Granular Banking Flows and Exchange-Rate Dynamics

5th BIS Workshop on 'Research on Global Financial Stability: The Use of BIS International Banking and Financial Statistics'

Balduin Bippus¹ Simon Lloyd² Daniel Ostry²

¹University of Cambridge

²Bank of England and Centre for Macroeconomics

December 2023

The views expressed here do not necessarily reflect the position of the Bank of England.

This Paper: Motivation and Questions

- ► FX Puzzles: 'disconnect' between exchange rates and macro fundamentals [Meese & Rogoff 1983]
- **Theory:** financial frictions and financial (UIP) shocks [Gabaix & Maggiori 2015; Itskhoki & Mukhin 2021]

This Paper: Motivation and Questions

- ► FX Puzzles: 'disconnect' between exchange rates and macro fundamentals [Meese & Rogoff 1983]
- **Theory:** financial frictions and financial (UIP) shocks [Gabaix & Maggiori 2015; Itskhoki & Mukhin 2021]

Our Questions

- Origins: where do these financial shocks come from?
- ► Causality: What are the causal effects of financial (capital flow) shocks on FX?
- Marginality: Which agents' financial constraints matter most for FX response?

This Paper: Motivation and Questions

- ► FX Puzzles: 'disconnect' between exchange rates and macro fundamentals [Meese & Rogoff 1983]
- **Theory:** financial frictions and financial (UIP) shocks [Gabaix & Maggiori 2015; Itskhoki & Mukhin 2021]

Our Questions

- Origins: where do these financial shocks come from?
- Causality: What are the causal effects of financial (capital flow) shocks on FX?
- Marginality: Which agents' financial constraints matter most for FX response?
- > **Approach**: theory and bank-level data to investigate granular origins of financial shocks
- Identification: Granular Instrumental Variables (GIVs) for cross-border USD banking flows [Gabaix & Koijen 2023]

This Paper: Contributions

- 1. Document novel facts on UK-resident global banks' cross-border positions
 - UK is world's largest IFC ($\sim 20\%$ of global cross-border banking claims)
 - Granularity in UK banks' gross and net cross-border positions
- ⇒ Construct representative and **granular financial shocks** (i.e., GIVs)

This Paper: Contributions

- 1. Document novel facts on UK-resident global banks' cross-border positions
 - UK is world's largest IFC ($\sim 20\%$ of global cross-border banking claims)
 - Granularity in UK banks' gross and net cross-border positions
- ⇒ Construct representative and **granular financial shocks** (i.e., GIVs)
- 2. Present **new model** of FX determination based on flows in imperfect financial markets
 - Heterogeneous risk-bearing capacity across UK banks, taking positions vs. RoW (incl. funds)
 - Bank-specific and time-varying beliefs about cross-border returns
- ⇒ Flows by **large banks** play **biggest role** in exchange-rate dynamics

This Paper: Contributions

- 1. Document novel facts on UK-resident global banks' cross-border positions
 - UK is world's largest IFC ($\sim 20\%$ of global cross-border banking claims)
 - Granularity in UK banks' gross and net cross-border positions
- ⇒ Construct representative and **granular financial shocks** (i.e., GIVs)
- 2. Present **new model** of FX determination based on flows in imperfect financial markets
 - Heterogeneous risk-bearing capacity across UK banks, taking positions vs. RoW (incl. funds)
 - Bank-specific and time-varying beliefs about cross-border returns
- ⇒ Flows by **large banks** play **biggest role** in exchange-rate dynamics
- 3. Use GIVs to estimate causal links and structural parameters in currency markets
 - 1% \uparrow cross-border USD *net* flow by UK banks \Rightarrow persistent \sim 2% USD/GBP appreciation
 - UK-resident banks' USD-demand is inelastic, banks' counterparties' USD-supply is elastic
- \Rightarrow Banks price most of FX response to shocks, i.e., they are **'marginal' investors**

Our Data

Documenting Granularity in Cross-border Banking

UK as an International Financial Centre (IFC)

Cross-border banking claims by origin country

- UK is world's largest centre for cross-border banking
- \blacktriangleright UK-based banks' foreign claims $\sim 20\%$ of all cross-border banking claims, $\sim 5\%$ of all intnl. assets
- \blacktriangleright UK-based banks' foreign claims $\sim 40\%$ UK external position

Source: BIS Locational Banking Statistics

UK Banking System's Gross and Net USD Positions

UK Banks' External USD Balance Sheet

- Data quarterly from 1997Q1-2019Q3
- Focus on USD positions (nearly 50%)
- Assets: Debt (80%), Equity (20%)
 Liabilities: Deposits
- UK banks' average absolute net USD debt (debt less deposits) position is £66 Billion.
 - Long USD in 2000s, short USD in 2010s Consistent with carry trading

UK Banks' Gross and Net USD Positions are Granular

Pareto principle in cross-border banking

Notes: Lorenz curves and Gini coefficients for UK banks' USD debt, equity, deposits, and net debt in 2019:Q3.

