Global Real Rates: A Secular Approach

Pierre-Olivier Gourinchas¹ Hélène Rey²

¹UC Berkeley & NBER & CEPR

²London Business School & NBER & CEPR

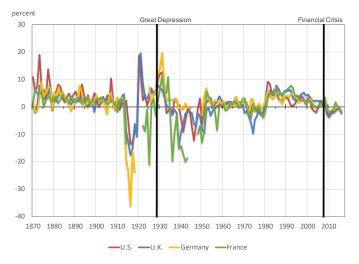
Bank for International Settlements, Zurich, June 2018

17th Annual BIS Conference: Ten Years after the Great Financial Crisis: what has changed?

Main Question:

Why have global real interest rates declined so much, and for how much longer?

- Propose a simple empirical approach using the world budget constraint and a century of historical data.
 - 1. Gives us insights regarding the forces behind low frequency movements in real rates.
 - 2. Allows us to forecast future global real rates.


Implications for the future, and international policy coordination

U.S. Ex-Ante Real Rates

Ex-ante real yields on U.S. Treasury Securities constructed using median expected price changes from the University of Michigan's Survey of Consumers. Source: FRED.

'Historical' Real Rates, 1870-2015

Ex-post real rates are constructed as the nominal interest rate on 3-months Treasuries minus realized CPI inflation. Source: Jordà et al (2016).

Facts and Possible Interpretations

- Decline in natural rate: Holston et al (2017), Laubach and Williams (2016)
- Secular Stagnation':
 - 1. Demography: Hansen (1939), Carvalho et al (2016)
 - 2. Productivity growth: Summers (2013), Gordon (2012)
 - 3. Demand for safe assets: Caballero et al (2016), del Negro et al (2017)
- Savings Glut: Bernanke (2005), Caballero et al (2008)
- Deleveraging after the crisis: Eggertson Krugman (2012); Guerrieri and Lorenzoni (2011); Lo and Rogoff (2015)

Consumption-to-Wealth Ratio

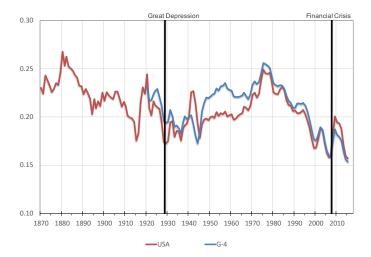


Figure: Consumption-to-Private Wealth Ratio, 1870-2015, United States and G-4 (U.S., U.K., Germany and France). Sources: Jordá et al (2016), Piketty et al (2017) and WID.

Theoretical framework

• Wealth accumulation for the world (financial integration):

$$\bar{W}_{t+1} = \bar{R}_{t+1}(\bar{W}_t - C_t)$$

Accounting identity.

Theoretical Framework

• Most models deliver a stationary C/\overline{W} . Details unimportant.

 Log-linearize around the steady-state consumption-wealth ratio (Campbell (1986), Lettau and Ludvigson (2001)):

$$\ln C_t / \bar{W}_t \simeq \mathbb{E}_t \sum_{s=1}^{\infty} \rho_w^s \left(\bar{r}_{t+s}^w - \Delta \ln C_{t+s} \right)$$

Today's aggregate consumption to wealth ratio is low if:

- Expected future rates of return on wealth \bar{r}^w are low
- Expected future aggregate consumption growth $\Delta \ln C$ is high

Theoretical Framework: Two Adjustments

▶ Private wealth vs. human wealth. $\overline{W} = W + H$. H unobserved.

$$\ln C_t / W_t \simeq \mathbb{E}_t \sum_{s=1}^{\infty} \rho_w^s \left(r_{t+s}^w - \Delta \ln C_{t+s} \right) + \varepsilon_t$$

with $\varepsilon_t \propto \mathbb{E}_t \sum_{s=1}^{\infty} \rho_w^s \left(r_{t+s}^h - r_{t+s}^w \right) - (\ln W_t - \ln H_t)$. Interpretation.

- safe and risky returns. write $r^w \equiv r^f + er^w$.
 - proxy er^w = v'er where er is a vector of observed excess returns (equity, bonds, housing)
 - estimate ν from the data.

Present value relation:

$$\ln C_t / W_t \simeq \mathbb{E}_t \sum_s \rho_w^s r_{t+s-1}^f + \nu' \mathbb{E}_t \sum_s \rho_w^s \operatorname{er}_{t+s} - \mathbb{E}_t \sum_s \rho_w^s \Delta \ln C_{t+s} + \varepsilon_t$$

$$\equiv c w_t^f + c w_t^{rp} + c w_t^c + \varepsilon_t$$

Identification

Look at co-movements of $\ln C/W$ and components:

- ▶ Productivity slowdown: $c \downarrow, r^f \downarrow$
- Aging/demography: saving \uparrow , $r^f \downarrow$
- ▶ Deleveraging: c?, $r^f \downarrow$
- ▶ Risk Appetite \downarrow : $rp \uparrow$, $r^f \downarrow$

Data

 World is an aggregate of the United States, the United Kingdom, Germany and France.

