwards, as well as during the 2007-2009 financial crisis. Based on the comparative statics in

Section 4.2, precisely during the crises spell, high dispersion leads to high network inefficiency,

which potentially increases systemic risk and aggravates the crises. Finally, the dispersion series

appears to lead recessions. Take the most recent crisis for instance, the dispersion starts to

increase since 2006, and by the time financial firms enter the crisis in the 3rd quarter of 2007,

they already show significant dispersion in financial distress. These features combined suggest

that the time series of dispersion can potentially signal economic changes and systemic risk,

which I will test at the end of this section.

While the Z-score provides a quantitative measure for distress, it is worth noting a few limi-

tations. The first limitation is that, the Z-scores are an endogenous outcome of certain degrees

of risk diversification, thus are not exogenous to firms as assumed in my model. Nonetheless, the

Z-score gives the best available proxy for distress in a static framework because it is estimated

using past data, which are taken as given by firms to make decisions onwards. Furthermore, as

shown by Acharya, Shin, and Yorulmazer (2010), initially liquid firms tend to hoard liquidity

or deleverage for potential gains from asset sales, whereas risk management tools for an initially

distressed firm are limited. Hence, the ranks of the estimated Z-score across firms can generally
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reflect the ranks of initial distress. The second limitation pertains to the usage of book value

based on accounting data. While I acknowledge that the Z-score omits off-balance sheet activi-

ties and might give a biased assessment of risk-taking, off-balance sheet usages are only relevant

for a few institutions.

6.1.2 Acquisitions of Distressed Firms

An acquisition of a distressed firm occurs when the target has a low Z-score. This allows us

to account for the links with the distressed firms in the model. The acquisition transactions

are taken from the Chicago Fed Mergers and Acquisitions dataset. The dataset records all the

acquisitions of banks and bank holding companies since 1976, keeping track of both the target

and acquirer entities at the merger completion date. I drop the observations that are failures or

restructurings.39 I then use RSSD ID of the target firm and match the dataset with quarterly

accounting data two quarters ahead.40 Around 86% (17,930) of the observations are matched.

I identify a distressed acquisition if the target firm reports a negative net income two quarters

prior to the acquisition completion date, or if the target firm has a log Z-score of below 2.35

(two standard deviations below the sample mean) at least once for within two to four quarters

before the acquisition completes.

Using this strategy, around 20% (3,153) of the matched acquisitions are classified as dis-

tressed acquisitions. The rest mostly occurred during the merger wave in the 2000s after the

Gramm-Leach-Bliley Act, which enabled mergers among investment banks, commercial banks,

and insurance companies. Among the distressed acquisitions, notable examples include Coun-

trywide by Bank of America, Riggs and Sterling by PNC, and Wachovia by Wells Fargo.

Figure 9(a) plots the quarterly percentage of distressed acquisitions over total number of

financial institutions as well as the distressed acquisition rate weighted by the asset size of

the targets. From the plots, distressed acquisition rates are countercyclical. Two periods with

clustered acquisitions are the Savings and Loan crisis and the 2007-2009 financial crisis. The

39Failures refer to transactions with Termination Reason Code = 5. Restructurings occur when the target
entities and the acquirer entities have exactly the same entity name but different Federal Reserve RSSD IDs.

40I match the quarterly accounting dataset two quarters ahead because the merger date in Chicago Fed M&A
dataset represents the completion date and is usually later than the last quarter when the non-survivor firm
files quarterly report. To facilitate the match, I include the FR Y-9LP and FR Y-9SP fillings for bank holding
companies. However, since these non-consolidated parent banks only report semiannually, I do not include them
when computing the Z-score distributions.
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Figure 9. Distressed Acquisitions Rate. This figure plots the quarterly (asset-weighted)
distressed acquisition rate for 1978-2013 (left) and compares the distressed acquisition rate to
the total acquisition rate (right). Shaded bars indicate NBER recessions.

asset-weighted acquisition rate displays significant spikes.41 Panel 9(b) compares the distressed

acquisition rate to the total acquisition rate. The insignificant comovement between the two

series shows that variations in distressed acquisitions are unlikely driven by merger waves.

6.2 Model Predictions

As shown in the comparative statics in Section 4.2, an increase in dispersion (together with

a decrease in average Z-score) is associated with higher systemic risk, more liquidations, more

(excess) distress links through acquisitions, and fewer risk-sharing links. Next, I illustrate that

patterns in the data provide suggestive evidence for these model-predicted relations.

6.2.1 Aggregate Indicators

The goal is to provide aggregate level evidence that distress dispersion is indicative of economic

activity and financial stability. To measure macroeconomic activity, I use the Chicago Fed

National Activity Index (CFNAI),42 which is adopted in Giglio, Kelly, and Pruitt (2015) to

evaluate the predictive power of various systemic risk measures. As an indicator for systemic

risk, I take the Chicago Fed’s National Financial Conditions Index (NFCI).

41Some spikes reach as high as 3%, while the plots are trimmed at 2.5%. The spikes include one in the 2nd
quarter of 1992 due to the acquisition of Security Pacific, one in 2007-2008 mostly due to the acquisitions of Lasalle
bank (10/01/2007), Countrywide (01/11/2008), National City (10/24/2008), and Wachovia (12/31/2008).

42The CFNAI is designed to gauge overall economic activity and related inflationary pressure. It includes
the following subcomponents: production and income (P&I), sales, orders, and inventories (SO&I), employment,
unemployment, and hours (EU&H), and personal consumption and housing (C&H).
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Figure 10. Bank Failure Rates. This figure plots the quarterly failure rate and asset-
weighted failure rate of commercial banks and savings institutions for 1978-2013. Shaded bars
indicate NBER recession dates.

I measure the failure rates of financial institutions to proxy for liquidations. The sample are

aggregated from all failures of commercial banks and savings institutions in 1976-2013 based on

the FDIC Failure and Assistance Transaction Reports, as well as the bank holding companies

failures from the Chicago Fed Mergers and Acquisitions dataset (with Termination Code =

failure). In total, I obtain 3,473 failures with an asset value of 1.84 trillion in 2010 dollars.

I construct the quarterly failure rates (numbers of failures over the numbers of total financial

institutions) as well as the failure rates weighted by the failing institution’s asset size. As

depicted in Figure 10, failure rates are strongly countercyclical: the majority of bank failures

took place during the Savings and Loan crisis and the 2007-2009 crisis.

Regarding the linkage composition, the model predicts that non-distressed firms that do

not engage in distressed acquisitions withdraw from risk-sharing contracts as a consequence of

network externalities. Direct evidence on this prediction would be obtained if full information

on individual level linkage were available. Instead, I consider the lending and interbank lending

behavior of small to medium-sized commercial banks as proxies for risk-sharing contracts since

these institutions are more likely to be the non-distressed and non-acquirer firms in the model.

In particular, using data from the Fed’s H.8 release, I construct the fractions of bank credit and

Fed funds and reverse Repos with banks over total assets for small to medium-sized (beyond top

25) commercial banks.
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Table 1. Summary Statistics and Univariate Correlations

Mean StDev Sacf Correlations w/ log Z-score

Mean Dispersion

Mean of Log Z-score 1.00 0.03 0.90

Dispersion of Log Z-score 1.00 0.22 0.97 -0.13

A. Economic activity and systemic risk

Chicago Fed National Activity Index (CFNAI) -0.11 0.72 0.80 -0.03 -0.30**

National Financial Conditions Index (NFCI) -0.34 0.54 0.84 -0.25** 0.37***

B. Bank failures

Failure Rate (%) 0.18 0.25 0.72 -0.60*** 0.45***

Asset-weighted Failure Rate (%) 0.11 0.25 0.34 -0.38*** 0.17*

C. Distressed acquisitions

Distressed Acquisition Rate (%) 0.21 0.09 0.64 -0.41*** 0.60***

Distressed over Total Acquisition Rate 0.19 0.13 0.71 -0.44*** 0.68***

D. Lending and interbank lending

Small Comm. Bk Credit over Assets 0.88 0.02 0.94 -0.26** -0.73***

Small Comm. Bk Fed Funds Loan over Assets 0.02 0.01 0.85 -0.09 -0.53***

Notes: This table reports summary statistics for the quarterly cross-sectional mean and dispersion of log Z-score,
indicators for economic activity and systemic risk (A), bank failures (B), distressed acquisitions (C), and lending
and interbank lending (D). Group A series are from FRED. Series in groups B and C are aggregated based on
data from the FDIC and the Chicago Fed. Group D series are constructed from the Fed’s Z.1 and H.8 release.
Data availability on bank holding companies restricts the analysis to 1986-2013. Sacf is the first-order sample
autocorrelation coefficient. The last two columns report the correlation coefficients between cross-sectional mean
and dispersion of log Z-score and each series in groups A-D. *, **, *** denote statistical significance at the 5%,
1%, and 0.1% level.

6.2.2 Univariate Correlations

Table 1 provides the summary statistics of the above series as well as their univariate correla-

tion coefficients with the mean and dispersion of financials’ log Z-scores. Both the mean and

dispersion series are rescaled such that the two series are centered around one. The distress

dispersion displays higher variation over time and does not significantly correlate with the mean

of distress, thereby corroborating the argument that dispersion provides new information not

captured by the mean.

Well aligned with the theoretical findings, dispersion series correlate negatively with the

economic activity index CFNAI and positively with the systemic risk index NFCI. In other words,

high dispersions relate to bad economic times and low financial stability. As the model predicts,

the failure rates and distressed acquisition rates are significantly higher when the dispersion
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is higher or when the average Z-score is lower. Additionally, the distressed acquisitions as a

fraction of total acquisitions correlate even more significantly with the log Z-score moments,

ruling out the possibility that the variations in distressed acquisitions are due to changes in

total acquisition rates. These patterns all corroborate that high dispersion is associated with

more distressed acquisitions and consequently, more failures. Last but not least, indicators for

lending and interbank lending have negatively significant correlation with dispersion. Small and

medium-sized commercial banks reduce interbank lending and exposures with other banks in

the Fed Funds and Reverse Repos market, with significance at the 0.001 level. This finding

supports that certain risk-sharing contracts terminate as dispersion increases.

6.2.3 Predictive Regressions

Evidence from the univariate correlations provides a strong indication that the distress dispersion

comoves with aggregate indicators. However, contemporaneous correlations do not necessarily

imply that the distress dispersion is able to forecast systemic risk. Hence, the next goal is to

evaluate whether the distress dispersion has predictive power for future aggregate indicators by

providing additional information beyond what is contained in the average distress and existing

systemic risk measures.

To this end, I run forecasting regressions of the above introduced aggregate indicators on

the dispersion and mean of log Z-score controlling for moments including the term spread used

in Giglio, Kelly, and Pruitt (2015), the leverage of both financial business and the security

broker-dealers as in Adrian, Etula, and Muir (2014), and the growth rate of non-financial cor-

porate liability as a measure of aggregate credit creation. The forecasting horizons range from

one to four quarters and the data cover the years of 1986-2013. To overcome correlation and

autocorrelations in the time series, I calculate Newey-West standard errors.

