Global Rates: A Secular Approach

Pierre-Olivier Gourinchas and Helene Rey

Discussion by Şebnem Kalemli-Özcan 17th BIS Annual Conference, June 22, 2018

Question and Approach

Questions:

Why do real risk free rates decline?

How long they will stay low?

Question and Approach

Questions:

Why do real risk free rates decline?

How long they will stay low?

Approach: 4-step

- Decompose Consumption/Wealth ratio into 3 components:
 - Risk free rate
 - Risk premia
 - Consumption growth

C/W=f(risk free rate, risk premia, consumption growth)

- Write down a model to analyze role of shocks on each component and relate to C/W
- Estimate components empirically with VAR and see which estimated component co-moves with actual C/W
- Predict risk free rates using C/W Risk free rate=f(C/W)

- C/W is a strong predictor of risk-free rates, term premium and population growth
- Macro shocks and financial shocks both have a role in explaining ↓ in real risk free rates via ↑ savings
- Sisk free rates will stay low for an extended period of time
- Suggestive decline in *natural* interest rate—what policy makers care about.

- Excellent paper
- I believe the results
- My comments will be on interpretation:
 - how to make it sharper
 - what more we can do to understand the underlying shocks/causes

Real rate, r = real risk free rate + real risk premium

Natural rate, r^* = real rate at potential output, Y^*

r = r* only under monetary policy neutrality

Real rate, r = real risk free rate + real risk premium

Natural rate, r^* = real rate at potential output, Y^*

r = r* only under monetary policy neutrality Real Rate measured as:

- Directly observable real rates: yields on inflation-indexed bonds
- Approximate real rates: Nominal rates inflation expectations
- GR real rates: Nominal rates on 3m T-bill CPI inflation

Real rate, r = real risk free rate + real risk premium

Natural rate, r^* = real rate at potential output, Y^*

r = r* only under monetary policy neutrality Real Rate measured as:

- Directly observable real rates: yields on inflation-indexed bonds
- Approximate real rates: Nominal rates inflation expectations
- GR real rates: Nominal rates on 3m T-bill CPI inflation

Investment Decline-Summers view

Lower relative price of investment; Lack of investment opportunities

Saving Increase

- Saving glut, China; Aging/demographics—Bernanke view
- Deleveraging after financial crises (debt cycles)—Reinhart-Rogoff view

Monetary Policy Easing—BIS view

Portfolio Shifts/Risk Appetite—Caballero-Farhi-Gourinchas; Gorton-Metrick; Krishnamurthy and Vissing-Jorgensen

Real rate, r = real risk free rate + real risk premium

Natural rate, r^* = real rate at potential output, Y^*

r = r* only under monetary policy neutrality Real Rate measured as:

- Directly observable real rates: yields on inflation-indexed bonds
- Approximate real rates: Nominal rates inflation expectations
- GR real rates: Nominal rates on 3m T-bill CPI inflation

Investment Decline-Summers view

• Lower relative price of investment; Lack of investment opportunities

Saving Increase

- Saving glut, China; Aging/demographics—Bernanke view
- Deleveraging after financial crises (debt cycles)—Reinhart-Rogoff view

Monetary Policy Easing—BIS view

Portfolio Shifts/Risk Appetite—Caballero-Farhi-Gourinchas; Gorton-Metrick; Krishnamurthy and Vissing-Jorgensen

GR paper: Long-run approach-role for savings via debt/financial crises

From Borio and Hoffman, 2017

¹ Nominal interest rate minus CPI inflation.

Sources: Jordà, Schularick and Taylor (2017); Global Financial Data; national data.

Assume:

- Global intertemporal budget constraint
- Transversality condition

• Stationary consumption/wealth ratio

C/W (today)=(future) risk-free rate + risk premia + C growth

My Comments

- Decomposition assumes stationarity of log(C/W)
 - \Rightarrow Revisit results checking stationarity

My Comments

- Decomposition assumes stationarity of log(C/W)
 ⇒ Revisit results checking stationarity
- Observation Operation Operatio Operation Operation Operation Operation Operation Op
 - $\, \bullet \,$ VAR says risk premium is not important for C/W.
 - $\, \bullet \,$ OLS says term premium is very important for C/W.
 - VAR says productivity shocks and demographic shocks seem to be more important than deleveraging shock
 - Data seems to suggest a bigger role for deleveraging and risk appetite shocks

 \Rightarrow Use the model to identify the effect of <u>all</u> shocks on C/W and risk free rates