UK Banks' Gross and Net USD Positions are Granular

Zipf's law in cross-border banking

Notes: Lorenz curves and Gini coefficients for UK banks' USD debt, equity, deposits, and net debt in 2019:Q3.

Notes: log-rank vs log-size plots and R^2 for UK banks' USD debt, equity, deposits, and net debt in 2019:Q3.

Our Paper and Data vs. Literature

Aldasoro, Beltrán, Grinberg and Mancini-Griffoli (2023)

- + We capture granularity at bank level, using data for largest banking country in their dataset
- \Rightarrow Bank-level is theory-consistent; we require exogeneity at bank level, not country level

Our Paper and Data vs. Literature

Aldasoro, Beltrán, Grinberg and Mancini-Griffoli (2023)

- + We capture granularity at bank level, using data for largest banking country in their dataset
- ⇒ Bank-level is theory-consistent; we require exogeneity at bank level, not country level

Camanho, Hau and Rey (2022)

- + We study banking flows (debt & equity); they focus on equity flows of mutual funds
- \Rightarrow Complementary as funds are banks' counterparties: funds re-balance while banks segment

Our Paper and Data vs. Literature

Aldasoro, Beltrán, Grinberg and Mancini-Griffoli (2023)

- + We capture granularity at *bank level*, using data for *largest* banking country in their dataset
- \Rightarrow Bank-level is theory-consistent; we require exogeneity at bank level, not country level

Camanho, Hau and Rey (2022)

- + We study banking flows (debt & equity); they focus on equity flows of mutual funds
- \Rightarrow Complementary as funds are banks' counterparties: funds re-balance while banks segment

Becker, Schmeling and Schrimpf (2023)

- + We focus on supply/demand elasticities, not just multipliers for US banks' syndicated loans
- \Rightarrow We provide insights into structural underpinnings of UIP deviations

Granular International Banking Model

Identifying the Role of Large Banks for FX to Build the GIV

Building on Gabaix and Maggiori (2015), UK-resident bank *i* for each asset class *j* solves

$$\begin{split} V_{i,t}^{j} &= \max_{Q_{i,t}^{j}} \ \mathbb{E}_{t} \left[\exp(b_{i,t}^{j}) \cdot \left(\frac{R_{t+1}^{j}}{R_{t}} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_{t}} - 1 \right) \right] Q_{i,t}^{j} \\ \text{s.t.} \quad \underbrace{V_{i,t}^{j}}_{\text{bank value}} \geq \underbrace{\Gamma_{i}^{j} Q_{i,t}^{j}}_{\text{divertable fraction total claims}} \mathcal{Q}_{i,t}^{j} \end{split}$$

(Value Function / Exp. Carry Trade Return)

(Incentive Compatibility)

Building on Gabaix and Maggiori (2015), UK-resident bank i for each asset class j solves

$$V_{i,t}^{j} = \max_{Q_{i,t}^{j}} \mathbb{E}_{t} \left[\exp(b_{i,t}^{j}) \cdot \left(\frac{R_{t+1}^{j}}{R_{t}} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_{t}} - 1 \right) \right] Q_{i,t}^{j} \qquad \text{(Value Function / Exp. Carry Trade Return)}$$

s.t. $\underbrace{V_{i,t}^{j}}_{\text{bank value}} \geq \underbrace{\Gamma_{i}^{j} Q_{i,t}^{j}}_{\text{divertable fraction total claims}} \cdot \underbrace{Q_{i,t}^{j}}_{\text{total claims}}$

Two New Features:

1. Bank-specific constraint $\Gamma_i^j \Rightarrow$ size heterogeneity $Q_{i,t}^j = \frac{1}{\Gamma_i^j} \mathbb{E}_t \left[\exp(b_{i,t}^j) \cdot \left(\frac{R_{t+1}^j}{R_t} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} - 1 \right) \right]$

