Reconciling Hayek’s and Keynes’ views of recessions

Paul Beaudry, Dana Galizia & Franck Portier

Vancouver School of Economics, VSE & Toulouse School of Economics

BIS Conference
March 10-11, 2015
0. Introduction
Recessions

- Recessions often come after periods of rapid accumulation of assets (productive capital, houses, durable goods)
- Two opposite views of economic policy in those recessions
 - Hayek
 - Keynes
Recessions often come after periods of rapid accumulation of assets (productive capital, houses, durable goods)

Two opposite views of economic policy in those recessions

- Hayek
- Keynes
0. Introduction
Recessions

- Recessions often come after periods of rapid accumulation of assets (productive capital, houses, durable goods)
- Two opposite views of economic policy in those recessions
 - Hayek
 - Keynes
0. Introduction

Recessions

- Recessions often come after periods of rapid accumulation of assets (productive capital, houses, durable goods)
- Two opposite views of economic policy in those recessions
 - Hayek
 - Keynes
0. Introduction
The Liquidationist View (Friedrich Hayek)

- Recessions are needed to cleanse the economy.
- Gvt spendings, aggregate demand management only delays necessary adjustment.
0. Introduction
The Liquidationist View (Friedrich Hayek)

- Recessions are needed to cleanse the economy.
- Gvt spendings, aggregate demand management only delays necessary adjustment.
0. Introduction
The Aggregate Demand View (John Maynard Keynes)

- Recessions are periods of insufficient demand
- Activist fiscal policy is needed
0. Introduction
The Aggregate Demand View (John Maynard Keynes)

- Recessions are periods of insufficient demand
- Activist fiscal policy is needed
Introduction
This Paper

- Show that the two views are not mutually exclusive
- “Over-” (“mal-”) accumulation of physical assets creates the need \textit{liquidation} \Rightarrow recession
- \textit{Liquidation} can produce periods where the economy functions particularly inefficiently.
- Many socially desirable trades between individuals may remain unexploited.
- In this sense, a need for liquidation can cause recessions characterized by deficient aggregate demand.
- Some stimulative policies may remain desirable even if they postpone a recovery.
0. Introduction
This Paper

► Show that the two views are not mutually exclusive
► “Over-” (“mal-”) accumulation of physical assets creates the need liquidation \leadsto recession
► Liquidation can produce periods where the economy functions particularly inefficiently.
► Many socially desirable trades between individuals may remain unexploited.
► In this sense, a need for liquidation can cause recessions characterized by deficient aggregate demand.
► Some stimulative policies may remain desirable even if they postpone a recovery.
0. Introduction

This Paper

- Show that the two views are not mutually exclusive
- “Over-” (“mal-”) accumulation of physical assets creates the need liquidation \leadsto recession
- Liquidation can produce periods where the economy functions particularly inefficiently.
- Many socially desirable trades between individuals may remain unexploited.
- In this sense, a need for liquidation can cause recessions characterized by deficient aggregate demand.
- Some stimulative policies may remain desirable even if they postpone a recovery.
0. Introduction
This Paper

- Show that the two views are not mutually exclusive
- “Over-” (“mal-”) accumulation of physical assets creates the need liquidation \leadsto recession
- Liquidation can produce periods where the economy functions particularly inefficiently.
- Many socially desirable trades between individuals may remain unexploited.
- In this sense, a need for liquidation can cause recessions characterized by deficient aggregate demand.
- Some stimulative policies may remain desirable even if they postpone a recovery.
Introduction

This Paper

Show that the two views are not mutually exclusive

“Over-” (“mal-”) accumulation of physical assets creates the need liquidation \(\leadsto \) recession

Liquidation can produce periods where the economy functions particularly inefficiently.

Many socially desirable trades between individuals may remain unexploited.

In this sense, a need for liquidation can cause recessions characterized by deficient aggregate demand.

Some stimulative policies may remain desirable even if they postpone a recovery.
0. Introduction
This Paper

- Show that the two views are not mutually exclusive
- “Over-” (“mal-”) accumulation of physical assets creates the need liquidation \rightarrow recession
- Liquidation can produce periods where the economy functions particularly inefficiently.
- Many socially desirable trades between individuals may remain unexploited.
- In this sense, a need for liquidation can cause recessions characterized by deficient aggregate demand.
- Some stimulative policies may remain desirable even if they postpone a recovery.
0. Introduction
Main Ingredients

- Environment with decentralized markets & flexible prices.
- Two imperfections:
 - Labor market matching friction in the spirit of Diamond-Mortensen-Pissarides ⇒ unemployment risk
 - Adverse selection in the insurance market: unemployment risk is not insurable.
0. Introduction
Main Ingredients

- Environment with decentralized markets & flexible prices.
- Two imperfections:
 - Labor market matching friction in the spirit of Diamond-Mortensen-Pissarides → unemployment risk
 - Adverse selection in the insurance market: unemployment risk is not insurable.
0. Introduction
Main Ingredients

- Environment with decentralized markets & flexible prices.
- Two imperfections:
 - Labor market matching friction in the spirit of Diamond-Mortensen-Pissarides → unemployment risk
 - Adverse selection in the insurance market: unemployment risk is not insurable.
0. Introduction
Main Ingredients

- Environment with decentralized markets & flexible prices.
- Two imperfections:
 - Labor market matching friction in the spirit of Diamond-Mortensen-Pissarides \(\sim\) unemployment risk
 - Adverse selection in the insurance market: unemployment risk is not insurable.
0. Introduction
Main Mechanism

▶ If the economy finds itself with an excess of accumulated goods (houses, durables and/or capital goods):
 × Consumers and firms will spend less because they already have a lot, (Hayek view, this is the efficient thing to do)
 × Firms will hire less as demand is low
 × Consumers will consume less by fear of being unemployed,
 × Spendings will therefore be low (Keynes view, a (negative) multiplier shows up)
 × etc...
▶ There will be socially excessive precautionary savings
▶ Government spending can boost mutually beneficial trades ...
▶ ... but it will postpone the recovery by slowing down the liquidation process (in the dynamic version of the model)
0. Introduction
Main Mechanism

- If the economy finds itself with an excess of accumulated goods (houses, durables and/or capital goods):
 - Consumers and firms will spend less because they already have a lot, (Hayek view, this is the efficient thing to do)
 - Firms will hire less as demand is low
 - Consumers will consume less by fear of being unemployed,
 - Spendings will therefore be low (Keynes view, a (negative) multiplier shows up)
 - etc...