My Comments

- Decomposition assumes stationarity of log(C/W)
 ⇒ Revisit results checking stationarity
- Observation Operation Operatio Operation Operation Operation Operation Operation Op
 - $\, \bullet \,$ VAR says risk premium is not important for C/W.
 - $\, \bullet \,$ OLS says term premium is very important for C/W.
 - VAR says productivity shocks and demographic shocks seem to be more important than deleveraging shock
 - Data seems to suggest a bigger role for deleveraging and risk appetite shocks

 \Rightarrow Use the model to identify the effect of <u>all</u> shocks on C/W and risk free rates

Is C/W the only variable that can predict risk free rates?
 ⇒ A horse-race predicting regression

Comment 1: Stationarity of C/W

Null hypothesis: The variable has a unit root								
Variable	Sample	Specification [†]	p-value					
		No intercept and trend	0.534	0.830				
	1870 - 2015	Intercept only	-2.592	0.097				
U.S. In(C/W)		Intercept and trend	-3.430	0.052				
	1920 - 2015	No intercept and trend	0.629	0.851				
		Intercept only	-1.173	0.683				
		Intercept and trend	-1.303	0.881				
G-4 In(C/W)		No intercept and trend	0.876	0.897				
	1920 - 2015	Intercept only	-0.862	0.796				
		Intercept and trend	-1.123	0.919				

Notes: The equation for the augmented Dickey-Fuller test is specified as $\Delta y_t = \gamma y_{t-1} + \sum_{s=1}^k \delta_s \Delta y_{t-s} + c + \beta t + \epsilon_t$

Reject unit root and establish stationarity only for 1870-2015 for US. Caveat: DF test performs better with long time series.

Predictive Regressions

GR runs:

$$y_{t+k} = \alpha + \beta \ln(C_t/W_t) + \epsilon_{t+k}$$
$$\downarrow$$

- ST risk free rates
- C. growth
- Equity premium
- Pop. growth
- Term premium
- (and in the latest version credit growth)

Add a trend.

United States (1870 - 2015)										
Forecast Hor	izon	1	1 2 5 10		-	1	2	5	10	
		(1) No ⁻			(2) W	/ith Trend				
A. Short term interest rate										
ln(C/W)	t	0.13**	0.14**	0.14***	0.15**	*	0.09	0.10	0.12**	0.13***
_		(0.06)	(0.06)	(0.04)	(0.03)		(0.08)	(0.08)	(0.05)	(0.03)
R^2		[0.09]	[0.11]	[0.19]	[0.29]		[0.10]	[0.13]	[0.21]	[0.30]
B. Consumption	tion Gro	wth (per ca	pita)							
ln(C/W)	t	-0.03	0	0.01	-0.01		-0.03	0.01	0.03	0
		(0.03)	(0.03)	(0.03)	(0.02)		(0.04)	(0.04)	(0.03)	(0.02)
R^2		[0]	[0]	[0]	[0]		[0]	[0]	[0.03]	[0.07]
C. Equity Pr	emium									
ln(C/W)	t	0.13	0.12	0.01	-0.04		0.29	0.26	0.09	-0.01
		(0.15)	(0.15)	(0.09)	(0.07)		(0.19)	(0.19)	(0.10)	(0.07)
R^2		[0]	[0]	[0]	[0] [0]		[0.01]	[0.03]	[0.02]	[0.02]
D. Population Growth										
ln(C/W)	t	0.03***	0.03***	0.03***	0.02**	*	0.01	0.01	0.01*	0.01*
		(0.01)	(0.01)	(0.01)	(0.01)		(0.01)	(0.01)	(0.01)	(0.01)
R^2		[0.30]	[0.32]	[0.34]	[0.31]		[0.62]	[0.64]	[0.67]	[0.68]
E. Term Pre	mium					'				
ln(C/W)	t	-0.05***	-0.05***	-0.05***	-0.04**	*	-0.03	-0.03*	-0.03***	-0.02**
		(0.01)	(0.01)	(0.01)	(0.01)		(0.02)	(0.01)	(0.01)	(0.01)
R^2		[0.11]	[0.15]	[0.27]	[0.27]		[0.17]	[0.23]	[0.40]	[0.52]
			U.S., U.K., Fi	ance and G	ermany (1920 - 2	2015)			
A. Short terr	m intere	est rate								
$ln(C/W)_t$	0.07	0.08	0.12***	0.17**	**	0.07	0.08	0.13	*** 0.17	***
	(0.05) (0.05) (0.04)	(0.04)	(0.06)	(0.06)	(0.0	5) (0.0	04)
R^2	[0.03	[0.05	[0.18]	[0.35	1	[0.02]	[0.04]	[0.1	7] [0.3	35]
E. Term Pre	mium			•				•		
$ln(C/W)_t$	-0.03*	** -0.04*	* -0.05***	* -0.04*	**	-0.03	-0.03**	-0.04	*** -0.04	***
	(0.02) (0.01) (0.01)	(0.01)	(0.02)	(0.02)	(0.0	1) (0.0	01)
R^2	[0.07] [0.12	[0.36]	[0.38]	[0.09]	[0.14]	[0.4	0] [0.4	14]