Table 2 reports the coefficient estimates on the dispersion and mean of log Z-score, the values

of R2 when I run the regressions with and without the dispersion series. The regression results

echo the findings from the univariate correlations and indicate striking predictive power of the

dispersion series to forecast economic activity and systemic risk, failures, distressed acquisitions,

and interbank lending. The predictive power is evidenced by both the economic significance

of the regression coefficients and the differences in the R2s with and without dispersion in
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Table 2. Predictive Regressions using Distress Dispersion

Quarters 1 2 3 4 1 2 3 4

Forecasting A. CFNAI NFCI

Dispersion -2.09*** -4.04*** -5.85*** -7.50*** 1.52** 2.77** 3.83** 4.72**

Mean 2.75 6.74 8.66 7.92 -8.95*** -17.80*** -25.73*** -32.32***

R2 44.85 52.03 54.05 52.48 53.22 53.40 52.24 50.56

R2 w/o disp 28.15 34.78 36.47 34.74 37.54 39.28 39.42 38.86

Forecasting B. Failure Rate(%) Asset-weighted Failure Rate(%)

Dispersion 0.53*** 1.03*** 1.56*** 2.07*** 0.24* 0.48* 0.77* 1.04*

Mean -3.81*** -7.91*** -12.21*** -17.12*** -2.68** -5.41** -7.92** -11.29**

R2 58.98 68.10 70.03 71.31 16.97 26.79 32.53 37.64

R2 w/o disp 50.16 58.46 59.91 60.99 11.07 18.68 22.29 26.14

Forecasting C. Acquisition Rate(%) Distressed over Total Acquisition Rate

Dispersion 0.16* 0.33* 0.50* 0.68* 0.29*** 0.63*** 1.00*** 1.34***

Mean -1.45** -2.66** -3.81** -4.43** -1.19* -2.16* -3.24** -3.90*

R2 47.31 57.25 64.90 67.04 53.90 63.06 72.20 75.26

R2 w/o disp 41.24 49.52 56.12 57.55 43.64 48.92 54.41 56.11

Forecasting D. Sml Bk Credit over Assets Sml Bk Fed Funds over Assets

Dispersion -0.04** -0.08** -0.12** -0.16** -0.01* -0.02* -0.03** -0.04***

Mean -0.02 -0.01 -0.01 -0.04 0.05 0.08 0.09 0.07

R2 69.85 70.68 71.18 71.44 57.07 63.49 64.71 63.93

R2 w/o disp 62.69 63.39 63.83 63.76 54.04 59.60 59.48 56.94

Notes: This table summarizes the ability of distress dispersion to forecast future economic activity, systemic risk,
failure rates, distressed acquisition rates, and bank lending behavior. Aggregate indicators in groups A-D are re-
gressed respectively on the cross-sectional dispersion and mean of log Z-score controlling for the term spread, the
leverage of financial business and security broker-dealers, and the growth rate of real non-financial corporate lia-
bility. Forecasting horizons range from one to four quarters and the data cover the years of 1986-2013. The table
reports the regression coefficients of the dispersion and mean of log Z-score, the R2, as well as the R2 when the
regressions are run without the dispersion series. *, **, *** denote statistical significance (based on Newey-West
standard errors) at the 5%, 1%, and 0.1% level.

the regressors. For example, the estimates in the forecasting regression of CFNAI imply that

(holding the mean fixed) a one-standard-deviation increase in Dispersion (=0.22) relates to a

0.46 (= 0.22× 2.09) decrease in CFNAI. Notably, the national activity index CFNAI, the credit

and loans and the interbank lending of small and medium-sized commercial banks all respond

negatively to an increase in distress dispersion, but not to changes in the mean of distress.

Overall, these results paint a clear picture: the second moment of the cross-sectional distress

distribution conveys new information about future activities in the financial sector in terms of
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systemic risk, failures, acquisitions, as well as interbank lending behavior.

7 Conclusion

Given the importance of financial interconnectedness, policies on financial stability and distress

resolution should not analyze institutions in isolation. This paper develops a network formation

model to highlight a novel channel of systemic risk due to externalities via financial links.

Adding to the recent literature on financial network formation, this paper embeds firm

heterogeneity in financial distress and examines how the linkage formation affects efficiency and

systemic risk. I have shown that, when firms display high distress dispersion, the equilibrium

features inefficiency in network composition: there are too many links with the distressed firms

and too few risk-sharing links among liquid firms. The reason is that the relatively more liquid

firms have incentives to connect with distressed firms for profit while shifting risks away to their

direct and indirect counterparties via the links. Particularly, these liquid firms fail to internalize

the negative externalities when prices in the bilateral contracts cannot be contingent on the

overall network structure. The inefficient link with the distressed firm not only generates risks

of contagion but also crowd out valuable risk-sharing links, thereby increasing systemic risk.

Notably, this inefficiency is shown to be more severe when institutions are more dispersed in

financial distress.

While detailed data on the precise linkages among financial institutions are yet to be col-

lected,43 this paper draws a relation between the degree of network inefficiency and the cross-

sectional distribution of fundamentals, thus contributing to the measurement of systemic risk.

The test can be extended along the lines of Giglio, Kelly, and Pruitt (2015) by comparing

the distress dispersion to existing systemic risk measures such as CoVaR (Brunnermeier and

Adrian (2011)) and Marginal and Systemic Expected Shortfall (Acharya, Pedersen, Philippon,

and Richardson (2010)). Additionally, my model predicts that links between firms with different

distress levels respond differently to an increase in dispersion. The qualitative predictions on

network composition can be further tested with possibly better data access going forward.

My model provides new insights on policies for financial stability. Regulators should elim-

43For current challenges in measuring linkages and systemic risk, see for example Bisias, Flood, Lo, and Valavanis
(2012), Hansen (2013), and Yellen (2013).
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inate network inefficiencies by overseeing the composition of financial linkages. The links with

distressed firms in the model can be interpreted as acquisitions. In such context, regulators

can restore efficiency by supervising the acquisitions of distressed firms and adopt resolution

methods such as purchase and assumption (P&A) in case of failure.
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8 Appendix: Proofs and Additional Lemmas

Proof of Lemma 1

Before showing the properties of the asset composition matrix lim
K→∞

LK , we first analyze features

of the matrix L.

Claim 1 The linkage matrix L has all real eigenvalues: the largest is 1 and all others lie within
the unit circle.

Proof L is symmetric so all its eigenvalues are real. L is doubly stochastic, so L×1N×1 = 1N×1

and thus λ = 1 is its eigenvalue with eigenvector 1N×1. Suppose for contradiction that there
exists an eigenvalue λ > 1. Then there exists a non-zero vector x such that Lx = λx > x.
Given the rows of L are non-negative and sum to 1, each element of vector Lx is a convex
combination of the components of x. This implies that max[Lx] ≤ max[x], which contradicts
with max[λx] > max[x]. Hence all eigenvalues cannot exceed 1 in absolute value.

Lastly, we show that λ = −1 is not an eigenvalue of L. It is equivalent to show that the
matrix L + I is non-singular. All the off-diagonal elements of L + I are within 0 and 1, and
all the diagonal elements are within 1 and 2. The largest element for any column or row is on
the diagonal, so there are no columns or rows that are zero or linearly dependent. Therefore
det(L+ I) > 0, and λ = −1 cannot be an eigenvalue. This concludes the proof of Claim 1. �

Next we apply Claim 1 to show the limiting properties of L∞ = lim
K→∞

LK . Given L is

a doubly stochastic matrix, L × 1N×1 = 1N×1, L> × 1N×1 = 1N×1. Then LK × 1N×1 =

LK−1 × L × 1N×1 = LK−1 × 1N×1 = 1N×1. Similarly L>
K × 1N×1 = 1N×1, so L∞ is also a

doubly stochastic matrix.
Since the eigenvalues of L, denoted by {λ1, λ2, ..., λM}, are real, there exists an orthogonal

matrix Q with Q′ = Q−1 such that L∞ = QΛQ−1, Λ = diag(λ1, λ2, ..., λM ) and the columns of
Q are eigenvectors of unit length corresponding to λ1, λ2,..., λM . Without loss of generality, we
rank the eigenvalues λi ≥ λi+1 , then

L∞ = QΛQ−1...QΛQ−1 = QΛ∞Q−1 = Q


λ∞1 0 .. 0
0 λ∞2 .. ..
.. .. .. ..
0 .. .. λ∞M

Q−1 = Q


1 0 .. 0
0 0 .. ..
.. .. .. ..
0 .. .. 0

Q−1,
where the last step follows from λ1 = 1 and λi < 1,∀i 6= 1. Let the first column of Q, which is
the unit length eigenvector corresponding to λ1 = 1 be x1, then

L∞x1 = x1, x>1 x1 = 1.

Since each entry of L∞ is positive, the above relations imply that the unit length eigenvectors
satisfy x11 = x12 = .. = x1M = 1√

M
. We have

L∞ = Q

 1 0 .. 0
0 0 .. ..
.. .. .. ..
0 .. .. 0

Q−1 =

 x2
11 x11x12 .. x11x1M

x12x11 x2
12 .. ..

.. .. .. ..
x1Mx11 .. .. x2

1M

 =


1
M

1
M .. 1

M
1
M

1
M .. ..

.. .. .. ..
1
M .. .. 1

M

 .
Hence L∞ coincides with complete risk-sharing regardless of the initial entries of Lij in L.
Q.E.D.
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Proof of Proposition 1

We start by analyzing the risk-sharing decision of N = 2.

Lemma 2 The risk-sharing surplus for N = 2 is positive if and only if z̄ > 0; when z̄ > 0, the
risk-sharing surplus increases monotonically with δ.

Proof The total liquidation costs for two separate firms {z1, z2} = {z̄+1
2δ, z̄−1

2δ} is Pr (a1 < 1) c+

Pr (a2 < 1) c = Φ
[
−z̄ − 1

2δ
]
c + Φ

[
−z̄ + 1

2δ
]
c. The total liquidation costs when the two firms

fully share risk is 2Φ
[
−
√

2z̄
]
c. The bilateral risk-sharing surplus is the difference between

the above two, Φ(−z̄ − 1
2δ)c + Φ(−z̄ + 1

2δ)c − 2Φ(−
√

2z̄)c. Function Φ(x) monotonically in-

creases with respect to x and is convex ∀x < 0. Hence, z̄ > 0, δ > 0 ⇐⇒ Φ
[
−z̄ − 1

2δ
]
c +

Φ
[
−z̄ + 1

2δ
]
c > 2Φ [−z̄] c > 2Φ

[
−
√

2z̄
]
c. When z̄ > 0, δ > 0, the first derivative with respect to

δ is −1
2Φ′

[
−z̄ − 1

2δ
]
c+ 1

2Φ′
[
−z̄ + 1

2δ
]
c = c

2

(
Φ′
[
−z̄ + 1

2δ
]
− Φ′

[
−z̄ − 1

2δ
])
> 0. This concludes

the proof of Lemma 2. �

Next we analyze the optimal risk-sharing policy for N ≥ 3. Total default probability in a
full risk-sharing network with all N firms is

N∑
i=1

Pr(hi < 1) = NΦ[
√
N(−z̄)]. (21)

Total default probability when the first N − k firms fully share risk and firms N − k + 1 to N
each stays separate is

N−k∑
1

Pr(hi < 1)+

N∑
N−k+1

Pr(ai < 1) = (N−k)Φ

[√
N − k(−z̄ − N − k

2
δ)

]
+

N∑
N−k+1

Φ

[
−z̄ − N + 1− 2i

2
δ

]
.