- There will be socially excessive precautionary savings

- Government spending can boost mutually beneficial trades ...

- ... but it will postpone the recovery by slowing down the liquidation process (in the dynamic version of the model)
0. Introduction
Main Mechanism

▶ If the economy finds itself with an excess of accumulated goods (houses, durables and/or capital goods):
 × Consumers and firms will spend less because they already have a lot, (Hayek view, this is the efficient thing to do)
 × Firms will hire less as demand is low
 × Consumers will consume less by fear of being unemployed,
 × Spendings will therefore be low (Keynes view, a (negative) multiplier shows up)
 × etc...

▶ There will be socially excessive precautionary savings
▶ Government spending can boost mutually beneficial trades ...
▶ ... but it will postpone the recovery by slowing down the liquidation process (in the dynamic version of the model)
0. Introduction
Main Mechanism

- If the economy finds itself with an excess of accumulated goods (houses, durables and/or capital goods):
 - Consumers and firms will spend less because they already have a lot, (Hayek view, *this is the efficient thing to do*)
 - Firms will hire less as demand is low
 - Consumers will consume less by fear of being unemployed,
 - Spendings will therefore be low (Keynes view, a (*negative*) multiplier shows up)
 - etc...

- There will be socially excessive precautionary savings

- Government spending can boost mutually beneficial trades ...

- ... but it will postpone the recovery by slowing down the liquidation process (*in the dynamic version of the model*)
0. Introduction
Main Mechanism

- If the economy finds itself with an excess of accumulated goods (houses, durables and/or capital goods):
 - Consumers and firms will spend less because they already have a lot, (Hayek view, this is the efficient thing to do)
 - Firms will hire less as demand is low
 - Consumers will consume less by fear of being unemployed,
 - Spendings will therefore be low (Keynes view, a (negative) multiplier shows up)
 - etc...

- There will be socially excessive precautionary savings
- Government spending can boost mutually beneficial trades ...
- ... but it will postpone the recovery by slowing down the liquidation process (in the dynamic version of the model)
0. Introduction
Main Mechanism

- If the economy finds itself with an excess of accumulated goods (houses, durables and/or capital goods):
 - Consumers and firms will spend less because they already have a lot, (Hayek view, this is the efficient thing to do)
 - Firms will hire less as demand is low
 - Consumers will consume less by fear of being unemployed,
 - Spendings will therefore be low (Keynes view, a (negative) multiplier shows up)
 - etc...

- There will be socially excessive precautionary savings
- Government spending can boost mutually beneficial trades ...
- ... but it will postpone the recovery by slowing down the liquidation process (in the dynamic version of the model)
0. Introduction
Main Mechanism

- If the economy finds itself with an excess of accumulated goods (houses, durables and/or capital goods):
 - Consumers and firms will spend less because they already have a lot, *(Hayek view, this is the efficient thing to do)*
 - Firms will hire less as demand is low
 - Consumers will consume less by fear of being unemployed,
 - Spendings will therefore be low *(Keynes view, a (negative) multiplier shows up)*
 - etc...

- There will be socially excessive precautionary savings

- Government spending can boost mutually beneficial trades ...

- ... but it will postpone the recovery by slowing down the liquidation process *(in the dynamic version of the model)*
0. Introduction
Main Mechanism

- If the economy finds itself with an excess of accumulated goods (houses, durables and/or capital goods):
 - Consumers and firms will spend less because they already have a lot, (Hayek view, *this is the efficient thing to do*)
 - Firms will hire less as demand is low
 - Consumers will consume less by fear of being unemployed,
 - Spendings will therefore be low (Keynes view, a (negative) multiplier shows up)
 - etc...

- There will be socially excessive precautionary savings
- Government spending can boost mutually beneficial trades ...
- ... but it will postpone the recovery by slowing down the liquidation process (in the dynamic version of the model)
If the economy finds itself with an excess of accumulated goods (houses, durables and/or capital goods):

- Consumers and firms will spend less because they already have a lot, (Hayek view, this is the efficient thing to do)
- Firms will hire less as demand is low
- Consumers will consume less by fear of being unemployed,
- Spendings will therefore be low (Keynes view, a (negative) multiplier shows up)
- etc...

- There will be socially excessive precautionary savings
- Government spending can boost mutually beneficial trades ...
- ... but it will postpone the recovery by slowing down the liquidation process (in the dynamic version of the model)
0. Introduction
What we do not do

- We do not propose a theory of why the economy might find itself with a (too) large stock of capital.
 - Noisy news
 - Lax monetary policy
 - Exhuberance
We do not propose a theory of why the economy might find itself with a (too) large stock of capital.