- Historical data on private wealth, population and private consumption for the period 1870-2015 for the United States, and 1920-2015 for the United Kingdom, Germany and France from Piketty et al. (2014) and Jordà et al. (2016).
 - Risk-free return: ex-post real return on three-months Treasuries minus CPI inflation.
 - Real return on risky assets: total equity return for each country minus CPI inflation.

'Global' Consumption & Wealth per capita, 1920-2015

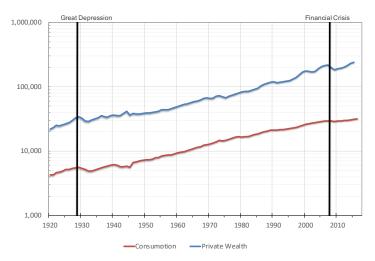


Figure: The figure reports real annual private consumption expenditures and real private wealth (land, housing, financial assets) for the U.S., U.K., Germany and France in 2010 US dollars. Source: Jordà et al (2016), Piketty et al (2017) and WID.

Financial and Housing Wealth

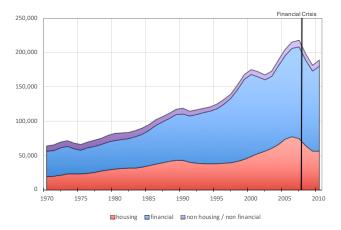
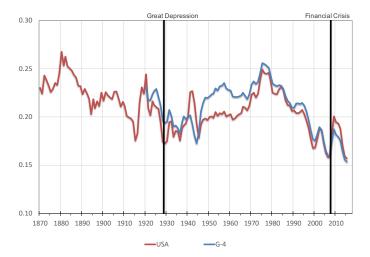
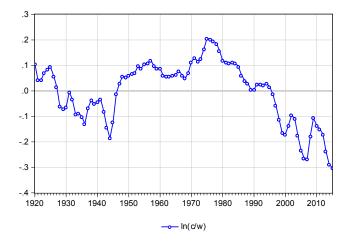
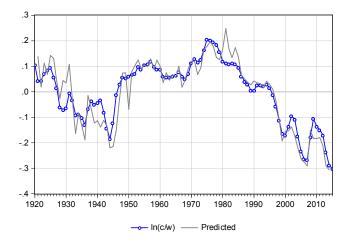
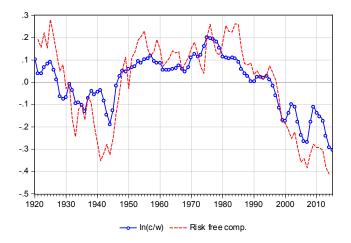
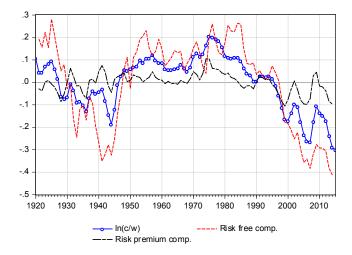


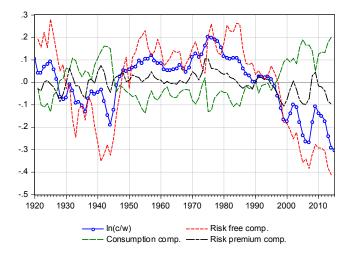
Figure: Housing, Financial and Private Wealth per capita, 2010 USD, United States, United Kingdom, Germany and France, 1970-2010. Source: Piketty & Zucman (2014).

Consumption-to-Wealth Ratio


Figure: Consumption-to-Private Wealth Ratio, 1870-2015, United States and G-4 (U.S., U.K., Germany and France). Sources: Jordá et al (2016), Piketty et al (2017) and WID.


The figure decomposes $\ln(C/W)$ into a risk-free component (cw^{f}) , an excess return component (cw^{rp}) and a consumption growth component (cw^{c}) .

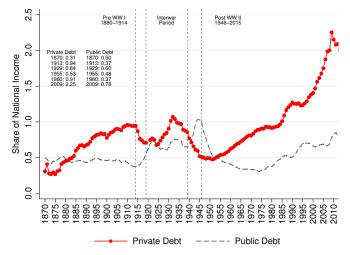

The figure decomposes $\ln(C/W)$ into a risk-free component (cw^{f}) , an excess return component (cw^{rp}) and a consumption growth component (cw^{c}) .

The figure decomposes $\ln(C/W)$ into a risk-free component (cw^{f}) , an excess return component (cw^{rp}) and a consumption growth component (cw^{c}) .

