BigTechs, Credit, and Digital Money

Markus Brunnermeier, Jonathan Payne

Princeton University

BIS Annual Meetings

27th June 2025

Introduction

- FinTech promises to overcome
 - assessment of creditworthiness: information
 - contract enforcement: digital ledger that automatically settles loans

 \dots but many practical challenges (side trades "off-ledger", identity verification, \dots)

• 2 Institutional Responses

- 1. Private BigTech platform
 - Gathers and processes new data on users
 - Enforcement through closed payment system (depends on scale)
 - ... but rent extraction \Rightarrow encourage platform competition
- 2. Public Option of programmable ledger (Payment platform, CBDC, ...)
 - Can be a cash substitute or a universal ledger
 - ... but tradeoffs between privacy, contract enforcement, anti-fraud rules

Payments & Credit Trilemma

Figure 1: Policy Trilemma

Table of Contents

Framework

BigTech Platform (Response l

Public Option (Response II)

Co-opetition Regulation

Geopoliti

The Loan Process

FinTech Vision: More Info & Move Onto a Digital "Ledger"

FinTech Vision: More Info & Move Onto a Digital "Ledger"

Idea:

- 1. More digital **information** collection and better processing.
- 2. Conduct financial payments through the ledger. So, the ledger can automatically use sales revenue to settle IOUs.

- A ledger is simply a digital record keeping system with:
 - Token or asset balances: wealth held by different agents using ledger.
 - Contracts: coded instructions for executing transactions conditional on information.
 - Information: that has been provided to the ledger.

What can go wrong with the FinTech vision?

A FinTech Vision Problem: "Off-ledger" Payments Lead to Default

Case Study: FinTech in India

- [Rishabh and Schäublin, 2021] studies FinTechs and debt repayment in India.
- Finds that non-performing borrowers:
 - Drop their non-cash sales, right after loan disbursal, by 18%.
 - Divert about 11% of their transactions right after disbursal.
- Argues that: "By persuading their customers to pay...not using the lender's POS but with alternative means of payments (e.g. cash), a merchant can circumvent the automatic repayment to the payment company."

Response (I): BigTech Platform

Platform-Ledger Economy: Platform Controlling Trading & Ledger

- There are now two trading technologies for connecting goods traders:
 - Private platform (p) that is controlled by profit maximizing operator.
 - Off the platform (o) open public marketplace.
- Platform facilitates and observes trades as well as provides the settlement ledger:
 - Prevents agents from making payments using cash.

 ⇒ stored cash is not "universally liquid" anymore
 - Charges markup (or offers subsidy) when agents trade on the platform.

Outcome: If sufficiently many traders use the private platform and the markup is sufficiently low, then agents stop holding cash.

Platform Breaks Liquidity of Cash and Forces Trade Through Platform

Intuition: Platform Ledger Crowds Out Cash Trades

- Imagine you are producer looking to sell your goods privately for "cash" and default.
- You can only do this if there is a counterparty who has stored a "suitcase of cash".
- I.e., your ability to default depends on *other agents'* choice of payment technology.
- Even though the platform only controls *some* trades,
 - \dots it can disincentive *all* agents from holding "cash" by blocking its use on platform,
 - ... which effectively shuts down the possibility of default side trades,
 - ... so the only option in all trades is to use the monitored ledger system.

Takeaways about Digital Platform Ledger

- 1. BigTech platform can "back" ledger use.
- 2. Payment technology can collateralize sales revenue ("digital collateral").
- 3. ... but the platform can extract high rents!

Response (II) Public Option

Public Ledgers: Design

- Many designs: (FedNow, Pix, Wholesale CBDC, Retail CBDC, "Smart" CBDC)
- Fallback in emergencies in case of cyber attacks, financial crises, ...
- Provides an outside option to compete with private ledgers
- **Design choices** lead to different roles:
 - 1. Superior alternative to physical cash ... but facilitates side trades & default
 - 2. Exclusive infrastructure for payment & contracting w/ universal enforcement ... but innovation might suffer

CBDC Leger (with Platform Competition)

Privacy: Government Objective and CBDC Design Choices

- Government Objectives:
 - 1. **AML:** Anti-Money Laundering
 - 2. **CFT:** Countering the Financial Terrorism
 - 3. **KYC:** Know Your Customer
 - 4. **AE:** Anti-Evasion
- Design Choice for CBDC: private vs. non-private digital token
 - No Privacy: "Reserves for all" with SSN
 - **Privacy:** CBDC in the form of a USD eToken using zero-knowledge proof doesn't satisfy AML, CFT, KYC, or AE requirements universally liquid payment system → side trades & default

Privacy: Options For a Hybrid System

• Regulating the Interaction with Financial System

- CBDC eToken with zero-knowledge proof
- However, ML, CFT, KYC, AE apply when CBDC move to broader financial system

• Anonymity Vouchers (ECB 2019)

- provide identity to CBDC (or FI) & receive pseudonomous identity
- "anonymity vouchers" allow private transfers within time frame

• Third-Party Authentication

- $\bullet\,$ obtain wallet address after KYC assessment by approved third-party authenticator
- if AML process triggers flag, homomorphic encryption is lifted

• Asymmetric Privacy [Tinn, 2024]

- consumer (sender of money) enjoys maximal privacy
- merchants (receiver of money) is less protected

Co-opetition Regulation across Multiple Big<u>Tech Platforms</u>

Co-opetition Regulation

- Encourage entry of ≥ 2 platforms (instead of w/ public option)
- Dimensions of Co-opetition:
 - 1. Across-platform trading \rightarrow foster fierce competition to lower mark-up
 - interoperability to eliminate lock-ins, switching costs, walled gardens
 - 2. Across-ledger (token) payments \rightarrow foster competition reduce transaction fees
 - exchange rate fee regulation
 - 3. Credit extensions
 - \rightarrow coordination & information sharing • competition: offer agents the option to default on loans registered on a competing ledger
 - coordination: not allow agents who defaulted to store their wealth on ledger
- Ledgers in a 2 Platforms Competition: [Brunnermeier and Payne, 2025]
 - Matching technologies of both platforms are similar \Rightarrow 2 ledgers are viable
 - Matching technology of one superior: ⇒ 1 monopole ledger & charges fee from other

Geopolitical Considerations

Geopolitical Considerations

• Additional Tradeoff:

- Cross-border credit extension is further limited since foreign collateral is difficult to seize
- Response: Multinational BigTech platforms
 ... but loss of country's sovereignty

Sovereignty

- Loss of payment system
 Foreign BigTech is like a Trojan horse
- 2. Loss of **unit of account** ("Dollarization") Foreign BigTech simplifies switch

Stablecoins

Conclusion

- FinTech vision of uncollateralised lending via centralized ledger suffers from side-trades
- Response I: BigTech: platform rent extraction vs. credit extension
- Response II: Public Option: universal enforcement vs. privacy protection
- BigTech Regulation: Integrated approach
- Geopolitics: Multinational BigTech-National Sovereignty Tradeoff

Conclusion: Payments & Credit Trilemma

Figure 2: Policy Trilemma

References i

Brunnermeier, M. and Payne, J. (2025). Strategic money and credit ledgers.

Princeton Working Paper.

Rishabh, K. and Schäublin, J. (2021).

Payment fintechs and debt enforcement.

Tinn, K. (2024).

A theory model of digital currency with asymmetric privacy.

Available at SSRN 4891933.