(22)

Take the limit when δ → ∞, equations (21) and (22) become respectively NΦ
[
−
√
Nz̄
]

and

k. This shows that when δ is very large, full risk-sharing is optimal with high values of z̄, and
isolating firm N is optimal with low values of z̄.

Next we focus on the regions when the tradeoff is between full risk-sharing and isolating
firm N . Equating (21) and (22) for k = 1 defines a cutoff function δ1(z̄). Applying the implicit

function theorem, the curve is well-defined for z̄ < z̄1 and ∂δ1(z̄)
∂z̄ ≥ 0. ∀z̄ ≥ z̄1 and ∀δ > 0,∑N

i=1 Pr(hi < 1) <
∑N−1

i=1 Pr(hi < 1) + Pr(aN < 1), so full risk-sharing is optimal.
Equating (22) for k = 1 and k = 2 gives the curve δ2(z̄) which divides the regions between

optimally isolating firm N only and isolating both firms N − 1 and N . We can show that ∃z̄2 so
that z̄(δ2) < z̄2, i.e. ∀z̄ > z̄2, isolating firm N is always preferred to isolating two firms. Q.E.D.

Figure 11. Optimal Network for N = 6, 7, 8. The white, blue, yellow and red regions
indicate respectively isolating 0,1,2,3 firms.
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Proof of Proposition 2

It is equivalent to show that: in region (z̄ > z̄1, δ < δ1(z̄)), there exist bilateral prices that
decentralize L∗ = [4 − 1 − 2 − 3]; in region (z̄ ∈ [z̄2, z̄1], δ > δ1(z̄)), the stable network is Le =
[4− 1− 2− 3] and there do not exist bilateral prices that decentralize L∗ = [1− 2− 3, 4].

In what follows, denote V̄ L
i the value of firm i in network L before paying prices to coun-

terparties, V L
i the value of firm i in network L under contingent bilateral prices, and V a

i
the autarky value of firm i without any linkages. The bilateral contingent prices with local
contingency are denoted as follows, (p41 − p14)|L12=0, (p41 − p14)|L12=l̄ , (p21 − p12)|L14=L23=0,

(p21 − p12)|L14=0,L23=l̄, (p21 − p12)|L14=l̄,L23=0, (p21 − p12)|L14=L23=l̄, (p32 − p23)|L12=0, (p32 − p23)|L12=l̄.

In a 2-firm component, reservation prices are paid so (p41 − p14)|L12=0 = V a
1 −V a

4 , (p32 − p23)L12=0 =

V a
2 − V a

3 , (p21 − p12)|L14=L23=0 = V a
1 − V a

2 .

Case I: In region (z̄ > z̄1, δ < δ1(z̄)), L∗ = [4−1−2−3] and
∑4

1 V̄
4−1−2−3
i ≥∑3

1 V̄
1−2−3
i +V a

4 .
In order to decentralize the full risk sharing network, prices satisfy

V 4123
1 = V̄ 4123

1 + l̄ (p21 − p12)|L14=L23=l̄ + l̄ (p41 − p14)|L12=l̄ ≥ max[V a
1 , V

14
1 , V 123

1 ] (23)

V 4123
2 = V̄ 4123

2 − l̄ (p21 − p12)|L14=L23=l̄ + l̄ (p32 − p23)|L12=l̄ ≥ max[V 23
2 , V a

2 , V
234

2 ] (24)

V 4123
3 = V̄ 4123

3 − l̄ (p32 − p23)|L12=l̄ ≥ max[V a
3 , V

34
3 ] (25)

V 4123
4 = V̄ 4123

4 − l̄ (p41 − p14)|L12=l̄ ≥ max[V a
4 , V

34
4 ] (26)

(25) and (26) binding give (p32 − p23)|L12=l̄ and (p41 − p14)|L12=l̄. Plugging these prices into

the binding equation in (24) (and V 23
2 = max[V 23

2 , V a
2 , V

234
2 ]) gives (p21 − p12)|L14=L23=l̄. As a

result, V 4123
1 =

∑4
1 V̄

4123
i − V̄ 23

2 − l̄ (V a
2 − V a

3 )− V a
3 − V a

4 , where V̄ 23
2 + l̄ (V a

2 − V a
3 ) is precisely

the outside option of firm 2. Simple algebra gives V 4123
1 > max[V a

1 , V
14

1 , V 123
1 ]. This shows that

paying the premium (p21 − p12)L14=L23=l̄ to prevent 2 from withdrawing is always a dominating
strategy for firm 1 in this region. Therefore, the equilibrium replicates the optimal connection
Le = L∗ = [4− 1− 2− 3].

Case II: In region (z̄ ∈ [z̄2, z̄1], δ > δ1(z̄)), L∗ = [1−2−3, 4] and
∑4

1 V̄
4−1−2−3
i <

∑3
1 V̄

1−2−3
i +

V a
4 . To decentralize L∗ = [1−2−3, 4], we require that firm 2 transfer premium l̄ (p21 − p12)L14=0,L23=l̄,

to prevent 1 from linking with 4. Suppose such prices exist, we have

V 123
1 = V̄ 123

1 + l̄ (p21 − p12)L14=0,L23=l̄ ≥ V 4123
1 ; (27)

V 123
2 = V̄ 123

2 − l̄ (p21 − p12)L14=0,L23=l̄ + l̄ (p32 − p23)L12=l̄ ≥ V 4123
2 ; (28)

Given (27) and (28), V 123
1 +V 123

2 = V̄ 123
1 + V̄ 123

2 + l̄ (p32 − p23)L12=l̄ = V̄ 123
1 + V̄ 123

2 + V̄ 4123
3 −V a

3 .

From analysis in Case I above, V 4123
1 + V 4123

2 =
∑4

1 V̄
4123
i − V a

3 − V a
4 .

Next we show that V 123
1 + V 123

2 < V 4123
1 + V 4123

2 hence there do not exist bilateral prices

that satisfy the inequalities in (27) and (28). V 123
1 + V 123

2 −
(
V 4123

1 + V 4123
2

)
=
∑3

1 V̄
123
i +

V a
4 −

(
V̄ 123

3 − V̄ 4123
3

)
−∑4

1 V̄
4123
i = −1

2δ − Φ
[
−z̄ + 3

2δ
]
− 2Φ

[
−
√

3z̄ −
√

3
2 δ
]

+ 3Φ [−2z̄]. When

evaluated at δ = 0, the function is negative and has negative derivatives ∀δ > 0, z̄ > 0. Hence
firm 2 is worse off providing premium price.

Notice that in this region, V 24
2 < V a

2 < V 23
2 ; hence, 2 does not connect with 4 unless they

are connected with 1. However, if the network is [4− 2− 1] or [4− 2− 1− 3], 1 is then better
off deleting 1− 2 link, rending the 2− 4 link not stable. In sum, firm 2 does not have incentive
to link with 4 to compete against 1 for profit.

We further check if any firm has incentive to deviate from Le = [4 − 1 − 2 − 3] and hence
confirm Le is stable. This way, we confirm that the equilibrium network fails to replicate the
optimal connection L∗ = [4, 1− 2− 3]. Q.E.D.
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Proof of Proposition 3

It is equivalent to show that (1) in region (z̄ > z̄1, δ ≥ 0 ∪ z̄ ∈ [z̄2, z̄1] , δ < δ1(z̄)), there exist
bilateral prices that decentralize L∗ = [5 − 1 − 2 − 3 − 4]; (2) in region (z̄ ∈ [z̄2, z̄1], δ > δ1(z̄)),
the optimal network L∗ = [1− 2− 3− 4, 5] cannot be decentralized. Instead, the stable network
is Le = [5 − 1 − 2 − 3 − 4] when (z̄ ∈ [z̄2, z̄1], δ ∈ [δ1(z̄), η(z̄)]), and Le = [5 − 1, 2 − 3, 4] when
(z̄ ∈ [z̄2, z̄1], δ > η(z̄)).

We follow the same notation as in the proof of proposition 2. The bilateral contingent prices
with local contingency are denoted as follows, (p51 − p15)|L12=0, (p51 − p15)|L12=l̄; (p21 − p12)|L15=L23=0 ,

(p21 − p12)|L15=0,L23=l̄, (p21 − p12)|L15=l̄,L23=0 , (p21 − p12)|L15=L23=l̄; (p32 − p23)|L12=L43=0 , (p32 − p23)|L12=0,L34=l̄,

(p32 − p23)|L12=l̄,L34=0 , (p32 − p23)|L12=L34=l̄; (p43 − p34)|L23=0 , (p43 − p34)|L23=l̄ .

(1) In region (z̄ > z̄1, δ ≥ 0 ∪ z̄ ∈ [z̄2, z̄1] , δ < δ1(z̄)), L∗ = [5−1−2−3−4] and
∑5

1 V̄
5−1−2−3−4
i ≥∑4

1 V̄
1−2−3−4
i + V a

5 . To decentralize the full risk sharing network, prices satisfy

V 51234
1 = V̄ 51234

1 + l̄ (p21 − p12)|L15=L23=l̄ + l̄ (p51 − p15)|L12=l̄ (29)

V 51234
2 = V̄ 51234

2 − l̄ (p21 − p12)|L15=L23=l̄ + l̄ (p32 − p23)|L12=L34=l̄ ≥ max
{
V 234

2 , V 23
2 , V 2

a

}
(30)

V 51234
3 = V̄ 51234

3 − l̄ (p32 − p23)|L12=L34=l̄ + l̄ (p43 − p34)|L23=l̄ ≥ max
{
V 34

3 , V a
3

}
(31)

V 51234
4 = V̄ 51234

4 − l̄ (p43 − p34)|L23=l̄ ≥ max
{
V 34

4 , V a
4

}
(32)

V 51234
5 = V̄ 51234

5 − l̄ (p51 − p15)|L12=l̄ ≥ V a
5 (33)

Within each pair, reservation prices are paid so (p51 − p15)|L12=0 = V a
1 −V a

5 , (p21 − p12)|L15=L23=0 =

V a
1 − V a

2 , (p32 − p23)|L12=L43=0 = V a
2 − V a

3 , (p43 − p34)|L23=0 = V a
3 − V a

4 . (32) and (33) binding

give l̄ (p43 − p34)|L23=l̄ and l̄ (p51 − p15)|L12=l̄. Plugging these prices into the binding equation in

(31) gives l̄ (p32 − p23)|L12=L34=l̄.