- Noisy news
- Lax monetary policy
- Exhuberance
0. Introduction
What we do not do

- We do not propose a theory of why the economy might find itself with a (too) large stock of capital.
 - Noisy news
 - Lax monetary policy
 - Exhuberance
0. Introduction
What we do not do

► We do not propose a theory of why the economy might find itself with a (too) large stock of capital.
 × Noisy news
 × Lax monetary policy
 × Exhuberance
0. Introduction
What I will present

- I will spend much of my time on a static version of model.
- I will also work with a model in which "capital" is indeed "durable goods"
- More general version in the paper
0. Introduction
What I will present

- I will spend much of my time on a static version of model.
- I will also work with a model in which "capital" is indeed "durable goods"
- More general version in the paper
0. Introduction
What I will present

- I will spend much of my time on a static version of model.
- I will also work with a model in which "capital" is indeed "durable goods"
- More general version in the paper
0. Introduction

References

- Lucas [1990]
- Lagos and Wright [2005]
- Angeletos and La’O [2013]
- Carroll [1992]
- Guerrieri and Lorenzoni [2009]
- Ravn and Sterk [2012]
- Chamley [2014], Kaplan and Menzio [2013], Heathcote and Perri [2012]
0. Introduction
Roadmap

1. Static model setup
2. Equilibrium
3. Interesting Properties of the Static Equilibrium
4. Extensions / Dynamics / Policy Trade-offs
0. Introduction

Roadmap

1. Static model setup
2. Equilibrium
3. Interesting Properties of the Static Equilibrium
4. Extensions / Dynamics / Policy Trade-offs
1. Static model setup

Figure 1: Overview: timeline

subpanel 1

subpanel 2
1. Static model setup

Figure 2: Overview: Initial goods

\[X \text{ given} \]
1. Static model setup

Figure 3: Overview: markets
1. Static model setup

Figure 4: Overview: markets
1. Static model setup

Figure 5: Overview: markets
1. Static model setup

Figure 6: Overview: firms
1. Static model setup

Figure 7: Overview: firms
1. Static model setup

Figure 8: Overview: households
1. Static model setup

Figure 9: Overview: households
1. Static model setup

Figure 10: Overview: households
1. Static model setup

Figure 11: Overview: households
1. Static model setup

Checklist

- X: exogenous amount of good that is already in households hands
- Mass L of households always looking for jobs
- Sub-period two is centralized, all the action is in sub-period 1
- Frictions on the labor market
- Unemployment risk that is not insured
- No coordination between firms, buyers and workers
- Buyers and workers credit/debit a bank account that they will clear in sub-period 2.
- Good 2 serves as the numéraire.
1. Static model setup

Checklist

- X: exogenous amount of good that is already in households hands
- Mass L of households always looking for jobs
- Sub-period two is centralized, all the action is in sub-period 1
- Frictions on the labor market
- Unemployment risk that is not insured
- No coordination between firms, buyers and workers
- Buyers and workers credit/debit a bank account that they will clear in sub-period 2.
- Good 2 serves as the numéraire.
1. Static model setup
Checklist

- X: exogenous amount of good that is already in households hands
- Mass L of households always looking for jobs
- Sub-period two is centralized, all the action is in sub-period 1
- Frictions on the labor market
- Unemployment risk that is not insured
- No coordination between firms, buyers and workers
- Buyers and workers credit/debit a bank account that they will clear in sub-period 2.
- Good 2 serves as the numéraire.
1. Static model setup
Checklist

- X: exogenous amount of good that is already in households hands
- Mass L of households always looking for jobs
- Sub-period two is centralized, all the action is in sub-period 1
- Frictions on the labor market
- Unemployment risk that is not insured
- No coordination between firms, buyers and workers
- Buyers and workers credit/debit a bank account that they will clear in sub-period 2.
- Good 2 serves as the numéraire.
1. Static model setup
Checklist

- X: exogenous amount of good that is already in households hands
- Mass L of households always looking for jobs
- Sub-period two is centralized, all the action is in sub-period 1
- Frictions on the labor market
- Unemployment risk that is not insured
- No coordination between firms, buyers and workers
- Buyers and workers credit/debit a bank account that they will clear in sub-period 2.
- Good 2 serves as the numéraire.
1. Static model setup

Checklist

- X: exogenous amount of good that is already in households hands
- Mass L of households always looking for jobs
- Sub-period two is centralized, all the action is in sub-period 1
- Frictions on the labor market
- Unemployment risk that is not insured
- No coordination between firms, buyers and workers
 - Buyers and workers credit/debit a bank account that they will clear in sub-period 2.
- Good 2 serves as the numéraire.
1. Static model setup

Checklist

- X: exogenous amount of good that is already in households hands
- Mass L of households always looking for jobs
- Sub-period two is centralized, all the action is in sub-period 1
- Frictions on the labor market
- Unemployment risk that is not insured
- No coordination between firms, buyers and workers
- Buyers and workers credit/debit a bank account that they will clear in sub-period 2.
- Good 2 serves as the numéraire.
1. Static model setup

Checklist

- X: exogenous amount of good that is already in households hands
- Mass L of households always looking for jobs
- Sub-period two is centralized, all the action is in sub-period 1
- Frictions on the labor market
- Unemployment risk that is not insured
- No coordination between firms, buyers and workers
- Buyers and workers credit/debit a bank account that they will clear in sub-period 2.
- Good 2 serves as the numéraire.
1. Static model setup
Preferences

\[U(X_j + e_j) - \nu(\ell_j) + V(-pe_j + I_j w]\ell_j). \]

- Initial endowment of \(X_j \) units of good 1.
- Continuation value \(V(a_j) \) given (in this talk)
- \(I_j = \begin{cases}
1 & \text{if employed} \\
0 & \text{if unemployed}
\end{cases} \)
1. Static model setup
Firms