The figure decomposes $\ln(C/W)$ into a risk-free component (\mathbf{cw}^{f}) , an excess return component (\mathbf{cw}^{rp}) and a consumption growth component (\mathbf{cw}^{c}) . $\hat{\nu} = 0.33$

The figure decomposes $\ln(C/W)$ into a risk-free component (cw^{f}) , an excess return component (cw^{rp}) and a consumption growth component (cw^{c}) . $\hat{\nu} = 0.33$.

Unconditional Variance Dec.


#	percent	U.S.	G4
1	β_{r^f}	1.446	1.361
2	β_{rp}	0.191	0.266
3	β_c	-0.420	-0.548
	of which:		
3	β_{cp}	-0.096	-0.315
4	β_n	-0.324	-0.232
5	Total	1.217	1.079
	(lines 1+2+3)		

Results & Interpretation

- Very good fit of the decomposition
- ► Most of the movements in C/W reflect expected movements in the future risk-free rate
- Productivity and demographic shocks: some contribution.
- Demand for Safe Assets: risk premium is a residual.
- Deleveraging shocks: most plausible suspect...? Timing is very striking.

Deleveraging Episodes

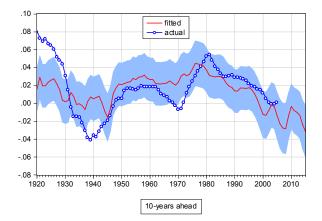
A. Growth of Private and Public Debt

Interpretation

Most of the action is in the joint dynamics of the consumption wealth ratio and the return component, particularly the risk free rate.

Plausible interpretation:

- 'Irrational exuberance' in asset prices in the 1920s and in the 1990-2000s: fast growing financial wealth and fast declining consumption-wealth ratios.
- Large financial crises in 1929 and in 2008: deleveraging (increased savings and low consumption) for an extended time. Low consumption wealth ratios and low real rates.
- This is consistent with debt overhang effects (Reinhart and Rogoff (2014)) and a global financial boom/bust cycle (Miranda-Agrippino & Rey (2015)).


Predicting Global Real Risk-free Rates

Predictive power of the consumption-wealth ratio:

$$y_{t+k} = \alpha + \beta c w_t + \epsilon_{t+k}$$

- ▶ y_{t+k} denotes the variable we are trying to forecast at horizon k and cw_t is the consumption-wealth ratio at the beginning of period t.
- Candidates are: real risk free rates, equity premium, consumption growth per capita, population growth, term premium, credit growth.
- Strong predictive power for long run real rates. (Adj. R² is 0.43 on a 10 year horizon).

Predicting Global Real Risk-free Rates

The figure forecasts the 10-year average future short risk-free rate using ln(C/W). Graph includes 2 standard deviation bands.

2015-2025 forecast: -3.1%

U.S. real rates: A Kalman Filter Approach

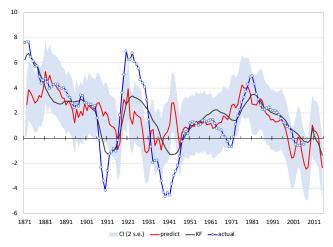
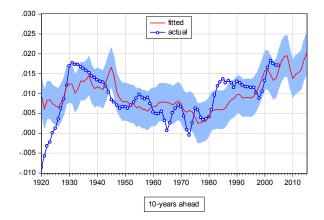



Figure: Predictive Regressions: Real interest rate, 1870-2015. Note: The graph reports forecasts at 10 years of the annualized risk-free rate: a simple forecast using $\ln(C/W)$ and a Kalman Filter estimate using Koijen and van Binsbergen (2010). 2015-2025 forecast: -2.35%, KF: -1.37%.

Predicting Global Term Premium

The figure forecasts the 10-year average future global term premium using $\ln({\it C}/W).$ Graph includes 2 standard deviation bands.

2015-2025 forecast: 2.0%.

Implications for International Policy Coordination

- ► Fragile global environment: recurrence of ELB
- Limits of traditional policies and limited policy space (monetary, fiscal)
- Propagation of recessions via external surpluses; Exchange rate policies matter (currency wars) Caballero, Farhi & Gourinchas (2016)
- Incentives for debt issuance from safe asset providers, but potential instability from multipolar system
- International provision of liquidity, global safety nets. Outside liquidity vs. Inside liquidity.

Conclusions

- We use a very general almost a-theoretical framework to understand determinants of long run real rates.
- Empirical evidence favors global financial boom/bust cycle.
- Euphoria pre-crisis leads to rapid increase in wealth (1920s, 1990s). This is followed by deleveraging post crisis (1929, 2008) and increased demand for 'safe' assets.
- Low consumption-wealth ratios are associated with lower future real rates.
- Evidence for technological slowdown or demographic factors (?)
- Predictive power: How long will the real rates stay low? Into next decade!