Next we consider the outside option of firm 2, max
{
V 234

2 , V 23
2 , V 2

a

}
. Plugging into (30) we

have,

l̄ (p21 − p12)|L15=L23=l̄ =

4∑
2

V̄ 51234
i −max

{
V 34

4 , V a
4

}
−max

{
V a

3 , V
34

3

}
−max

{
V 234

2 , V 23
2 , V 2

a

}
.

where V 234
2 = V̄ 234

2 + l̄ (p32 − p23)|L12=0,L34=l̄, and (p32 − p23)|L12=0,L34=l̄ satisfies V 234
3 = V̄ 234

3 −
l̄ (p32 − p23)|L12=0,L34=l̄+l̄ (p43 − p34)|L23=l̄ ≥ max

{
V 34

3 , V a
3

}
. Thus V 51234

1 = V̄ 51234
1 +

∑4
2 V̄

51234
i −

V a
4 −max

{
V a

3 , V
34

3

}
−max

{
V 234

2 , V 23
2 , V 2

a

}
+V̄ 51234

5 −V a
5 . Simple algebra gives that V 51234

1 > V 51
1

and V 51234
1 > V 1234

1 in region (1). This shows that paying the premium l̄ (p21 − p12)|L15=L23=l̄ to

prevent 2 from withdrawing is always a dominating strategy for firm 1 in region (1), thus the
equilibrium replicates the optimal connection Le = L∗ = [5− 1− 2− 3− 4].

(2) In region (z̄ ∈ [z̄2, z̄1], δ > δ1(z̄)), L∗ = [1−2−3−4, 5] and
∑5

1 V̄
5−1−2−3−4
i <

∑4
1 V̄

1−2−3−4
i +

V a
5 . To decentralize L∗, we require that firm 2 transfer premium l̄ (p21 − p12)L15=0,L23=l̄ to pre-

vent 1 from linking with 5. Suppose such prices exist, there must be

V 1234
1 = V̄ 1234

1 + l̄ (p21 − p12)L15=0,L23=l̄ ≥ V 51234
1 ; (34)

V 1234
2 = V̄ 1234

2 − l̄ (p21 − p12)L15=0,L23=l̄ + l̄ (p32 − p23)|L12=L34=l̄ ≥ V 51234
2 ; (35)

However, simple algebra shows that V 1234
1 +V 1234

2 < V 51234
1 +V 51234

2 , ∀z̄,∀δ. Hence there do not
exist bilateral prices that satisfy (34) and (35), and thus the equilibrium fails to replicate the
optimal connection L∗ = [5, 1−2−3−4]. Next we analyze which if network [5−1−2−3−4] is
pairwise stable. Potential deviations are [5, 1− 2− 3− 4], [5− 1− 2− 3, 4], [5− 1− 2, 3, 4], [5−
1, 2, 3, 4]. (The rest deviations are easily eliminated.) In the entire region (z̄ ∈ [z̄2, z̄1], δ > δ1(z̄)),
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we can easily eliminate [5, 1−2−3−4], [5−1−2−3, 4], [5−1−2, 3, 4]. However, this statement
is not true for [5− 1, 2, 3, 4].

In region (z̄ ∈ [z̄2, z̄1], δ ∈ [δ1(z̄), η(z̄)]), where the cutoff function δ = η(z̄) satisfies V 51234
1 =

V 51
1 , we can show that V 51234

1 ≥ V 51
1 , so equilibrium network is Le = [5− 1− 2− 3− 4].

In region (z̄ ∈ [z̄2, z̄1], δ > η(z̄)), we can show that V 51
1 ≥ V 51234

1 , so equilibrium network is
Le = [5−1, 2−3, 4]. Similar logic applies to other cases when the starting chain is [5−1−2−3−4],
[5− 1− 3− 2− 4], {5− 1− 4− 3− 2}, [5− 1− 4− 2− 3]. Detailed analysis on each of the cases
is available upon request. Q.E.D.

Proof of Proposition 4

I prove this proposition in a four-firm network setting. The case of a five-firm network can be
shown in a similar fashion, and the results are demonstrated in Figure 7 in subsection 4.2.

The inefficiency occurs in the region (z̄ ∈ [1, z̄1], δ > δ1(z̄)), where L∗ = [4, 1 − 2 − 3] and
Le = [4− 1− 2− 3]. The value loss equals the difference of the total firm values at L∗ compared
to Le,

∆V(N=4) = 4Φ [2(−z̄)]− 3Φ

[√
3(−z̄ − 1

2
δ)

]
− Φ

[
−z̄ +

3

2
δ

]
.

The value loss has the following properties. First, directly from proposition 2, ∆V > 0, ∀z̄ ∈
[1, z̄1], δ > δ1(z̄). Second,

∂∆V

∂δ
=

3

2

1√
2π

(√
3e−

3

2
(−z̄− 1

2
δ)2 − e− 1

2
(−z̄+ 3

2
δ)2
)
> 0, ∀z̄ ∈ [0, z̄1], δ > δ1(z̄).

Third, the value loss decreases with z̄,

∂∆V

∂z̄
= −8Φ′ [2(−z̄)] + 3

√
3Φ′

[√
3(−z̄ − 1

2
δ)

]
+ Φ′

[
−z̄ +

3

2
δ

]
< 0.

Finally, the cross-derivative of value loss with respect to z̄ and δ is negative

∂2∆V

∂δ∂z̄
=

3

2
Φ′′
[
−z̄ +

3

2
δ

]
− 9

2
Φ′′
[√

3(−z̄ − 1

2
δ)

]
< 0.

For excess systemic risk, in region (z̄ ∈ [1, z̄1], δ > δ1(z̄)),

∆ Prsys = Φ [−2z̄]− Φ
[
−
√

3(z̄ + 1
2δ)
]
.

First, ∀z̄ ∈ [1, z̄1], δ > δ1(z̄), ∆ Prsys > 0. Second, the excess systemic risk increases with δ in
the efficiency region.

∂∆ Prsys
∂δ

=
1

2

√
3

2π
e−

3

8
(2z̄+δ)2

> 0.

Third, it decreases with z̄ and decreases faster when δ is larger,

∂∆ Prsys
∂z̄

=

√
3e−

3

8
(2z̄+δ)2 − 2e−2z̄2

√
2π

< 0, ∀z̄ ∈ [0, z̄1], δ > δ1(z̄)

∂2∆ Prsys
∂δ∂z̄

= −3

4

√
3

2π
e−

3

8
(2z̄+δ)2

(2z̄ + δ) < 0.

Hence we have shown the properties of the value loss and excess systemic risk. Q.E.D.
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Proof of Proposition 5

I show that the acquisition tax τ =
∑N−1

3 V̄ 12...N−1
i −∑N−1

3 V̄ 12...N
i aligns the social incentive

for acquisition with that of firm 1. In a N-firm chain network, when all firms are connected, we
have for firms 1 to N respectively,

V 12...N
1 (τ) = V̄ 12...N

1 + l̄(p21 − p12)|L1N=L23=l̄ + l̄(pN1 − p1N )|L12=l̄ − τ ;

V 12...N
2 = V̄ 12...N

2 − l̄(p21 − p12)|L1N=L23=l̄ + l̄(p32 − p23)|L12=L34=l̄ ≥ V out
2 ;

...

V 12...N
N = V̄ 12...N

N − l̄(pN1 − p1N )|L12=l̄ ≥ V out
N ,

where V out
i denote the outside options for firm i. Combining the above equations, we have

V 12...N
1 =

∑N
1 V̄ 12...N

i −∑N
2 V out

i − τ .
When firm N is isolated, we have

V 12...N−1
1 = V̄ 12...N−1

1 + l̄(p21 − p12)|L1N=0,L23=l̄;

V 12...N−1
2 = V̄ 12...N−1

2 − l̄(p21 − p12)|L1N=0,L23=l̄ + l̄(p32 − p23)|L12=L34=l̄ ≥ V out
2 .

...

Similarly, we have V 12...N−1
1 = V̄ 12...N−1

1 +V̄ 12...N−1
2 +

∑N−1
3 V̄ 12...N

i −∑N−1
2 V out

i . Firm 1 chooses

not to link with N if and only if V 12...N
1 (τ) is lower than the value of not linking. Plugging in

the values and rearranging terms, we have

V 12...N
1 (τ) ≤ V 12...N−1

1 ⇐⇒
N∑
1

V̄ 12...N
i ≤

N−1∑
1

V̄ 12...N−1
i + V a

N ,

which is precisely when linking N into the network is inefficient. This further gives that

L∗NN = 1 ⇐⇒ V 12...N
1 (τ) ≤ V 12...N−1

1 ⇐⇒ LeNN (τ) = 1.

Given V̄ 12...N
1 > V a

N always holds and when (N − 1)V̄ 12...N−1
i + V a

N ≥ NV̄ 12...N
1 , we must have

V̄ 12...N−1
i > V̄ 12...N

1 , i.e.,

L∗NN = 1 ⇐⇒ τ =

N−1∑
3

V̄ 12...N−1
i −

N−1∑
3

V̄ 12...N
i = (N − 3)

(
V̄ 12...N−1
i − V̄ 12...N

1

)
> 0.

Plug in the values, we see that τ is a function of {N, z̄, δ}. To obtain the expression of τ ,

τ = (N−3)
(
V̄ 12...N−1
i − V̄ 12...N

1

)
= (N−3)

(
1

2
δσ + Φ

[√
N (−z̄)

]
c− Φ

[√
N − 1(−z̄ − 1

2
δ)

]
c

)
.

Further, τ decreases with mean z̄ and increases with dispersion δ. To see this, we take the
derivatives of z̄, δ as follows.

∂τ

∂z̄
=

√
2

π

(
2e−

1

2
(z̄+δ)2 −

√
5e−

5

2
z̄2
)
< 0,

∂τ

∂δ
=

√
2

π
e−

1

2
(2z̄+δ)2

+ 1 > 0.

Further, we take the cross-derivative of z̄ and δ, which gives that ∂2τ
∂δ∂z̄ = −2

√
2
πe
− 1

2
(2z̄+δ)2

(2z̄ +

δ) < 0. Q.E.D.
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Online Appendix to

Distress Dispersion and Systemic Risk in Networks
In this Online Appendix, I provide technical results on the optimal risk sharing allocation, the
full contingent contracts, and a model extension with government interventions. I also provide
additional empirical results.

A Technical Appendix

A.1 Optimal Risk Sharing Allocation

This section provides technical results for subsection 3.1. I show that the asset holdings implied
by the optimal network L∗ are equivalent to if the social planner were to choose asset allocations
directly.