- Vacancy posting cost Φ.
- Decreasing-returns-to-scale production function $F(\ell)$.
- Net production of a firm hiring ℓ hours of labor from one worker is $F(\ell) - \Phi$.
1. Static model setup
Firms

- Vacancy posting cost \(\Phi \).
- Decreasing-returns-to-scale production function \(F(\ell) \).
- Net production of a firm hiring \(\ell \) hours of labor from one worker is \(F(\ell) - \Phi \).
1. Static model setup

Firms

- Vacancy posting cost Φ.
- Decreasing-returns-to-scale production function $F(\ell)$.
- Net production of a firm hiring ℓ hours of labor from one worker is $F(\ell) - \Phi$.
1. Static model setup

Matching

- \(N = \) number firms who decide to search for workers.
- \(M(N, L) = \) number of matches (CRS).
- Upon a match, a Walrasian auctioneer equilibrates the demand and supply of labor among the two parties in the match:

\[
pF'(\ell) = w
\]
1. Static model setup

Matching

- $N = \text{number firms who decide to search for workers.}$
- $M(N, L) = \text{number of matches (CRS).}$
- Upon a match, a Walrasian auctioneer equilibrates the demand and supply of labor among the two parties in the match:

$$pF'(\ell) = w$$
1. Static model setup

Matching

- \(N = \) number of firms who decide to search for workers.
- \(M(N, L) = \) number of matches (CRS).
- Upon a match, a Walrasian auctioneer equilibrates the demand and supply of labor among the two parties in the match:

\[
pF'(\ell) = w
\]
1. Static model setup
Household first sub-period decisions

- **Normalization:** \(L = 1 \)
- **Symmetry:** \(X_j = X \)
- **Worker problem:**

\[
\max_{\ell_j} -\nu(\ell_j) + V(-pe_j - I_j w \ell_j)
\]

- **Buyer problem:**

\[
\max_{c_j} U(c_j) + \mu V(w \ell_j - pe_j) + (1 - \mu) V(-pe_j)
\]

where \(\mu \equiv M(N, L)/L \) is the probability that a worker finds a job.
1. Static model setup
Household first sub-period decisions

- **Normalization:** \(L = 1 \)
- **Symmetry:** \(X_j = X \)
- **Worker problem:**

\[
\max_{\ell_j} -\nu(\ell_j) + V(\underline{-pe_j - I_j w_\ell_j} \ a_j)
\]

- **Buyer problem:**

\[
\max_{c_j} U(c_j) + \mu V(w_\ell_j - pe_j) + (1 - \mu) V(-pe_j)
\]

where \(\mu \equiv M(N, L)/L \) is the probability that a worker finds a job.
1. Static model setup
Household first sub-period decisions

- Normalization: \(L = 1 \)
- Symmetry: \(X_j = X \)
- Worker problem:
 \[
 \max_{\ell_j} -\nu(\ell_j) + V(-pe_j - I_j w \ell_j) + a_j
 \]

- Buyer problem:
 \[
 \max_{c_j} U(c_j) + \mu V(w \ell_j - p e_j) + (1 - \mu) V(-pe_j)
 \]

where \(\mu \equiv M(N, L)/L \) is the probability that a worker finds a job.
1. Static model setup
Household first sub-period decisions

- Normalization: $L = 1$
- Symmetry: $X_j = X$
- Worker problem:

$$\max_{\ell_j} -\nu(\ell_j) + V(-pe_j - I_j w \ell_j)$$

- Buyer problem:

$$\max_{c_j} U(c_j) + \mu V(w\ell_j - pe_j) + (1 - \mu) V(-pe_j)$$

where $\mu \equiv M(N, L)/L$ is the probability that a worker finds a job.
1. Static model setup
Deriving the value function $V(a)$

- Not here...
 - $V(a)$ is strictly concave, with the key property that $V'(a_1) > V'(a_2)$ if $a_1 < 0 < a_2$
1. Static model setup
Deriving the value function $V(a)$

- Not here...
- $V(a)$ is strictly concave, with the key property that $V'(a_1) > V'(a_2)$ if $a_1 < 0 < a_2$
Figure 12: The Value Function $V(a)$
Figure 12: The Value Function $V(a)$
Figure 12: The Value Function $V(a)$

$a_1 < 0$
Figure 12: The Value Function $V(a)$
Figure 12: The Value Function $V(a)$

\[V(a) \]

$V'(a_1) < 0$

$a_1 < 0$

$a_2 > 0$
Figure 12: The Value Function $V(a)$

$V'(a_1) < 0 \quad a_1 < 0$

$V'(a_2) > 0 \quad a_2 > 0$
0. Introduction
 Roadmap

1. Static model setup
2. Equilibrium
3. Interesting Properties of the Static Equilibrium
4. Extensions / Dynamics / Policy Trade-offs
2. Equilibrium

- Second sub-period: accounts are balanced.
- First sub-period: markets clear and agents optimize.
2. Equilibrium

- Second sub-period: accounts are balanced.
- First sub-period: markets clear and agents optimize
2. Equilibrium
First sub-period