Building on Gabaix and Maggiori (2015), UK-resident bank *i* for each asset class *j* solves

$$V_{i,t}^{j} = \max_{Q_{i,t}^{j}} \mathbb{E}_{t} \left[\exp(b_{i,t}^{j}) \cdot \left(\frac{R_{t+1}^{j}}{R_{t}} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_{t}} - 1 \right) \right] Q_{i,t}^{j} \qquad \text{(Value Function / Exp. Carry Trade Return)}$$

s.t. $\underbrace{V_{i,t}^{j}}_{\text{bank value}} \ge \underbrace{\Gamma_{i}^{j} Q_{i,t}^{j}}_{\text{divertable fraction total claims}} \cdot \underbrace{Q_{i,t}^{j}}_{\text{total claims}}$

Two New Features:

- 1. Bank-specific constraint $\Gamma_i^j \Rightarrow$ size heterogeneity $Q_{i,t}^j = \frac{1}{\Gamma_i^j} \mathbb{E}_t \left[\exp(b_{i,t}^j) \cdot \left(\frac{R_{t+1}^j}{R_t} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} 1 \right) \right]$
- 2. Bank-specific beliefs $b_{i,t}^{j} \Rightarrow$ larger banks play bigger role for aggregate flows & FX

Building on Gabaix and Maggiori (2015), UK-resident bank *i* for each asset class *j* solves

$$V_{i,t}^{j} = \max_{Q_{i,t}^{j}} \mathbb{E}_{t} \left[\exp(b_{i,t}^{j}) \cdot \left(\frac{R_{t+1}^{j}}{R_{t}} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_{t}} - 1 \right) \right] Q_{i,t}^{j} \qquad \text{(Value Function / Exp. Carry Trade Return)}$$

s.t. $\underbrace{V_{i,t}^{j}}_{\text{bank value}} \ge \underbrace{\Gamma_{i}^{j} Q_{i,t}^{j}}_{\text{divertable fraction total claims}} \cdot \underbrace{Q_{i,t}^{j}}_{\text{total claims}}$

Two New Features:

- 1. Bank-specific constraint $\Gamma_i^j \Rightarrow$ size heterogeneity $Q_{i,t}^j = \frac{1}{\Gamma_i^j} \mathbb{E}_t \left[\exp(b_{i,t}^j) \cdot \left(\frac{R_{t+1}^j}{R_t} \frac{\mathcal{E}_{t+1}}{\mathcal{E}_t} 1 \right) \right]$
- 2. Bank-specific beliefs $b_{i,t}^{j} \Rightarrow$ larger banks play bigger role for aggregate flows & FX

Bank i's Demand for *j* and USD: from first-order approximation and first-differences

$$\Delta q_{i,t}^j = \phi^j \cdot \left(\Delta \mathbb{E}_t[r_{t+1}^j] - \Delta r_t - \Delta e_t + \Delta \mathbb{E}_t[e_{t+1}] \right) + \Delta b_{i,t}^j \quad \text{with elasticity } \phi^j := \frac{1 + \overline{Q}^j \Gamma^j}{\overline{Q}^j \Gamma^j}$$

Aggregate USD Demand: using size-weighted sum (subscript *S*) across banks *i*

$$\Delta q_{S,t}^j = \phi^j \cdot \left(\Delta \mathbb{E}_t[r_{t+1}^j] - \Delta r_t - \Delta e_t + \Delta \mathbb{E}_t[e_{t+1}] \right) + \underbrace{\Delta b_{S,t}^j}_{S,t}$$

demand shock \Rightarrow bigger banks play larger role

Aggregate USD Demand: using size-weighted sum (subscript *S*) across banks *i*

$$\Delta q_{S,t}^j = \phi^j \cdot \left(\Delta \mathbb{E}_t[r_{t+1}^j] - \Delta r_t - \Delta e_t + \Delta \mathbb{E}_t[e_{t+1}] \right) + \Delta b_{S,t}^j$$

USD Supply: assume RoW (incl. funds, asset managers...) solve analogous problem

$$\Delta q_{R,t}^{j} = -\psi^{j} \cdot \left(\Delta \mathbb{E}_{t}[r_{t+1}^{j}] - \Delta r_{t} - \Delta e_{t} + \Delta \mathbb{E}_{t}[e_{t+1}] \right) + \underbrace{\Delta \varepsilon_{t}^{j}}_{t}$$

supply shock (e.g., U.S. mon. pol.)