Definition 3 Let H be an asset holding matrix such that firms’ liquid asset holdings are h = Ha.
The optimal asset allocation H∗ is feasible and minimizes total expected liquidation costs,

H∗ = arg min
H

N∑
1

Pr (hi < 1) c, (P2)

subject to the feasibility constraint H× 1N×1 = H> × 1N×1 = 1N×1.

H being a doubly stochastic matrix ensures that no assets are created or lost from asset pooling
and that each firm holds one unit of asset. The following lemma characterizes the optimal asset
allocation.

Lemma 3 If @i with h∗i = ai, then h∗i = 1
N

N∑
j=1

aj ,∀i. If ∃i with h∗i = ai and h∗i−1 6= ai−1, then

h∗j = aj, ∀j ≥ i and h∗j = 1
i−1

i−1∑
k=1

ak, ∀j ≤ i− 1.

Proof Let the number of firms that participate in risk-sharing (hold diversified assets) be M .
The total expected liquidation costs equal

M∑
i=1

Pr(hi ≤ 1) =

M∑
i=1

Φ

−Hiizi −∑j Hijzj√
H2
ii +

∑
j H2

ij

 . (36)

Take the first order condition with respect to Hij ,

∂
∑M

i=1 Pr(hi ≤ 1)

∂Hij
=
∂ Pr(hi ≤ 1)c

∂Hij
+
∂ Pr(hj ≤ 1)c

∂Hji
. (37)

Notice Hii = 1−∑j Hij so the first term equals

∂ Pr(hi ≤ 1)c

∂Hij
= Φ′

−Hiizi −∑j Hijzj√
H2
ii +

∑
j H2

ij

 c×

(zi − zj)
√
H2
ii +

∑
j H2

ij −
(
−Hiizi −

∑
j Hijzj

)(
H2
ii +

∑
j H2

ij

)− 1

2

(Hij −Hii)
H2
ii +

∑
j H2

ij

.
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Similarly, write out symmetric equation for firm j with respect to Hji = Hij , and plug into
equation (37), we have

∂
∑M

i=1 Pr(hi ≤ 1)

∂Hij
|Hii=Hij= 1

M
= 0, ∀i 6= j.

The first order conditions with respect to asset holdings equal zero when each element of H is
evaluated at 1

M , thus achieving the optimal allocation. H∗ij = 1
M indicates full risk-sharing. It

is worth noting that the only condition required for above results is that εi is independently
distributed across firms. So the above result holds if we relabel Φ as a rather general distribution
function. Q.E.D.

Lemma 3 states that if all firms diversify, they each hold the equally weighted asset 1
N

∑N
j=1 aj ;

if there are firms not diversifying, then more distressed firms stay separate and liquid firms diver-
sify holding the equally weighted assets composed of all firms diversifying. As such, the optimal
asset holdings boil down to determining who should diversify.

Recall from Lemma 1, the asset holdings implied by the optimal network lim
K→∞

(L∗)K coin-

cides with full risk-sharing among all connected firms. In this regard, under the infinite iterative
asset swap, the optimal network L∗ in (P1) achieves the best asset allocation matrix H∗ in (P2).
Hence, the network itself does not deviate risk sharing from the optimal outcome.

A.2 Full Contingent Contracts

This section provides the technical results for subsection 3.4. I use an example of N = 4 and
show that a complete set of contracts contingent on the entire network structure decentralizes
the efficient network.

Proposition 6 The efficient network is decentralized by a set of bilateral prices con-
tingent on the entire network structure.

Proof We prove the proposition for N = 4. It is equivalent to show that the bilateral prices
decentralize Le = L∗ = [4− 1− 2− 3] in region (z̄ > z̄1, δ < δ1(z̄)), and Le = L∗ = [1− 2− 3, 4]
in region (z̄ ∈ [z̄2, z̄1], δ > δ1(z̄)). We follow the same notation as in the proof of proposition
2. Different than in Proposition 2, the bilateral prices with contingency on faraway links are
denoted as follows. (Here we only solve for those relevant for the pairwise stability and abstract
from price contingency on L34 as agents have no incentive to form this link.)

(p41 − p14)|L12=L23=0 , (p41 − p14)|L12=l̄,L23=0 , (p41 − p14)|L12=0,L23=l̄ , (p41 − p14)|L12=L23=l̄ ;

(p21 − p12)|L14=L23=0 , (p21 − p12)|L14=0,L23=l̄ , (p21 − p12)|L14=l̄,L23=0 , (p21 − p12)|L14=L23=l̄ ;

(p32 − p23)|L14=L12=0 , (p32 − p23)|L14=0,L12=l̄ , (p32 − p23)|L14=l̄,L12=0 , (p32 − p23)|L14=L12=l̄ .

In a 2-firm component, reservation prices are paid so (p41 − p14)|L12=L23=0 = (p41 − p14)|L12=0,L23=l̄ =

V a
1 − V a

4 , (p21 − p12)|L14=L23=0 = V a
1 − V a

2 , and (p32 − p23)|L14=L12=0 = (p32 − p23)|L14=l̄,L12=0 =

V a
2 − V a

3 .

Case I: In region (z̄ > z̄1, δ < δ1(z̄)), L∗ = [4 − 1 − 2 − 3] and
∑4

1 V̄
4123
i ≥ ∑3

1 V̄
123
i + V a

4 .
In order to decentralize the full risk sharing network, prices satisfy

V 4123
1 = V̄ 4123

1 + l̄ (p21 − p12)|L14=L23=l̄ + (p41 − p14)|L12=L23=l̄ ≥ max[V a
1 , V

14
1 , V 123

1 , V 412
1 ] (38)

V 4123
2 = V̄ 4123

2 − l̄ (p21 − p12)|L14=L23=l̄ + (p32 − p23)|L14=L12=l̄ ≥ max[V 23
2 , V a

2 , V
234

2 ] (39)

V 4123
3 = V̄ 4123

3 − (p32 − p23)|L14=L12=l̄ ≥ max[V a
3 , V

34
3 ] (40)

V 4123
4 = V̄ 4123

4 − (p41 − p14)|L12=L23=l̄ ≥ max[V a
4 , V

34
4 ] (41)
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(40) and (41) binding gives (p32 − p23)|L14=L12=l̄ and (p41 − p14)|L12=L23=l̄. Plugging these two

into the binding equation in (39) gives (p21 − p12)|L14=L23=l̄. The equilibrium replicates the

optimal connection Le = L∗ = [4− 1− 2− 3].

Case II: In region (z̄ ∈ [z̄2, z̄1], δ > δ1(z̄)), L∗ = [1−2−3, 4] and
∑4

1 V̄
4123
i <

∑3
1 V̄

123
i +V a

4 .
To decentralize L∗ = [4, 1−2−3], we require that firm 2 transfer premium l̄ (p21 − p12)L14=0,L23=l̄

to prevent 1 from linking with 4,

V 123
1 = V̄ 123

1 + l̄ (p21 − p12)L14=0,L23=l̄ ≥ V 4123
1 ; (42)

V 123
2 = V̄ 123

2 − l̄ (p21 − p12)L14=0,L23=l̄ + (p32 − p23)|L14=0,L12=l̄ ≥ V 4123
2 . (43)

(42) and (43) binding give (p21 − p12)L14=0,L23=l̄ and (p32 − p23)|L14=0,L12=l̄. Firm 3 has value,

V 123
3 = V̄ 123

3 − (p32 − p23)|L14=0,L12=l̄ = V 4123
3 +

∑
i=1,2,3

V̄ 123
i + V a

4 −
∑

i=1,2,3,4

V̄ 4123
i .

Hence, V 123
3 ≥ V 4123

3 ⇐⇒ ∑3
1 V̄

123
i + V a

4 ≥
∑4

1 V̄
4123
i (L∗ = [1 − 2 − 3, 4]). Only then, firm

3 offers the contingent prices and firm 1 disconnects L14, i.e. the equilibrium switches from
[4− 1− 2− 3] to [1− 2− 3, 4].

Finally, we confirm that [4−1−2, 3] is not a potential deviation in either region for all possible
(p21 − p12)|L14=l̄,L23=0 and (p41 − p14)|L12=l̄,L23=0 because V 4123

1 +V 4123
2 +V 4123

4 ≥ V 412
1 +V 412

2 +

V 412
4 for (z̄ > z̄1, δ < δ1(z̄)), and V 123

1 +V 123
2 +V a

4 ≥ V 412
1 +V 412

2 +V 412
4 for (z̄ ∈ [z̄2, z̄1], δ > δ1(z̄)).

As the length of the chain increases, prices can be solved in a similar fashion. Q.E.D.

A.3 Contingent Contracts in Star Networks

Suppose that full risk sharing is decentralized in a star network, as shown in Figure 4 Panel
A, we next show that when dispersion is high, isolating the distressed firm 4 still may not be
decentralized under local contingency prices.

Based on the star network, the bilateral prices are as follows

(p41 − p14)|L12=L13=0 , (p41 − p14)|L12=l̄,L13=0 , (p41 − p14)|L12=0,L13=l̄ , (p41 − p14)|L12=L13=l̄ ;

(p21 − p12)|L14=L13=0 , (p21 − p12)|L14=0,L13=l̄ , (p21 − p12)|L14=l̄,L13=0 , (p21 − p12)|L14=L13=l̄ ;

(p31 − p13)|L14=L12=0 , (p31 − p13)|L14=0,L12=l̄ , (p31 − p13)|L14=l̄,L12=0 , (p31 − p13)|L14=L12=l̄ .

In a 2-firm component, reservation prices are paid. This gives (p41 − p14)|L12=L13=0 = V a
1 − V a

4 ,

(p21 − p12)|L14=L13=0 = V a
1 − V a

2 , and (p31 − p13)|L14=L12=0 = V a
2 − V a

3 .

Case I: In region (z̄ > z̄1, δ < δ1(z̄)), in order to decentralize the full risk sharing network,
prices satisfy

V star
1 = V̄ star

1 + l̄ (p21 − p12)|L14=L13=l̄ + l̄ (p31 − p13)|L12=L14=l̄ + l̄ (p41 − p14)|L12=L13=l̄ (44)

V star
2 = V̄ star

2 − l̄ (p21 − p12)|L14=L13=l̄ ≥ max[V 23
2 , V a

2 , V
234

2 ] (45)

V star
3 = V̄ star

3 − l̄ (p31 − p13)|L12=L14=l̄ ≥ max[V a
3 , V

34
3 ] (46)

V star
4 = V̄ star

4 − l̄ (p41 − p14)|L12=L13=l̄ ≥ max[V a
4 , V

34
4 ] (47)

(45), (46), and (47) binding give (p21 − p12)|L14=L13=l̄, (p31 − p13)|L12=L14=l̄, and (p41 − p14)|L12=L13=l̄.