- The equilibrium is given by the following equations

\[
\frac{1}{p} U'(c) = \frac{M(N, L)}{L} V' (w \ell - p (c - X)) \\
+ \left[1 - \frac{M(N, L)}{L} \right] V' (-p (c - X))
\]

\[
\nu' (\ell) = V' (w \ell - p (c - X)) w
\]

\[
pF' (\ell) = w
\]

\[
\frac{M(N, L)}{N} [pF(\ell) - w \ell] = p \Phi
\]

\[
M(N, L) F(\ell) = L(c - X) + N \Phi
\]
2. Equilibrium
First sub-period

- The equilibrium is given by the following equations:

\[
\frac{1}{p} U'(c) = \frac{M(N, L)}{L} V'(w\ell - p(c - X)) + \left[1 - \frac{M(N, L)}{L}\right] V'(-p(c - X))
\]

\[
\nu'(\ell) = V'(w\ell - p(c - X)) w
\]

\[
pF'(\ell) = w
\]

\[
\frac{M(N, L)}{N} [pF(\ell) - w\ell] = p\Phi
\]

\[
M(N, L)F(\ell) = L(c - X) + N\Phi
\]
2. Equilibrium
First sub-period

The equilibrium is given by the following equations

\[\frac{1}{p} U'(c) = \frac{M(N, L)}{L} V'(w\ell - p(c - X)) + \left[1 - \frac{M(N, L)}{L} \right] V'(-p(c - X)) \]

\[\nu'(\ell) = V'(w\ell - p(c - X)) w \]

\[pF'(\ell) = w \]

\[\frac{M(N, L)}{N} [pF(\ell) - w\ell] = p\Phi \]

\[M(N, L)F(\ell) = L(c - X) + N\Phi \]
2. Equilibrium
First sub-period

- The equilibrium is given by the following equations:

\[
\frac{1}{p} U'(c) = \frac{M(N, L)}{L} V'(w\ell - p(c - X)) + \left[1 - \frac{M(N, L)}{L}\right] V'(-p(c - X))
\]

\[
\nu'(\ell) = V'(w\ell - p(c - X)) w
\]

\[
pF'(\ell) = w
\]

\[
\frac{M(N, L)}{N} [pF(\ell) - w\ell] = p\Phi
\]

\[
M(N, L)F(\ell) = L(c - X) + N\Phi
\]
2. Equilibrium
First sub-period

The equilibrium is given by the following equations:

\[
\frac{1}{p} U'(c) = \frac{M(N, L)}{L} V'(w\ell - p(c - X)) + \left[1 - \frac{M(N, L)}{L}\right] V'(-p(c - X))
\]

\[
\nu'(\ell) = V'(w\ell - p(c - X)) w
\]

\[
pF'(\ell) = w
\]

\[
\frac{M(N, L)}{N} [pF(\ell) - w\ell] = p\Phi
\]

\[
M(N, L) F(\ell) = L(c - X) + N\Phi
\]
2. Equilibrium
First sub-period

The equilibrium is given by the following equations

\[
\frac{1}{p} U'(c) = \frac{M(N, L)}{L} V' (w \ell - p(c - X)) + \left[1 - \frac{M(N, L)}{L}\right] V' (-p(c - X))
\]

\[
\nu'(\ell) = V' (w \ell - p(c - X)) w
\]

\[
pF'(\ell) = w
\]

\[
\frac{M(N, L)}{N} [pF(\ell) - w \ell] = p\Phi
\]

\[
M(N, L)F(\ell) = L(c - X) + N\Phi
\]
2. Equilibrium
A labor market wedge

\[
\frac{\nu'(\ell)}{U'(c)} \left\{ 1 + (1 - \mu) \left[\frac{V'(-p(c - X))}{V'(w\ell - p(c - X))} - 1 \right] \right\} = F'(\ell)
\]

- The labor wedge is caused by precautionary savings and absent insurance market.
- The level of this wedge is influenced by \(X \).
2. Equilibrium
A labor market wedge

\[\frac{\nu'(\ell)}{U'(c)} \left\{ 1 + (1 - \mu) \left[\frac{V'(-p(c - X))}{V'(w\ell - p(c - X))} - 1 \right] \right\} = F'(\ell) \]

The labor wedge is caused by precautionary savings and absent insurance market.

The level of this wedge is influenced by \(X \).
2. Equilibrium
A labor market wedge

\[
\frac{\nu'(\ell)}{U'(c)} \left\{ 1 + (1 - \mu) \left[\frac{V'(- p(c - X))}{V'(w\ell - p(c - X))} - 1 \right] \right\} = F'(\ell)
\]

1+ labor wedge

- The labor wedge is caused by precautionary savings and absent insurance market.
- The level of this wedge is influenced by \(X\).
0. Introduction

Roadmap

1. Static model setup
2. Equilibrium
3. Interesting Properties of the Static Equilibrium
4. Extensions / Dynamics / Policy Trade-offs
3. Interesting Properties of the Static Equilibrium
Goal and parametric restrictions

- Our main goal now is to explore the effects of changes in X on equilibrium outcomes.
- Why and when an increase in X can actually lead to a reduction in consumption and/or welfare?
- Can liquidation periods be socially painful?
- We restrict the analysis to
 $\times \quad M(N, L) = \min\{N, L\}$
3. Interesting Properties of the Static Equilibrium
Goal and parametric restrictions

- Our main goal now is to explore the effects of changes in X on equilibrium outcomes.
- Why and when an increase in X can actually lead to a reduction in consumption and/or welfare?
- Can liquidation periods be socially painful?
- We restrict the analysis to $M(N, L) = \min\{N, L\}$.
3. Interesting Properties of the Static Equilibrium
Goal and parametric restrictions

- Our main goal now is to explore the effects of changes in X on equilibrium outcomes.
- Why and when an increase in X can actually lead to a reduction in consumption and/or welfare?
- Can liquidation periods be socially painful?
- We restrict the analysis to

$$M(N, L) = \min\{N, L\}$$
Our main goal now is to explore the effects of changes in X on equilibrium outcomes.

Why and when an increase in X can actually lead to a reduction in consumption and/or welfare?

Can liquidation periods be socially painful?

We restrict the analysis to

\[M(N, L) = \min\{N, L\} \]
Our main goal now is to explore the effects of changes in X on equilibrium outcomes.

Why and when an increase in X can actually lead to a reduction in consumption and/or welfare?