December 2023

Aggregate USD Demand: using size-weighted sum (subscript S) across banks i

$$\Delta q_{S,t}^j = \phi^j \cdot \left(\Delta \mathbb{E}_t[r_{t+1}^j] - \Delta r_t - \Delta e_t + \Delta \mathbb{E}_t[e_{t+1}] \right) + \Delta b_{S,t}^j$$

USD Supply: assume RoW (incl. funds, asset managers...) solve analogous problem

$$\Delta q_{R,t}^j = -\psi^j \cdot \left(\Delta \mathbb{E}_t[r_{t+1}^j] - \Delta r_t - \Delta e_t + \Delta \mathbb{E}_t[e_{t+1}] \right) + \Delta \varepsilon_t^j$$

Equilibrium FX Dynamics: across asset markets, j = 1, ..., m

$$\Delta e_t = \frac{1}{m} \sum_{j=1}^m \left(\frac{1}{\phi^j + \psi^j} \Delta b_{S,t}^j - \frac{1}{\phi^j + \psi^j} \Delta \varepsilon_t^j + \Delta \mathbb{E}_t[r_{t+1}^j] \right) - \Delta r_t + \Delta \mathbb{E}_t[e_{t+1}]$$

Bippus, Lloyd and Ostry (BoE, Cambridge, CfM)

Aggregate USD Demand: using size-weighted sum (subscript *S*) across banks *i*

$$\Delta q_{S,t}^{j} = \phi^{j} \cdot \left(\Delta \mathbb{E}_{t}[r_{t+1}^{j}] - \Delta r_{t} - \Delta e_{t} + \Delta \mathbb{E}_{t}[e_{t+1}] \right) + \Delta b_{S,t}^{j}$$

USD Supply: assume RoW (incl. funds, asset managers...) solve analogous problem

$$\Delta q_{R,t}^j = -\psi^j \cdot \left(\Delta \mathbb{E}_t[r_{t+1}^j] - \Delta r_t - \Delta e_t + \Delta \mathbb{E}_t[e_{t+1}] \right) + \Delta \varepsilon_t^j$$

Equilibrium FX Dynamics: across asset markets, j = 1, ..., m

$$\Delta e_t = \frac{1}{m} \sum_{j=1}^m \left(\frac{1}{\phi^j + \psi^j} \Delta b_{S,t}^j - \frac{1}{\phi^j + \psi^j} \Delta \varepsilon_t^j + \Delta \mathbb{E}_t[r_{t+1}^j] \right) - \Delta r_t + \Delta \mathbb{E}_t[e_{t+1}]$$

* More price-inelastic intermediaries $\phi^j, \psi^j \downarrow \rightarrow$ larger FX multipliers to shocks $\frac{1}{\phi^j + \psi^j} \uparrow$

General Belief Process:

Beliefs (e.g. convenience yields)

exogenous shocks (e.g. management change)

+

common factors η_t^j with loadings λ_i^j (e.g. Global Financial Cycle)

+

observed controls (e.g. balance-sheet info)

General Belief Process:

$$\Delta b_{i,t}^j = u_{i,t}^j + \lambda_i^j \eta_t^j + \theta^j C_{i,t-1}^j$$

Identification Strategy: Extract idiosyncratic moves by large banks by comparing their behaviour (via size-weighted *S*) with the behaviour of average banks (via equal-weighted *E*).

- **Relevance**: Idiosyncratic flows by large banks can affect aggregate flows
- **Exogeneity**: Loadings on common factors η_t^j are uncorrelated with size $\lambda_{S,t}^j \lambda_{E,t}^j = 0$

General Belief Process:

$$\Delta b_{i,t}^j = u_{i,t}^j + \lambda_i^j \eta_t^j + \theta^j C_{i,t-1}^j$$

Identification Strategy: Extract idiosyncratic moves by large banks by comparing their behaviour (via size-weighted *S*) with the behaviour of average banks (via equal-weighted *E*).

- ▶ **Relevance**: Idiosyncratic flows by large banks can affect aggregate flows
- **Exogeneity**: Loadings on common factors η_t^j are uncorrelated with size $\lambda_{S,t}^j \lambda_{E,t}^j = 0$

GIV: Following Gabaix and Koijen (2022, 2023), we build the GIV

$$z_t^j := \Delta q_{S,t}^j - \Delta q_{E,t}^j$$

General Belief Process:

$$\Delta b_{i,t}^j = u_{i,t}^j + \lambda_i^j \eta_t^j + \theta^j C_{i,t-1}^j$$

Identification Strategy: Extract idiosyncratic moves by large banks by comparing their behaviour (via size-weighted *S*) with the behaviour of average banks (via equal-weighted *E*).