The equilibrium replicates the optimal connection.
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Case II: In region(z̄ ∈ [z̄2, z̄1], δ > δ1(z̄)), L∗ = [2− 1− 3, 4] and
∑4

1 V̄
4123
i <

∑3
1 V̄

123
i +V a

4 .
To decentralize L∗, we require that both firms 2 and 3 pay premium price l̄ (p21 − p12)L14=0,L13=l̄

and l̄ (p31 − p13)L14=0,L12=l̄ such that

V 213
1 = V̄ 123

1 + l̄ (p21 − p12)L14=0,L23=l̄ + l̄ (p31 − p13)L14=0,L12=l̄ ≥ V star
1 ; (48)

V 213
2 = V̄ 123

2 − l̄ (p21 − p12)L14=0,L23=l̄ ≥ V star
2 . (49)

V 213
3 = V̄ 123

3 − l̄ (p31 − p13)L14=0,L12=l̄ ≥ V star
3 (50)

From the take-it-or-leave-it pricing offering system, (48) binding gives an lower bound for
l̄ (p21 − p12)L14=0,L23=l̄+l̄ (p31 − p13)L14=0,L12=l̄. However, (p21 − p12)L14=0,L23=l̄ and (p31 − p13)L14=0,L12=l̄

cannot be determined separately; rather, the premium price offered by 3 depends on the strategy
of 2, its countryparty’s countryparty.

A.4 Extension with Government Interventions

This section contains the technical results for Section 5.2. Under the set up of the extended
model, if the regulators had optimally isolated the distressed firm N at t = 1, total liquidation
cost is

Ciso-N = (N − 1) Φ

[√
N − 1

(
−z̄ − 1

2
δ

)]
c+ Φ

[
(k − 1) z̄ +

N − 1

2
δ

]
c. (51)

In the absence of the acquisition tax, all firms are connected and the liquidation costs are

C =

N∑
i=1

Pr
(
h̃i < 1

)
c = NΦ

[√
N

(
−z̄ +

kz̄

N

)]
c. (52)

When we enable ex post government bailout as in Section 5.2.1, the costs include expenses
from both liquidation and bailout,

CGB =

N∑
i=1

Pr
(
h̃i < 1

)
c+Bσ = NΦ

[√
N(−z̄ +

kz̄ −B
N

)

]
c+Bσ. (53)

Notice that C = CGB (B = 0). The net gain from government bailout is C − CGB. The next
proposition shows that as long as the liquidation cost c is not very small, a positive government
bailout that at least covers the total expected liquidity shortfall is ex post optimal.

Proposition 7 If c >
√

2πσ√
N
, k > N , government bailout in the form of liquidity injection of

B∗σ generates positive surplus, where

B∗ = (k −N)z̄ +
√
N

√
−2 log

[√
2πσ√
Nc

]
. (54)

Proof The optimal liquidity injection B∗ minimizes total costs CGB and thus satifies the first

order condition ∂CGB

∂B = 0, i.e. NΦ′
[√

N(−z̄ + kz̄−B
N )

]
c
(
− 1√

N

)
+ σ = 0. This gives

Φ′
[√

N(−z̄ +
kz̄ −B∗

N
)

]
=

1√
2π
e
− 1

2

[
(k−N)z̄−B∗√

N

]2

=
σ√
Nc

. (55)

Solving for B∗ gives (54) which naturally implies B∗ > (k −N) z̄. Given e
− 1

2

[
(k−N)ā0−B∗√

N

]2

≤ 1,

(55) implies σ√
Nc
≤ 1√

2π
⇒ c ≥

√
2πσ√
N

That is, for B∗ to be an interior solution, the liquidation

cost cannot be very small.
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Further, in order that B∗ archives the global minimum of CGB(B), we take the second
derivative of B,

∂2CGB
∂B2

= cΦ′′
[√

N(−z̄ +
kz̄ −B∗

N
)

]
≥ 0, ∀ (k −N) z̄ −B∗ ≤ 0.

The second derivative is positive which ensures that B∗ archives the global minimum of CGB(B),
so the bailout surplus is positive, i.e., C − CGB = CGB(B = 0)− CGB(B = B∗) > 0. Q.E.D.

A few comments on the above result. First, from equation (54), B∗σ > (k − N)z̄σ, so
B∗σ at least matches the total expected liquidity shortfall. The extra liquidity injection,
√
N

√
−2 log

[√
2πσ√
Nc

]
, depends on the trade-off between cost and uncertainty. ∂B∗

∂c > 0 im-

plies that the bigger the liquidation cost is, the higher the optimal government bailout is; from
∂B∗

∂σ < 0, optimal government bailout decreases with asset uncertainty.
Second, if instead 0 ≤ k ≤ N , the average distress after the θ shock remains positive. From

equation (54), a positive government bailout requires that c ≥
√

2πσ√
N
e

(N−k)2z̄2

2N >
√

2πσ√
N

.

Third, plugging equation (54) into (53), the total costs under optimal bailout policy B∗ is

C∗GB = (k −N)z̄σ +NΦ

−
√
−2 log

[√
2πσ√
Nc

] c+
√
Nσ

√
−2 log

[√
2πσ√
Nc

]
. (56)

Although C∗GB improves upon C, it is important to compare C∗GB with the cost when the
acquisition link had been prevented ex ante.

Proposition 8 There exists c̄ >
√

2πσ√
N

, such that C∗GB > CisoN for c ∈ [
√

2πσ√
N
, c̄] and for all

δ ≥ 0, where c̄ = σB∗

(N−1)Φ[−
√
N−1z̄]+Φ[(k−1)z̄]−NΦ[ (k−N)z̄−B∗√

N
]
, and B∗ is given by equation (54).

Proof I first show that CisoN decreases monotonically with δ, hence it achieves maximum at
CisoN (δ = 0). Then I show that C∗GB is a concave function of liquidation cost c. C∗GB >

CisoN (δ = 0) when cost c =
√

2πσ√
N

, and C∗GB crosses the linear function CisoN (δ = 0) at c̄.

Accordingly, C∗GB is greater than CisoN in region c ∈ [
√

2πσ√
N
, c̄).

Step 1: CisoN decreases with δ. Take the derivative of CisoN with respect to δ,

∂CisoN

∂δ
=

(N − 1) c

2

(
Φ′
[
(k − 1) z̄ +

N − 1

2
δ

]
−
√
N − 1Φ′

[√
N − 1

(
−z̄ − 1

2
δ

)])
. (57)

Notice that (k − 1) z̄+ N−1
2 δ > 0,

√
N − 1

(
−z̄ − 1

2δ
)
< 0, and we can also show that (k − 1) z̄+

N−1
2 δ > −

√
N − 1

(
−z̄ − 1

2δ
)
.Accordingly, Φ′(x) = 1√

2π
e−

x2

2 implies that

Φ′
[
(k − 1) z̄ +

N − 1

2
δ

]
< Φ′

[√
N − 1

(
−z̄ − 1

2
δ

)]
<
√
N − 1Φ′

[√
N − 1

(
−z̄ − 1

2
δ

)]
.

Plugging into equation (57), we have ∂CisoN

∂δ < 0. Evaluate CisoN at δ = 0, we obtain a linear
function of c,

CisoN (δ = 0) = (N − 1)Φ
[√

N − 1(−z̄)
]
c+ Φ [(k − 1) z̄] c.
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Step 2: C∗GB is a concave function of c. Denote J =

√
−2 log

[√
2πσ√
Nc

]
> 0, then

∂J
∂c = 1

Jc > 0. From (55), Φ′(−J) = σ√
Nc

. Sub J into equation (56), we have C∗GB = NΦ [−J ] c+

(k −N)z̄σ +
√
NσJ. Take the first derivative of c, we have

∂C∗GB
∂c

= NΦ [−J ] +

√
Nσ

Jc
− NΦ′ [−J ]

J
= NΦ [−J ] = NΦ

−
√
−2 log

[√
2πσ√
Nc

] > 0.

Since ∂J
∂c = 1

Jc > 0, ∂C∗GB

∂c decreases with c, i.e. ∂2C∗GB

∂c2 < 0.

Step 3: Establish C∗GB

(
c =

√
2πσ√
N

)
> CisoN

(
δ = 0, c =

√
2πσ√
N

)
. Plugging in c =

√
2πσ√
N

,

C∗GB

(
c =

√
2πσ√
N

)
=

√
2πσ

2

√
N + (k −N)z̄σ,

CisoN

(
δ = 0, c =

√
2πσ√
N

)
= (N − 1)Φ

[
−
√
N − 1z̄

] √2πσ√
N

+ Φ [(k − 1) z̄]

√
2πσ√
N

.

Since k > N , Φ < 1,

CisoN

(
δ = 0, c =

√
2πσ√
N

)
< N

√
2πσ√
N

=

√
2πσ

2

√
N < C∗GB

(
c =

√
2πσ√
N

)
.

Step 4: Solve for cross point c̄. Equating C∗GB = CisoN (δ = 0) and solve for c gives c̄.

To sum up, Steps 1 - 4 establish that C∗GB > CisoN , ∀c ∈ [
√

2πσ√
N
, c̄]. Therefore, when

liquidation cost is bounded by c̄, C∗GB is more costly than CisoN . Q.E.D.

Next I consider the optimal policy when there exist healthier institutions currently not
connected with the distressed firm. The set up corresponds to subsection 5.2.2. The next
corollary examines whether firm N + 1 has incentive to acquire the distressed firm N after
learning θ, and whether the acquisition is ex post socially optimal.

Corollary 1 With no subsidy, the liquid firm N + 1 acquires the heavily distressed N only if

k̂+2N ≥ k. When k̂+2N < k, government subsidized acquisition is ex post optimal if c >
√
πσ√
N

;

the optimal subsidy to the acquirer firm N + 1 upon acquisition is B∗Aσ, where

B∗A =
(
k − k̂ − 2N

)
z̄ +
√

2N

√
−2 log

[√
πσ√
Nc

]
. (58)

When there exist healthier institutions, ex post subsidized acquisition is always preferred to ex
post government bailout.

Proof I first analyze conditions for the acquisition link to be ex post optimal. Then I examine
whether the acquisition link forms at equilibrium, and then move to conditions for the positive
subsidy to be optimal. Finally, I conclude that subsidized acquisition is cheaper than government
bailout.

Step 1: Condition for the acquisition link to be ex post optimal. Without acquisition
link, total liquidation costs of group one and group two are respectively

Cg1 = NΦ

[√
N

(
−1 +

k

N

)
z̄

]
c, Cg2 = NΦ

[
√
N

(
−1− k̂

N

)
z̄

]
c. (59)
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With the acquisition link, total liquidation costs of the two groups become

Ctotal =

2N∑
i=1

Pr
(
h̃i < 1

)
c = 2NΦ

[
√

2N

(
−1− k̂ − k

2N

)
z̄

]
c. (60)

The acquisition link generates prositive surplus if and only if Cg1 + Cg2 > Ctotal. Applying
Lemma 2, we get

NΦ

[−N + k√
N

z̄

]
c+NΦ

[
−N − k̂√

N
z̄

]
c > 2NΦ

[
−2N − k̂ + k√

2N
z̄

]
c ⇐⇒ k̂ + 2N > k.