Can liquidation periods be socially painful?

We restrict the analysis to

$M(N, L) = \min\{N, L\}$
Figure 13: The Matching Function $M(N, L)$
3. Interesting Properties of the Static Equilibrium
Goal and parametric restrictions

- Our main goal now is to explore the effects of changes in X on equilibrium outcomes.
- Why and when an increase in X can actually lead to a reduction in consumption and/or welfare?
- Can liquidation periods be socially painful?
- We restrict the analysis to
 \[M(N, L) = \min\{N, L\} \]
 \[V(a) = \begin{cases} (1 + \tau) \cdot v \cdot a & \text{if } a < 0 \\ v \cdot a & \text{if } a \geq 0 \end{cases} \]
3. Interesting Properties of the Static Equilibrium
Goal and parametric restrictions

- Our main goal now is to explore the effects of changes in X on equilibrium outcomes.
- Why and when an increase in X can actually lead to a reduction in consumption and/or welfare?
- Can liquidation periods be socially painful?
- We restrict the analysis to
 $\times \quad M(N, L) = \min\{N, L\}$
 $\times \quad V(a) = \begin{cases} (1 + \tau) \cdot v \cdot a & \text{if } a < 0 \\ v \cdot a & \text{if } a \geq 0 \end{cases}$
Figure 14: The Value Function $V(a)$
Figure 14: The Value Function $V(a)$
Figure 14: The Value Function $V(a)$

- $a_1 < 0$
- Slope: $(1 + \tau)\nu$
Figure 14: The Value Function $V(a)$

The value function $V(a)$ is defined as:

$$V(a) = \begin{cases}
a_1 < 0 & \text{slope} = (1 + \tau)v \\
 a_2 > 0 & \text{slope} = v
\end{cases}$$
Figure 15: Proposition 1: Existence and Uniqueness

Unique equilibrium

Multiple equilibria
Figure 16: Proposition 2: The three regimes

Full employment
Figure 16: Proposition 2: The three regimes

- Full employment
- No employment

The diagram shows a range from 0 to X, with two points marked as X* and X**, indicating the transition between full employment and no employment.
Figure 16: Proposition 2: The three regimes

- Full employment
- Unemployment
- No employment
3. Interesting Properties of the Static Equilibrium Consumption as a function of X

- How does vary equilibrium consumption when X increases?
 - In the full employment regime (which corresponds to no frictions):
 - Marginal utility of spendings decrease with $X ~\Rightarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

 - In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime (which corresponds to no frictions):
 - Marginal utility of spendings decrease with $X \implies$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime (which corresponds to no frictions):
 - Marginal utility of spendings decrease with $X \rightsquigarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime (which corresponds to no frictions):
 - Marginal utility of spendings decrease with $X \rightsquigarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime:
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime (which corresponds to no frictions):
 - Marginal utility of spendings decrease with $X \Rightarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium Consumption as a function of X

- How does vary equilibrium consumption when X increases?

- In the full employment regime (which corresponds to no frictions):
 - Marginal utility of spendings decrease with $X \rightsquigarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime:
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium Consumption as a function of X

- How does vary equilibrium consumption when X increases?

- In the full employment regime (which corresponds to no frictions):
 - Marginal utility of spendings decrease with $X \Rightarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime:
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime (which corresponds to no frictions):
 - Marginal utility of spendings decrease with $X \rightsquigarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime:
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime (which corresponds to no frictions):
 - Marginal utility of spendings decrease with $X \Rightarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X
- In the no employment regime:
 - $c = X$
 - c increases one to one with X
- In the unemployment regime
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime (which corresponds to no frictions):
 - Marginal utility of expenditures decreases with $X \rightsquigarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime
 - “Multiplier > 1”
 - Spenders decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime (which corresponds to no frictions):
 - Marginal utility of spendings decrease with $X \Leftrightarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X

- In the no employment regime:
 - $c = X$
 - c increases one to one with X

- In the unemployment regime
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium
Consumption as a function of X

- How does vary equilibrium consumption when X increases?
- In the full employment regime (which corresponds to no frictions):
 - Marginal utility of spendings decrease with $X \rightsquigarrow$ less production
 - But less than proportional to the increase in X
 - Overall, c increases with X
- In the no employment regime:
 - $c = X$
 - c increases one to one with X
- In the unemployment regime
 - “Multiplier > 1”
 - Spendings decrease more than one to one with X
 - Therefore c decreases with X
3. Interesting Properties of the Static Equilibrium

Figure 17: Proposition 3, Consumption as function of X.

![Graph showing consumption as a function of X with critical points X^* and X^{**}]
3. Interesting Properties of the Static Equilibrium
Multiple equilibria

- We are ruling out cases with multiple equilibria in the analysis
- Meaning that τ is not too large (Proposition 1)
3. Interesting Properties of the Static Equilibrium

Multiple equilibria

- We are ruling out cases with multiple equilibria in the analysis.
- Meaning that τ is not too large (Proposition 1).
3. Interesting Properties of the Static Equilibrium

Is there deficient demand in the unemployment regime?
Proposition 4 (Aggregate Demand)

- When the economy is in the unemployment regime ($X^* < X < X^{**}$),
- if all but one households coordinate to increase purchases of the first sub-period consumption good,
- then it is optimal for the last household to also increase its spendings.
- Furthermore, this increases the expected utility of all households.
3. Interesting Properties of the Static Equilibrium
Effects of changes in X on welfare
3. Interesting Properties of the Static Equilibrium
Effects of changes in X on welfare

Proposition 5 (Welfare)

