Payments, Credit & Asset Prices

Monika Piazzesi Martin Schneider Stanford Stanford

Luzern, June 2017

US dollar payments; quarterly at annual rates

Simple model of payments & asset pricing

- Layered payment system with two media of exchange
 - banks handle payment instructions with reserves = outside money → cost of liquidity *i* − *i_R*, zero if reserves abundant
 - ▶ households & investors pay for goods & securities with inside money → cost of liquidity > 0, depends on bank balance sheets
- Inside money demand from institutional investors
 - sensitive to cost of liquidity, asset market shocks
- Nominal price level & financial structure
 - higher if banks supply more inside money
 - Iower if institutional investors absorb more inside money
- Intermediary asset pricing
 - securities back inside money ightarrow price reflects collateral value
 - \blacktriangleright inside money needed to trade securities \rightarrow price reflects cost of liquidity
- Transmission of government policy
 - asset trades vs interest on reserves
 - nominal interest rate not enough to summarize policy stance

Model: only goods transactions require inside money

Model: asset trades also require inside money

Inside money: deposits & credit lines

Model summary

- Households
 - infinitely-lived, linear utility, averse to Knightian uncertainty
 - pay for goods with inside money
- Financial institutions: banks & active traders
 - maximize shareholder value, freely adjust equity, constant returns
 - idiosyncratic liquidity shocks require payments
 - ★ banks pay with reserves (possibly borrowed)
 - ★ active traders pay with inside money
 - ▶ bank leverage cost = resources used when commitments made
 - ★ increases with inside money, Fed funds borrowing
 - ★ declines with value & safety of bank assets
- Government
 - interest rate on reserves, paths for debt & reserves
- Competitive equilibrium with flexible prices and constant output \rightarrow inside money supply, nominal price level & real asset prices

Optimal bank choices

Assets	Liabilities
Reserves Fed funds lending Gov debt	Deposits Fed funds borrowing Equity
Trees	

- Choose positions to equate MC equity = MB assets = MC debt
- Determine two key ratios, same for all banks

liquidity ratio
$$\lambda := \frac{\text{reserves}}{\text{deposits}} = \frac{1}{\text{money multiplier}}$$

collateral ratio
$$\kappa := \frac{\text{risk-weighted assets}}{\text{debt}} = \frac{1}{\text{leverage}}$$

• related via balance sheet (for example, narrow bank: $\kappa=\lambda$)

ightarrow summarize banking system by (λ,κ)

Scarce vs abundant reserves

- Plot liquidity and collateral ratio
- bounded liquidity shocks, two regions

liquidity ratio λ

Liquidity management curve

- Optimal capital structure responds to liquidity ratio
 - "how much collateral is optimal at liquidity ratio λ?"
 - ▶ slopes down: hi λ ⇒ borrow overnight less often ⇒ lo κ ok
 - abundant reserves: never borrow, no further reduction in κ

- "money demand":
 - high collateral ratio
 - = high interest rate
 - = high cost of liquidity
 - = low liquidity ratio
- "liquidity trap" for high λ

Capital structure curve

- Balance sheet relates liquidity ratio λ and collateral ratio κ
 - given other collateral available to banks, what λ needed to achieve κ ?
 - curve slopes up: to get more collateral, add reserves

- equilibrium = intersection of curves
- reserves can be scarce or abundant
- curves shift with policy, asset market shocks

Inside money, nominal price level, and real asset prices

- Inside money cheaper if λ , κ higher since lower leverage cost for banks
- Intermediary asset pricing & endogenous market segmentation
 - \blacktriangleright banks value assets as collateral \rightarrow higher prices, lower returns
 - $\star\,$ short bonds priced only by banks, not held by households
 - active traders perceive low uncertainty on trees, need inside money
 prices of trees held by active traders higher if inside money cheaper
- Nominal price level

- only money circulating in goods market matters for price level
- velocity low if inside money cheap, but also in asset market booms

Tighter money: central bank asset sale

- Sell bonds to banks in exchange for reserves
- More collateral other than reserves available to banks
- Lower λ needed to achieve any collateral ratio κ : CS shifts left

bank ratios

- ► lower λ
- \rightarrow higher κ , real rate
- deflationary
 - fewer reserves
 - higher money multiplier
- stronger effect if
 - sale large enough to move to scarcity
 - less interbank netting

Tighter money: higher interest on reserves

- ullet Higher ROA ightarrow maintain return on equity at lower leverage
- Banks choose higher collateral ratio at any λ : LM shifts up
- Here: same κ and short rate as after bond sale

- bank ratios
 - higher κ
 - ightarrow higher λ , real rate
- deflationary
 - Iower money multiplier
 - more deposit demand by active traders
- stronger effect if
 - more active traders
 - less nominal collateral

Summary of results

- Policy transmission depends on financial structure
 - interest on reserves
 - * changes profitability of bank assets, optimal leverage
 - $\star\,$ inflation response depends on exposure of bank assets
 - government asset trades
 - * change amount of collateral available to back inside money
 - ★ inflation & interest rate responses depend on interbank netting
 - short nominal interest rate does not summarize policy stance
- Interaction payments system & securities markets
 - \blacktriangleright asset market shocks \rightarrow nominal price level
 - ★ money supply: value of bank assets \downarrow , money multiplier \downarrow , deflationary
 - monetary policy \rightarrow (real) asset prices
 - \star supply: asset purchases make bank assets more scarce, prices \uparrow