Step 2: Condition for the acquisition link to emerge at equilibrium. I next show
that as long as the acquisition link is socially optimal, it emerges ex post at equilibrium.

Since prices are already set between other firms, only bilateral prices between firms N and
N + 1 are to be set. Hence whether the acquisition link can form at equilibrium is equivalent
to whether the bilateral surplus between N and N + 1 is positive. The value of firm N without
the acquisition link is

V 12...N
N =

(
1− N − 1

2
δ − k

N

)
z̄σ − Φ

[
k −N√

N
z̄

]
c− Φ

(
−z̄ +

N − 1

2
δ

)
c+ Φ

(
−
√
Nz̄
)
c.

Notice that when k = 0, V 12...N
N = V a

N , which matches the outside option of firm N . The
value of firm N + 1 without the acquisition link is

V
(N+1)(N+2)...2N
N+1 =

k̂ +N

N
z̄σ − Φ

[
−N − k̂√

N
z̄

]
c.

For the bilateral surplus to be positive

Φ

[
−N − k̂√

N
z̄

]
c+ Φ

[
k −N√

N
z̄

]
c > 2Φ

[
−2N − k̂ + k√

2N
z̄

]
c ⇐⇒ k̂ + 2N > k,

which recovers precisely the condition for positive social surplus. This shows that if and only if
k̂ + 2N > k, the acquisition link is efficient and forms in equilibrium after θ realizes.

Step 3: optimal acquisition subsidy. When k̂ + 2N ≤ k, I next show that a positive
acquisition subsidy is optimal if the liquidation cost is not very small. Let the positive govern-
ment subsidy be BAσ given to the acquirer firm N + 1 upon forming link with firm N . Total
cost with subsidized acquisition becomes

CsubA =

2N∑
i=1

Pr
(
h̃ < 1

)
c+BAσ = 2NΦ


(
k − k̂ − 2N

)
z̄ −BA

√
2N

 c+BAσ.

B∗A satisfies the first order condition

Φ′


(
k − k̂ − 2N

)
z̄ −B∗A√

2N

 =
σ√
2Nc

. (61)

Solving for B∗A gives (58), and we require that c >
√
πσ√
N

and k̂ ≤ k − 2N .

Step 4: subsidized acquisition is preferred to government bailout. I show that
the subsidized acquisition is less costly than government bailout. From Proposition 7, for c ∈
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(√
πσ√
N
,
√

2πσ√
N

)
, subsidized acquisition is the only option with positive surplus. For c >

√
2πσ√
N

,

costs under government bailout are

C∗GB = NΦ

−
√√√√−2 log

[√
2πσ√
Nc

] c+ (k −N)z̄σ +
√
Nσ

√√√√−2 log

[√
2πσ√
Nc

]
+NΦ

[
−N − k̂√

N
z̄

]
c.

Costs under subsidized acquisition are

C∗subA =
(
k − k̂ − 2N

)
z̄σ +

√
2N

√
−2 log

[√
πσ√
Nc

]
σ + 2NΦ

[
−
√
−2 log

[√
πσ√
Nc

]]
c.

Denote J =

√
−2 log

[√
2πσ√
Nc

]
> 0, H = k̂+N√

N
z̄ > 0, then C∗GB =

√
NσJ + NΦ [−J ] c +

√
NσH +NΦ [−H] c+

(
k − k̂ − 2N

)
z̄σ. From (55), Φ′(−J) = σ√

Nc
. Function f(x) =

√
Nσx+

NΦ [−x] c, satisfies f ′(J) = 0, f ′′(x) > 0,∀x > 0. This implies C∗GB > 2
√
NσJ + 2NΦ [−J ] c+(

k − k̂ − 2N
)
z̄σ >

√
2NσJ + 2NΦ [−J ] c+

(
k − k̂ − 2N

)
z̄σ >

√
2NσJ + 2NΦ [−J ] c.

Similarly, denoteG =

√
−2 log

[√
πσ√
Nc

]
> 0, then C∗subA =

√
2NGσ+2NΦ [−G] c+

(
k − k̂ − 2N

)
z̄σ.

From (61), Φ′ [−G] = σ√
2Nc

. Function f(x) =
√

2Nσx + 2NΦ [−x] c, x > 0, achieves global

minimum at x = G. This implies that C∗GB > C∗subA. Q.E.D.

When the two groups differ in cardinality, pushed acquisition could be ex post optimal.
Denote N1 (instead of N) the number of the group one firms including the heavily distressed
θN1

= −kz̄σ. Denote N2 the number of group two firms, with the same z̄ > 0, but δ = 0 for
simplicity. Ex ante an optimal complete risk-sharing network is formed among N2 firms. The
additional signal is θN1+1 = k̂z̄σ, θi = 0, ∀i = N1 + 2, ...N1 +N2. Hence firm i = N1 + 1 has the
highest liquid value ex post. Suppose after t = 1 when links within each group are formed and
prices are set, firm N1 + 1 can acquire the heavily distressed N1.

Proposition 9 The acquisition generates positive social surplus when the liquidity shocks satisfy

k̂ > max

[√
N1 +N2 −

√
N1√

N1 +N2 −
√
N2

(k −N1)−N2, k −N1 −N2

]
. (62)

Under (62),

• when N2 ≥ N1 the bilateral surplus is positive so acquisition forms at equilibrium;

• when N2 < N1 the bilateral surplus is negative when

2Φ

[
k − k̂ − (N1 +N2)√

N1 +N2

z̄

]
c > Φ

[
k −N1√

N1

z̄

]
c+ Φ

[
−k̂ −N2√

N2

z̄

]
c+

(N2 −N1)
(
N2k +N1k̂

)
N1N2 (N1 +N2)

z̄σ. (63)

Proof I first show that condition (62) implies positive social surplus from the acquisition link
between the liquid N1 +1 and the distressed firm N1. Without acquisition link, total liquidation
costs of group one and group two are respectively

Cg1 = N1Φ

[√
N1

(
−1 +

k

N1

)
z̄

]
c, Cg2 = N2Φ

[√
N2

(
−1− k̂

N2

)
z̄

]
c.
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With the acquisition link, the total liquidation costs of the two groups become

Ctotal =

N1+N2∑
i=1

Pr
(
h̃i < 1

)
c = (N1 +N2) Φ

[√
N1 +N2

(
−1 +

k − k̂
N1 +N2

)
z̄

]
c.

The acquisition link generates positive surplus if and only if Cg1 + Cg2 > Ctotal, i.e.

N1

N1 +N2
Φ

[
k −N1√

N1

z̄

]
+

N2

N1 +N2
Φ

[
−k̂ −N2√

N2

z̄

]
> Φ

[
k − k̂ − (N1 +N2)√

N1 +N2

z̄

]
. (64)

Given Φ(.) is convex in the negative domain,

N1

N1 +N2
Φ

[
k −N1√

N1

z̄

]
+

N2

N1 +N2
Φ

[
−k̂ −N2√

N2

z̄

]
≥ Φ

N1

√
N1

(
−1 + k

N1

)
z̄

N1 +N2
+
N2

√
N2

(
−1− k̂

N2

)
z̄

N1 +N2

 .
Under (62), It follows(

N2 + k̂
)(√

N1 +N2 −
√
N2

)
> (k −N1)

(√
N1 +N2 −

√
N1

)
⇐⇒(

−N1

√
N1 +

√
N1k

)
+
(
−
√
N2N2 −

√
N2k̂

)
>
√
N1 +N2k −

√
N1 +N2k̂ −

√
N1 +N2 (N1 +N2) ⇐⇒

N1

√
N1

(
−1 + k

N1

)
z̄

N1 +N2
+
N2

√
N2

(
−1− k̂

N2

)
z̄

N1 +N2
>
k − k̂ − (N1 +N2)√

N1 +N2

z̄. (65)

Put together, we establish (64).

Next I show that under (62), the bilateral acquisition surplus is positive when N2 ≥ N1.
Since prices are set between other firms, only bilateral prices between firms N and N + 1 are to
be set. The value of firm N1 without acquisition is

V 12...N1

N1
=

(
1− N1 − 1

2
δ − k

N1

)
z̄σ − Φ

[
k −N1√

N1

z̄

]
c− Φ

(
N1 − 1

2
δ − z̄

)
c+ Φ

(
−
√
N1z̄

)
c.

The value of firm N1 + 1 without the acquisition link is

V
(N1+1)(N1+2)...(N1+N2)
N1+1 =

(
1 +

k̂

N2

)
z̄σ − Φ

[
−N2 − k̂√

N2
z̄

]
c.

With the acquisition link, the value of firm N1, and firm N1 + 1 are respectively

V
12...(N1+N2)
N1

=

(
1− N1 − 1

2
δ − k − k̂

N1 +N2

)
z̄σ − Φ

[
k − k̂ − (N1 +N2)√

N1 +N2

z̄

]
c− Φ

(
−z̄ +

N1 − 1

2
δ

)
c+ Φ

(
−
√
N1z̄

)
c;

V
12...(N1+N2)
N1+1 =

(
1− k − k̂

N1 +N2

)
z̄σ − Φ

[
k − k̂ − (N1 +N2)√

N1 +N2

z̄

]
c.

The average bilateral surplus minus the average total surplus is

V̂ A
N1

+ V̂ A
N1+1 − V̂N1 − V̂N1+1

2
− Cg1 + Cg2 − Ctotal

N1 +N2

=
N2 −N1

2(N1 +N2)

[
N2k +N1k̂

N1N2
z̄σ +

(
Φ

[
k −N1√

N1

z̄

]
− Φ

[
−k̂ −N2√

N2

z̄

])
c

]
.

which is non-negative when N2 ≥ N1 and Cg1 + Cg2 − Ctotal > 0. Whereas if N1 > N2, the
average bilateral surplus is smaller than the average social surplus. Under condition (63), the
bilateral surplus is negative. Q.E.D.
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Table A.I. Distressed Acquisition Likelihood and Log Z-score

Pr(Completing an Acquisition of a Distressed Firm)

(1) (2) (3) (4) (5)

Log Z-score 0.153* 0.145* 0.142* 0.284** 0.317***

[0.070] [0.070] [0.067] [0.094] [0.094]

Firm Controls yes yes yes yes

Year Fixed-Effects yes yes

2006-2013 yes yes

Observations 57,035 57,035 57,035 14,490 14,490

Firm Fixed-Effects yes yes yes yes yes

Notes: This table reports the results from a fixed-effects logit regression. The sample includes commercial banks,
savings institutions and bank holding companies. The dependent variable Pr(Completing an Acquisition of a Dis-
tressed Firm) takes the value of one if institution i completes an acquisition of a distressed firm at time t+ 4, and
zero otherwise. Firm controls include quarterly CAR, ROA, and asset size. Regression coefficients are reported
with standard errors in the square bracket. *, **, *** denote statistical significance at the 5%, 1%, and 0.1% level.