- If the economy is the unemployment regime and if τ is large enough (close enough to $\bar{\tau}$),
- then an increase in X leads to a fall in expected welfare.
3. Interesting Properties of the Static Equilibrium
Introducing government spending

- Add a government to the first sub-period.
- It buys goods, and it taxes employed individuals (lump-sum).
- We assume that the government runs a balanced budget.
- Two types of government purchases: wasteful, and non-wasteful:
 - Wasteful government purchases, denoted G_w, are not valued by households.
 - Non-wasteful purchases, denoted G_n, are perfect substitutes to private consumption.
3. Interesting Properties of the Static Equilibrium
Introducing government spending

► Add a government to the first sub-period.
► It buys goods, and it taxes employed individuals (lump-sum).
► We assume that the government runs a balanced budget
► Two types of government purchases: wasteful, and non-wasteful:
 × Wasteful government purchases, denoted G_w, are not valued by households.
 × Non-wasteful purchases, denoted G_n, are perfect substitute to private consumption.
3. Interesting Properties of the Static Equilibrium
Introducing government spending

- Add a government to the first sub-period.
- It buys goods, and it taxes employed individuals (lump-sum).
- We assume that the government runs a balanced budget
- Two types of government purchases: wasteful, and non-wasteful:
 - Wasteful government purchases, denoted G_w, are not valued by households.
 - Non-wasteful purchases, denoted G_n, are perfect substitute to private consumption.
3. Interesting Properties of the Static Equilibrium
Introducing government spending

- Add a government to the first sub-period.
- It buys goods, and it taxes employed individuals (lump-sum).
- We assume that the government runs a balanced budget.
- Two types of government purchases: wasteful, and non-wasteful:
 - Wasteful government purchases, denoted G_w, are not valued by households.
 - Non-wasteful purchases, denoted G_n, are perfect substitute to private consumption.
3. Interesting Properties of the Static Equilibrium
Introducing government spending

- Add a government to the first sub-period.
- It buys goods, and it taxes employed individuals (lump-sum).
- We assume that the government runs a balanced budget.
- Two types of government purchases: wasteful, and non-wasteful:
 - Wasteful government purchases, denoted G_w, are not valued by households.
 - Non-wasteful purchases, denoted G_n, are perfect substitute to private consumption.
3. Interesting Properties of the Static Equilibrium
Introducing government spending

- Add a government to the first sub-period.
- It buys goods, and it taxes employed individuals (lump-sum).
- We assume that the government runs a balanced budget.
- Two types of government purchases: wasteful, and non-wasteful:
 - Wasteful government purchases, denoted G_w, are not valued by households.
 - Non-wasteful purchases, denoted G_n, are perfect substitute to private consumption.
3. Interesting Properties of the Static Equilibrium
Introducing government spending (continued)

Proposition 6 (Fiscal Multipliers)

- An increase in non-wasteful government purchases has no effect on economic activity.
- An increase in wasteful government purchases leads to an increase in economic activity.
- If the economy is in the unemployment regime, wasteful government purchases are associated with a multiplier that is greater than one.
- If the economy is in the full-employment regime, wasteful government purchases are associated with a multiplier that is less than one.
3. Interesting Properties of the Static Equilibrium
Introducing government spending (continued)

Proposition 6 (Fiscal Multipliers)

- An increase in non-wasteful government purchases has no effect on economic activity.
- An increase in wasteful government purchases leads to an increase in economic activity.
- If the economy is in the unemployment regime, wasteful government purchases are associated with a multiplier that is greater than one.
- If the economy is in the full-employment regime, wasteful government purchases are associated with a multiplier that is less than one.
Proposition 6 (Fiscal Multipliers)

- An increase in non-wasteful government purchases has no effect on economic activity.
- An increase in wasteful government purchases leads to an increase in economic activity.
- If the economy is in the unemployment regime, wasteful government purchases are associated with a multiplier that is greater than one.
- If the economy is in the full-employment regime, wasteful government purchases are associated with a multiplier that is less than one.
3. Interesting Properties of the Static Equilibrium
Introducing government spending \textit{(continued)}

Proposition 6 (Fiscal Multipliers)

- An increase in non-wasteful government purchases has no effect on economic activity.
- An increase in wasteful government purchases leads to an increase in economic activity.
- \textit{If the economy is in the unemployment regime, wasteful government purchases are associated with a multiplier that is greater than one.}
- \textit{If the economy is in the full-employment regime, wasteful government purchases are associated with a multiplier that is less than one.}
3. Interesting Properties of the Static Equilibrium
Introducing government spending (continued)

Proposition 7 (Fiscal policy and welfare)

- If the economy is in the unemployment regime
- if X is in the range such that a fall in X would increase welfare,
- then an increase in wasteful government purchases will increase welfare.
0. Introduction

Roadmap

1. Static model setup
2. Equilibrium
3. Interesting Properties of the Static Equilibrium
4. Extensions / Dynamics / Policy Trade-offs
4. Extensions / Dynamics / Policy Trade-offs
Relaxing functional-form assumptions

- Results are robust to:
 - Relaxing functional assumptions
 - Other ways of splitting the surplus
 - Introduction of productive capital
 - Addition of another good

- Simple characterization is not possible any more
- but main results hold.
4. Extensions / Dynamics / Policy Trade-offs
Relaxing functional-form assumptions

- Results are robust to:
 - Relaxing functionnal assumptions
 - Other ways of splitting the surplus
 - Introduction of productive capital
 - Addition of another good

- Simple characterization is not possible any more
- but main results hold.
Results are robust to:
- Relaxing functional assumptions
- Other ways of splitting the surplus
- Introduction of productive capital
- Addition of another good

Simple characterization is not possible any more
but main results hold.
4. Extensions / Dynamics / Policy Trade-offs
Relaxing functional-form assumptions