Comment 1: Stationarity of C/W: Takeway

<u>Their main result holds:</u> (with the exception of population growth) C/W is a predictor of risk free rate and term premium at **long** horizons Decomposition does not have a causal interpretation

Key Issues:

- What is causing C/W to change over time?
- \bullet Are there other predictors of risk-free rates or only C/W?

- Productivity shock: risk free rate and consumption growth moves (-)
- Demographic shock: Ambiguous since demography effects both savings and return to capital
- Deleveraging shock: risk free rate and consumption growth moves (+); risk free rate and C/W moves (+)
- Risk Appetite shock: safe asset demand \uparrow , risk free rate \downarrow , risk premium \uparrow

- Productivity shock: risk free rate and consumption growth moves (-)
- Demographic shock: Ambiguous since demography effects both savings and return to capital
- Deleveraging shock: risk free rate and consumption growth moves (+); risk free rate and C/W moves (+)
- Risk Appetite shock: safe asset demand \uparrow , risk free rate \downarrow , risk premium \uparrow

VAR results:

- C/W moves (+) with the risk free rate component \Rightarrow deleveraging shock
- Risk free rate component moves (-) with consumption growth component ⇒ productivity/demographic shock

- Productivity shock: risk free rate and consumption growth moves (-)
- Demographic shock: Ambiguous since demography effects both savings and return to capital
- Deleveraging shock: risk free rate and consumption growth moves (+); risk free rate and C/W moves (+)
- Risk Appetite shock: safe asset demand \uparrow , risk free rate \downarrow , risk premium \uparrow

VAR results:

- C/W moves (+) with the risk free rate component \Rightarrow deleveraging shock
- Risk free rate component moves (-) with consumption growth component ⇒ productivity/demographic shock

LR Co-variability results:

- Risk free rates do not move with population and consumption growth
- C/W (-) moves with term premium
- Risk free rates (-) moves with term premium

- Productivity shock: risk free rate and consumption growth moves (-)
- Demographic shock: Ambiguous since demography effects both savings and return to capital
- Deleveraging shock: risk free rate and consumption growth moves (+); risk free rate and C/W moves (+)
- Risk Appetite shock: safe asset demand \uparrow , risk free rate \downarrow , risk premium \uparrow

VAR results:

- C/W moves (+) with the risk free rate component \Rightarrow deleveraging shock
- Risk free rate component moves (-) with consumption growth component ⇒ productivity/demographic shock

LR Co-variability results:

- Risk free rates do not move with population and consumption growth
- C/W (-) moves with term premium
- Risk free rates (-) moves with term premium

 \Rightarrow Deleveraging and risk appetite shocks in the data; productivity and demographic shocks in the model based VAR (Euler equation)

- Productivity shock: risk free rate and consumption growth moves (-)
- Demographic shock: Ambiguous since demography effects both savings and return to capital
- Deleveraging shock: risk free rate and consumption growth moves (+); risk free rate and C/W moves (+)
- Risk Appetite shock: safe asset demand \uparrow , risk free rate \downarrow , risk premium \uparrow

VAR results:

- C/W moves (+) with the risk free rate component \Rightarrow deleveraging shock
- Risk free rate component moves (-) with consumption growth component ⇒ productivity/demographic shock

LR Co-variability results:

- Risk free rates do not move with population and consumption growth
- C/W (-) moves with term premium
- Risk free rates (-) moves with term premium

 \Rightarrow Deleveraging and risk appetite shocks in the data; productivity and demographic shocks in the model based VAR (Euler equation)

⇒ Deleveraging shock can deliver (-) movement of risk free rate and risk premium by adding debt overhang on investment (Kalemli-Ozcan et al., 2018): \uparrow saving and \downarrow investment so \uparrow MPK

Can we use the model to identify the causal shock?

- A nice <u>structural</u> model but not use it to explain data; rather do reduced form VAR and predictive regressions.
- Understandable since decomposition result depends on model specification.
- Still, can add all the shocks to the model and calculate share of variance explained by each shock from the model as another way of interpretation.
 - Risk free rate becomes a function of deleveraging and risk appetite shocks and since these fluctuate more in the data, they dominate the negative relation between risk free rate and consumption growth.

Can we use the model to identify the causal shock?