As a sufficient condition for a positive social surplus, (62) sets a lower bound for the positive

liquidity shock k̂. The relative cardinality of the two groups is key in determining the sign of
the bilateral surplus. When N2 > N1, the pair {N1, N1 + 1} on average gets bigger surplus
than an average firm. When N1 = N2, we recover the case in subsection 5.2.2 when the sign
of bilateral surplus matches that of the social surplus. When N1 > N2, under condition (63),
bilateral surplus can be negative even if social surplus is positive. (63) implies an upper bound

for k̂, thus is especially relevant when the potential acquirer does not have an abundant supply
of liquidity.

B Additional Empirical Results

In this Appendix, I provide additional empirical evidence in support of both the assumptions

and predictions of the model, which supplements Section 6.

B.1 Justifying Model Assumptions

Liquid firms acquire the distressed firms To confirm the assumption made in the model

that more liquid firms acquire the distressed firms, I match the quarterly firm-level data with

the acquisition dataset using the acquirer entities and acquisition completion dates, and perform

fixed-effects logit regressions. The dependent variable is a dummy indicating whether a firm

conducts a distressed acquisition at a certain quarter. I assume that an acquisition takes on

average four quarters to complete, so it starts four quarters prior to the merger completion date

recorded in the Chicago Fed dataset. The independent variable of interest is the firm’s estimated

log Z-score. Results reported in Table A.I confirm that a firm with higher log Z-score has a

higher likelihood of acquiring a distressed firm. For a one-standard-deviation increase in log Z-

score (.58), the log odds ratio of a distressed acquisition increases by 0.09 (=0.153× 0.58). The
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(b) Log Asset Size: Acquirer-Target

Figure A.I. Log Z-score and Asset Size: Acquirer - Target. This figure plots the
distribution of log Z-score and log asset size of the acquirer-target wedge for the identified 3,153
distressed acquisitions in 1983-2013. Shaded bars indicate NBER recessions.

economic and statistical significance of the coefficient is robust to including firm-level controls,

year fixed effects, and only considering the post-2006 period.

Among the identified 3,153 distressed acquisitions, a clear pattern emerges among the acquirer-

target pairs: the acquirer has higher Z-score and bigger asset size relative to the target. The

results are depicted in Figure A.I. The plots show the distributions of the acquirer-minus-target

log Z-score (Panel 1(a)) and log asset size (Panel 1(b)). Both distributions are significantly

above zero, implying that more stable firms acquire smaller and distressed targets.

Risk exposure to counterparties through links In the theoretical analysis, a link with

the distressed firm is modeled as a bilateral forward swap contract, which increases the financial

distress of the acquirer and thus negatively affects its Z-score. To confirm this assumption, I

perform fixed-effects regressions of growth rate in log Z-score on target log Z-score, and the

dummy variables representing acquisition and distressed acquisition, controlling for firm-level

characteristics. The regression results summarized in Table A.II show strong support for the

model assumption. The estimates suggest that the effect of the log Z-score of the targets on

the growth rate of Z-score of the acquirers is positive and significant. The economic magnitude

of the effect is sizable: a one-standard-deviation decrease in target log Z-score decreases future

log Z-score of the acquirer by 0.16, more than four times the magnitude of its average level.

Results in columns (3) - (4) show that, while in general completing an acquisition has a positive

impact on the future Z-score of the acquirer, completing an acquisition of a distressed target has

a significantly negative impact on the future Z-score of the acquirer. These findings are robust

to controlling for recession periods, restricting to only top firms with asset size larger than $1

billion, and including year-quarterly dummy.
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Table A.II. Effect of Target log Z-score on Acquirers’ Future Z-score

log zi,t+1 − log zi,t

(1) (2) (3) (4) (5) (6) (7)

Target Log Z-score 0.248*** 0.310*** 0.326* 0.291** 0.250***

[0.060] [0.064] [0.130] [0.095] [0.060]

Acquisition Dummy 0.624*** 0.884***

[0.186] [0.206]

Distressed Acquisition -1.268** -1.373**

Dummy [0.447] [0.464]

Observations 1,326,071 1,326,071 1,326,071 1,326,071 435,635 98,737 1,326,071

Firm Controls Yes Yes Yes Yes Yes Yes Yes

Firm Fixed-Effects Yes Yes Yes Yes Yes Yes Yes

NBER Recessions Yes

Top Firms (A>$1B) Yes

Year-quarter Dummy Yes

Notes: This table reports the coefficients from a fixed-effects regression. The sample includes commercial banks,
savings institutions and bank holding companies. The dependent variable log zi,t+1 − log zi,t is the growth rate
of log Z-score for firm i at quarter t. The target log Z-score is the level of log Z-score of the target firm at the
acquisition completion date if firm i has an acquisition at quarter t. The dummy variables take 1 (and 0 other-
wise) if firm i has an acquisition or a distressed acquisition at quarter t. Firm controls include total assets, total
equity, net income, and current level log Z-score. Regression coefficients are reported with standard errors in the
square bracket. *, **, *** denote statistical significance at the 5%, 1%, and 0.1% level.

B.2 Predictive Power of Distress Dispersion

Univariate correlations Table A.III presents supplementary univariate correlations to Table

1. I adopt alternative indicators for economic activity and systemic risk, including the Reces-

sion Probability from Chauvet and Piger (2008), the subcomponents of the Chicago Fed National

Activity Index (CFNAI) on personal consumption and housing (C&H) and employment, unem-

ployment, and hours (EU&H). Finally, following Giglio, Kelly, and Pruitt (2015), I take the

systemic risk measures relating to liquidity and credit conditions in the financial market: the

Default Spread (difference between 3-Month BAA bond yields and the Treasury) and the Term

Spread (difference between 10-Year and 3-Month Treasury).

The alternative indicators for lending and interbank lending include the leverage of both

financial business and the security broker-dealers discussed in Adrian, Etula, and Muir (2014),

the growth rate of non-financial corporate liability, the credit and loans of all commercial banks

over assets, and the interbank loans over assets of small and medium-sized commercial banks.

The correlation coefficients show a clear pattern: the aggregate indicators correlate significantly

with dispersion, whereas only the leverage of security broker-dealers comoves strongly with the

mean.
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Table A.III. Summary Statistics and Univariate Correlations

Mean StDev Sacf Correlations w/ log Z-score

Mean Dispersion

A. Economic activity and systemic risk

Recession Probability 0.08 0.23 0.83 0.00 0.17

CFNAI: Personal Consumption and Housing -0.03 0.13 0.93 -0.03 -0.78***

CFNAI: Employment, Unemployment, and Hours -0.06 0.31 0.86 -0.03 -0.20*

Default Spread 4.19 1.54 0.93 -0.14 0.54***

Term Spread 1.87 1.11 0.91 -0.25** 0.37***

B. Lending and interbank lending

Financial Business Leverage 29.40 5.59 0.94 -0.16 -0.71***

Security Broker-Dealers Leverage 41.11 17.94 0.73 0.51*** -0.18*

∆% Non-financial Corporate Liability 0.01 0.01 0.46 0.14 -0.22*

All Comm. Bank Credit over Assets 0.81 0.03 0.94 -0.13 -0.84***

Small Comm. Interbank Loan over Assets 0.02 0.01 0.87 0.10 -0.51***

Notes: This table supplements to Table 1 and reports the summary statistics for alternative measures of eco-
nomic activity and systemic risk, lending and interbank lending, as well as their univariate correlation coefficients
with the mean and dispersion of financials’ log Z-scores. Group A series are taken from FRED. Group B series
are constructed from the Fed’s Z.1 and H.8 release. Data availability on bank holding companies restricts the
analysis to 1986-2013. Sacf is the first-order sample autocorrelation coefficient. The last two columns report the
correlation coefficients between the cross-sectional mean and dispersion of log Z-score and each series in groups
A-B together with the significance levels. *, **, *** denote statistical significance at the 5%, 1%, and 0.1% level.

Predictive regressions Table A.IV presents supplementary predictive regression results to

Table 2. Using the same method as in Table 2, I run predictive regressions to forecast the

alternative measures. The estimates strongly echo the findings from the correlation analysis.

Both the significance level of the regression coefficients and the differences in R2s with and

without dispersion in the regressors suggest the robustness of the predictive power of dispersion

series.

The economic magnitude of the predictive power is also sizable. Take the forecasting of

Recession Probability for instance. Holding the controls fixed, a one-standard-deviation increase

in the Dispersion (=0.22) predicts a 0.095 (= 0.22× 0.43) increase in the Recession Probability

in the next quarter, whereas a one-standard-deviation decrease in the Mean (=0.03) predicts a

0.046 (= 0.03× 1.54) raise in the future Recession Probability.
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Table A.IV. Predictive Regressions using Distress Dispersion

Quarters 1 2 3 4 1 2 3 4

Forecasting A. Recession Probability B. CFNAI: CH

Dispersion 0.43** 0.79** 1.07* 1.29* -0.38*** -0.75*** -1.10*** -1.43***

Mean -1.54** -3.28** -4.83** -5.12* 0.27 0.70 1.23 1.76

R2 40.98 43.91 45.95 42.37 70.18 72.88 74.29 75.30

R2 w/o disp 33.95 37.23 39.95 36.96 53.71 56.23 57.85 59.39

Forecasting C. Default Spread D. Term Spread

Dispersion 0.04*** 0.08*** 0.13*** 0.18*** 0.01* 0.02* 0.04* 0.06

Mean 0.00 -0.02 -0.08 -0.12 -0.02 -0.05 -0.13 -0.22

R2 83.97 79.92 74.97 69.61 87.19 80.07 72.93 66.32

R2 w/o disp 72.23 65.71 58.38 49.95 86.49 78.48 70.32 62.16

Forecasting I. Bk Credit over Assets K. Sml Bk Interbank L over Assets

Dispersion -0.09*** -0.18*** -0.28*** -0.37*** -0.01 -0.02 -0.04* -0.05**

Mean -0.02 0.07 0.18 0.27 0.06 0.10 0.11 0.09

R2 80.41 82.41 83.95 85.16 48.13 54.09 56.03 56.46

R2 w/o disp 64.37 65.53 65.98 65.79 45.00 49.57 49.55 47.33

Notes: This table summarizes the ability of distress dispersion to forecast future economic activity, systemic risk,
failure rates, distressed acquisition rates, and bank lending behavior. In A-K, quarterly time series are regressed
on the cross-sectional dispersion and mean of log Z-score controlling for the term spread, the leverage of finan-
cial business and security broker-dealers, and the growth rate of real non-financial corporate liability. Forecasting
horizons range from one to four quarters and the data cover the years 1986-2013. The table reports the predictive
regression coefficients on the dispersion and mean of log Z-score, the R2, as well as the R2 when the regressions
are run without the dispersion series. *, **, *** denote statistical significance (based on Newey-West standard
errors) at the 5%, 1%, and 0.1% level.
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