- Results are robust to:
 - Relaxing functionnal assumptions
 - Other ways of splitting the surplus
 - Introduction of productive capital
 - Addition of another good

- Simple characterization is not possible any more
- but main results hold.
4. Extensions / Dynamics / Policy Trade-offs

Relaxing functional-form assumptions

► Results are robust to:
 × Relaxing functional assumptions
 × Other ways of splitting the surplus
 × Introduction of productive capital
 × Addition of another good

► Simple characterization is not possible any more
► but main results hold.
4. Extensions / Dynamics / Policy Trade-offs
Relaxing functional-form assumptions

- Results are robust to:
 - Relaxing functionnal assumptions
 - Other ways of splitting the surplus
 - Introduction of productive capital
 - Addition of another good

- Simple characterization is not possible any more
 - but main results hold.
4. Extensions / Dynamics / Policy Trade-offs
Relaxing functional-form assumptions

- Results are robust to:
 - × Relaxing functional assumptions
 - × Other ways of splitting the surplus
 - × Introduction of productive capital
 - × Addition of another good

- Simple characterization is not possible any more
- but main results hold.
4. Extensions / Dynamics / Policy Trade-offs

Dynamic Setup

- An infinite number of periods t,
- Each period consists of the two previous sub-periods
- The only financial trade is between sub-periods by assumption

$$X_{t+1} = (1 - \delta)X_t + \gamma e_t$$

$$U = \sum_{t=0}^{\infty} \beta^t \left(U(c_t) - \nu(l_t) + V(a_t) \right)$$
4. Extensions / Dynamics / Policy Trade-offs

Dynamic Setup

- An infinite number of periods t,
- Each period consists of the two previous sub-periods
- The only financial trade is between sub-periods by assumption

\[X_{t+1} = (1 - \delta)X_t + \gamma e_t \]

\[U = \sum_{t=0}^{\infty} \beta^t \left(U(c_t) - \nu(l_t) + V(a_t) \right) \]
4. Extensions / Dynamics / Policy Trade-offs

Dynamic Setup

- An infinite number of periods t,
- Each period consists of the two previous sub-periods
- The only financial trade is between sub-periods by assumption

$$X_{t+1} = (1 - \delta)X_t + \gamma e_t$$

$$U = \sum_{t=0}^{\infty} \beta^t \left(U(c_t) - \nu(l_t) + V(a_t) \right)$$
4. Extensions / Dynamics / Policy Trade-offs
Dynamic Setup

- An infinite number of periods t,
- Each period consists of the two previous sub-periods
- The only financial trade is between sub-periods by assumption

$$X_{t+1} = (1 - \delta)X_t + \gamma e_t$$

$$U = \sum_{t=0}^{\infty} \beta^t \left(U(c_t) - \nu(l_t) + V(a_t) \right)$$
4. Extensions / Dynamics / Policy Trade-offs

Dynamic Setup

- An infinite number of periods t,
- Each period consists of the two previous sub-periods
- The only financial trade is between sub-periods by assumption

$$X_{t+1} = (1 - \delta)X_t + \gamma e_t$$

$$\mathcal{U} = \sum_{t=0}^{\infty} \beta^t \left(U(c_t) - \nu(l_t) + V(a_t) \right)$$
4. Extensions / Dynamics / Policy Trade-offs

Policy Trade-off

- When X is high, the economy will converge with the SS with inefficiently low demand on the way.
- Welfare today would be increased by stimulating demand today.
- But this would imply higher X tomorrow,
- And therefore lower consumption in all subsequent periods until the liquidation is complete.
- This tradeoff is aimed at capturing the tension between the Keynesian and Hayekian prescriptions in recession.
4. Extensions / Dynamics / Policy Trade-offs
Policy Trade-off

- When X is high, the economy will converge with the SS with inefficiently low demand on the way.
- Welfare today would be increased by stimulating demand today.
- But this would imply higher X tomorrow,
- And therefore lower consumption in all subsequent periods until the liquidation is complete.
- This tradeoff is aimed at capturing the tension between the Keynesian and Hayekian prescriptions in recession.
4. Extensions / Dynamics / Policy Trade-offs

Policy Trade-off

- When X is high, the economy will converge with the SS with inefficiently low demand on the way.
- Welfare today would be increased by stimulating demand today.
- But this would imply higher X tomorrow,
- And therefore lower consumption in all subsequent periods until the liquidation is complete.
- This tradeoff is aimed at capturing the tension between the Keynesian and Hayekian prescriptions in recession.
4. Extensions / Dynamics / Policy Trade-offs

Policy Trade-off

- When X is high, the economy will converge with the SS with inefficiently low demand on the way.
- Welfare today would be increased by stimulating demand today.
- But this would imply higher X tomorrow,
- And therefore lower consumption in all subsequent periods until the liquidation is complete.
- This tradeoff is aimed at capturing the tension between the Keynesian and Hayekian prescriptions in recession.
When X is high, the economy will converge with the SS with inefficiently low demand on the way.

Welfare today would be increased by stimulating demand today.

But this would imply higher X tomorrow,

And therefore lower consumption in all subsequent periods until the liquidation is complete.

This tradeoff is aimed at capturing the tension between the Keynesian and Hayekian prescriptions in recession.
Proposition 8 (Aggregate demand management is desirable)

- Suppose the economy is in steady state in the unemployment regime.
- Then, to a first-order approximation, a (feasible) change in the path of expenditures from this steady state equilibrium will increase the present discounted value of expected welfare if and only if it increases the presented discounted sum of the resulting expenditure path, $\sum_{i=0}^{\infty} \beta^i e_{t+i}$.
- Aggregate demand management is therefore desirable.