- A nice <u>structural</u> model but not use it to explain data; rather do reduced form VAR and predictive regressions.
- Understandable since decomposition result depends on model specification.
- Still, can add all the shocks to the model and calculate share of variance explained by each shock from the model as another way of interpretation.
 - Risk free rate becomes a function of deleveraging and risk appetite shocks and since these fluctuate more in the data, they dominate the negative relation between risk free rate and consumption growth.

Data Risk Free Rate Predicting (U.S., 1870 - 2015)						Model Risk Free Rate Predicting					
Forecast Horizon (Years)					-	Forecast Horizon (Years)					
-	1	2	5	10	-		1	2	5	10	
In(C/W)	0.13**	0.14**	0.14***	0.15***	-	In(C/W)	0.11***	0.11***	0.10***	0.08***	
R^2	[0.09]	[0.11]	[0.19]	[0.29]		R^2	[0.20]	[0.23]	[0.25]	[0.22]	

A quick test of the fit of the model:

- Deleveraging shock explains C/W
- Deleveraging shock + risk appetite shock explain risk free rate

U.S. (1870 - 2015), Contribution of each shock (percent)

	Productivity (g)	Demographics (n)	Deleveraging (ρ)	Risk App. (θ)
In(C/W)	2.18	1.34	92.01	4.47
Risk free rate	5.80	0.24	30.58	63.38

The table reports the share of unconditional variance of log consumption to wealth (C/W) and risk free rate explained by each shock. The share of productivity and population growth shocks includes both first and second moment shock.

Comment 3: Horse-Race Prediction for Rates

United States (1870 - 2015)								
Horizon	1	2	5	10	1	2	5	10
	1	No C/W and		All va	riables			
$ln(C/W)_t$					0.06	0.08	0.09**	0.11***
					(0.06)	(0.07)	(0.05)	(0.03)
C. growth _t	-0.02	-0.05	0.03	0.00	-0.04	-0.07	0.01	-0.02
	(0.13)	(0.10)	(0.06)	(0.06)	(0.13)	(0.09)	(0.05)	(0.04)
EP _t	-0.01	0.02	0.03*	0.01	0.00	0.03	0.03*	0.02*
	(0.02)	(0.02)	(0.01)	(0.01)	(0.02)	(0.02)	(0.02)	(0.01)
Pop. growth _t	1.34	1.25	1.69*	1.83**	0.77	0.50	0.81	0.94
	(1.13)	(1.13)	(0.93)	(0.83)	(1.36)	(1.39)	(1.12)	(0.81)
TP _t	-1.22***	-1.20***	-0.81***	-0.58***	-1.17***	-1.13***	-0.73***	-0.47**
	(0.36)	(0.39)	(0.27)	(0.20)	(0.36)	(0.40)	(0.27)	(0.19)
R^2	[0.21]	[0.22]	[0.24]	[0.27]	[0.21]	[0.25]	[0.30]	[0.38]

U.S., U.K., France and Germany (1920 - 2015)

Horizon	1	2	5	10	1	2	5	10
	1	No C/W and o		All var	riables			
$ln(C/W)_t$					0.02	0.04	0.10**	0.14***
					(0.04)	(0.04)	(0.04)	(0.03)
C. growth t	-0.05	0.01	0.16	0.17*	-0.07	-0.03	0.06	0.05
	(0.16)	(0.15)	(0.14)	(0.09)	(0.15)	(0.13)	(0.13)	(0.09)
EP _t	-0.01	0.01	0.01	-0.01	-0.01	0.01	0.01	0.00
	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)	(0.02)
Pop. growth _t	1.01	1.18	1.66*	1.32*	0.91	0.80	0.72	0.15
	(1.00)	(1.16)	(0.93)	(0.74)	(1.15)	(1.20)	(0.93)	(0.60)
TP _t	-1.42***	-1.49***	-1.00**	-0.80***	-1.40***	-1.45***	-0.93**	-0.65***
	(0.34)	(0.36)	(0.39)	(0.29)	(0.34)	(0.37)	(0.37)	(0.24)
R ²	[0.24]	[0.27]	[0.20]	[0.19]	[0.24]	[0.28]	[0.28]	[0.41]

Conclusion

- Important contribution showing effects of debt super cycle and deleveraging on real risk free rate decline
- Term premium and C/W ratio can predict risk free rates
 C/W can also predict term premium
- Different approach relative to the literature, so need little bit more work to nail down identification
- Important policy implications:
 - Role of expectations: Term premium can predict short-term risk free rates.
 - Long run persistent effects of debt driven financial crises on risk free rates.
 - Puts effectiveness of monetary policy under persistent low interest rates in doubt (Borio and Hoffman, 2017)