Has Globalization Changed the Inflation Process?

Comments Simon Gilchrist New York University and NBER

BIS Annual Research Conference Zurich June 22nd 2018

- Examine the relationship between inflation and domestic versus global economic factors.
- Motivation: Relationship between domestic inflation and domestic slack appears to have weakened.
- Is this because of increased globalization?
 - Trade.
 - Global supply chains.
 - Global growth and commodity price cycle.
 - Common monetary policy.

- Missing deflation puzzle during Great Recession in the U.S.
- Similar evidence of missing deflation during eurozone crisis.
- Missing inflation during the recent recovery and expansion?

- Global factor analysis.
- Phillips curve estimation
- Trend-cycle decomposition of inflation.

- Global factor accounts for 40-50% of variation in CPI and PPI Inflation.
- Global factor accounts for only 20% of variation in both core and wage inflation.
- Post 2000:
 - Dramatic increase in importance of global factor for CPI (from 30 to 60 percent).
 - Suggests global cycle matters primarily for food and energy.

- Full-sample estimation:
 - Domestic and global output gaps are important determinants of both CPI and Core Inflation.
 - Real exchange rate and commodity prices have significant but economically modest effects.
- Post 2000:
 - World output gap and commodity price effects become much more important for CPI inflation.
 - World output gap and commodity price effects become much less important for Core inflation.
- Results are broadly consistent with global factor analysis.

Additional results:

- Price dispersion has positive effect but only matters in pre 2000 period is this consistent with increased global competition?
- Domestic slack matters much less for core inflation during post 2000 period.
- Country level analysis results vary widely hints at power of using cross-section for identification.
- Trend-cycle results also imply strong response of cyclical component to inflation expectations and domestic slack.
 - Can we distinguish inflation expectations from trend two-sided filter?
 - World output gap only matters for core inflation and only in post-2000 sample consistency with Phillips curve estimates?

- Mix of supply and demand shocks drive inflation-output dynamics.
- Inflation expectations are sluggish and self-fulfilling.
- Country-level data may suffer from endogeneity with monetary policy (Tenreyro 2018).
- Financial factors cloud the relationship.

- Customer markets sell more today and build customer base for tomorrow.
 - Reducing price is an investment in future market share.
- When financial conditions deteriorate, firms raise markups to increase current cash flow at the expense of future market share.
- Implications: financial frictions attenuate the relationship between economic slack and inflation Phillips curve is flatter.

NOTE: Weighted average monthly inflation relative to industry (2-digit NAICS) inflation.

U.S. Industry-Level Inflation Response to EBP Gilchrist and Zakrajsek (2010)

U.S. Industry-Level Output Response to EBP

Phillips Curve Estimates: U.S. Industry-Level Data

	1973-2014			1973-2006		
$(Y_{jt} - \bar{Y}_{jt})$ EPB_t	0.077 (0.011)	0.071 (0.011) -1.566	0.068 (0.011) -3.505	0.078 (0.013)	0.072 (0.013) -1.123	0.068 (0.013) -2.966
$EBP_t * SA_j$		(0.143)	(0.375) 3.506 (0.627)		(0.197)	(0.502) 3.381 (0.847)
R ² Note	0.107 :: SA_j varies	0.114 between 0 (lea	0.115 (st constrained)	0.098 to 1 (most cor	0.100 istrained).	0.101

$$\pi_{jt+1} = \rho \pi_{jt} + \alpha (Y_{jt} - \bar{Y}_{jt}) + \beta EBP_t + \gamma EBP_t SA_j + \varepsilon_{j,t}$$

• Panel-versions of price and wage Phillips Curves:

$$\pi_{it} = \alpha_i + \beta \pi_{i,t-1} + \lambda (u_{it} - \bar{u}_{it}) + \phi \Delta \text{VAT}_{it} + \psi \mathbf{1}[i \in] + \epsilon_{it};$$

$$\Delta w_{it} = \alpha_i + \beta \pi_{i,t-1} + \lambda (u_{it} - \bar{u}_{it}) + \phi \Delta \tilde{z}_{it} + \psi \mathbf{1}[i \in] + \epsilon_{it};$$

- Countries: AUT, DEU, BEL, FIN, FRA, NLD, GRC, IRL, ITA, ESP, PRT
- Estimation period: 1970–2007

Estimated Euro Area Phillips Curves Gilchrist, Schoenle, Sim and Zakrajsek (2018)

	Prices		Wages		
Explanatory Variables	(1)	(2)	(3)	(4)	
$(u_{it}-ar{u}_{it})$	-0.273 (0.117)	-0.529 (0.127)	-0.559 (0.096)	-0.659 (0.118)	
$\pi_{i,t-1}$	0.845 (0.046)	0.813 (0.046)	0.763 (0.057)	0.745 (0.050)	
$\Delta \tilde{z}_{it}$			0.689	0.668	
Adj. R^2	0.839	0.845	0.858	0.872	

NOTE: Time-clustered standard errors in parentheses.

Financial Conditions and PC Prediction Errors

With time fixed effects, 2008–2013

	Explana		
PC Prediction Error	$\ln \text{CDS}_{i,t-1}$	$\ln \text{CDS}_{i,t-1} \times 1[i \in \mathbf{P}]$	R^2
(1) Prices (homogeneous)	0.044 [-0.239, 0.327]	0.453 [0.092, 0.814]	0.329
(2) Prices (heterogeneous)	0.684 [0.369, 0.999]	0.275 [0.031, 0.519]	0.419
(4) Wages (homogeneous)	-1.364 [-2.221, -0.506]	-0.495 [-1.359, 0.369]	0.352
(5) Wages (heterogeneous)	-2.196 [-2.731, -1.661]	-1.469 [-2.550, -0.389]	0.542

NOTE: Bootstrapped 95% confidence intervals in brackets.

NOTE: The markup is equal to minus (100 times) the log or real unit labor costs (2008 = 1). SOURCE: AMECO database.

Financial Conditions and Price Markups

Euro area, 2008–2013, with time fixed effects

NOTE: Bootstrapped 95% confidence intervals in brackets.

- Rich paper documenting relationship between inflation and domestic vs global factors.
- Domestic slack and inflation expectations are prime drivers of inflation in pooled-regressions.
- Global factors appear to primarily matter for CPI rather than core inflation.
- Financial factors and inflation attenuate inflation dynamics and help explain missing deflation are there implications for the global financial cycle and inflation dynamics?