- ▶ **Relevance**: Idiosyncratic flows by large banks can affect aggregate flows
- **Exogeneity**: Loadings on common factors η_t^j are uncorrelated with size $\lambda_{S,t}^j \lambda_{E,t}^j = 0$

GIV: Following Gabaix and Koijen (2022, 2023), we build the GIV

$$z_t^j := \Delta q_{S,t}^j - \Delta q_{E,t}^j = \underbrace{(\Delta b_{S,t}^j - \Delta b_{E,t}^j)}_{\text{from model}}$$

General Belief Process:

$$\Delta b_{i,t}^j = u_{i,t}^j + \lambda_i^j \eta_t^j + \theta^j C_{i,t-1}^j$$

Identification Strategy: Extract idiosyncratic moves by large banks by comparing their behaviour (via size-weighted *S*) with the behaviour of average banks (via equal-weighted *E*).

- ▶ **Relevance**: Idiosyncratic flows by large banks can affect aggregate flows
- **Exogeneity**: Loadings on common factors η_t^j are uncorrelated with size $\lambda_{S,t}^j \lambda_{E,t}^j = 0$

GIV: Following Gabaix and Koijen (2022, 2023), we build the GIV

$$z_t^j := \Delta q_{S,t}^j - \Delta q_{E,t}^j = \underbrace{(\Delta b_{S,t}^j - \Delta b_{E,t}^j)}_{\text{from model}} = (u_{S,t}^j - u_{E,t}^j) + \underbrace{(\lambda_{S,t}^j - \lambda_{E,t}^j)}_{= 0 \text{ from exogeneity assumption}} \eta_t^j$$

General Belief Process:

$$\Delta b_{i,t}^j = u_{i,t}^j + \lambda_i^j \eta_t^j + \theta^j C_{i,t-1}^j$$

Identification Strategy: Extract idiosyncratic moves by large banks by comparing their behaviour (via size-weighted *S*) with the behaviour of average banks (via equal-weighted *E*).

- ▶ **Relevance**: Idiosyncratic flows by large banks can affect aggregate flows
- **Exogeneity**: Loadings on common factors η_t^j are uncorrelated with size $\lambda_{S,t}^j \lambda_{E,t}^j = 0$

GIV: Following Gabaix and Koijen (2022, 2023), we build the GIV

$$z_t^j := \Delta q_{S,t}^j - \Delta q_{E,t}^j = \underbrace{(\Delta b_{S,t}^j - \Delta b_{E,t}^j)}_{\text{from model}} = (u_{S,t}^j - u_{E,t}^j) + \underbrace{(\lambda_{S,t}^j - \lambda_{E,t}^j)}_{= 0 \text{ from exogeneity assumption}} \eta_t^j$$

Intuition: GIV purges common factors (e.g., mechanical 'exchange-rate valuation effects')

Bippus, Lloyd and Ostry (BoE, Cambridge, CfM)

Accounting for Threats to Identification

- ▶ Incl. bank and macro controls $C_{i,t}$ (e.g., balance-sheet info., asset returns, FX exp.) Letails
- \blacktriangleright Control for unobserved common factors η^j_t using principal-component analysis $lacksymbol{ ext{Details}}$
- \Rightarrow Instruments z_t^j must be function of exogenous shocks $u_{i,t}^j$, after including controls $C_{i,t}$ and proxies for common factors $\hat{\eta}_t^j$

Additional Assessments of Exogeneity:

- Show that our GIVs are uncorrelated with proxies for the Global Financial Cycle Details
- Conduct narrative checks into drivers of GIV...

Narrative Checks into Main Drivers of GIV

Decomposition of net USD-debt GIV

- Observe banks that explain large share of GIV (here: > 20% of a s.d.)
- Small number (~ 10) of large banks
- Use (confidential) bank-level info to conduct check using FT archives
- What news is associated with the banks that explain largest moves in GIV in given quarter?

Narrative Checks into Main Drivers of GIV

Main Narratives composing net USD-debt GIV

- What news is associated with the banks that explain largest moves in GIV in given quarter?
- Findings reveal many events that are unlikely to be systematically related to macro outlook or possible confounders

Empirical Results

Estimating the Causal Links and Structural Parameters

Multipliers for Cross-Border Flows on USD/GBP FX Dynamics

 $\Delta e_t = \sum_{j=1}^m M^j z_t^j / m + \beta controls_t + u_t$

PANEL A: Multipliers for Specific USD Asset and Liability Flows					
z_t^j/m : Debt (Assets)	2.000***	1.231***	1.190***	1.585***	
	(0.358)	(0.198)	(0.208)	(0.253)	
z_t^j/m : Equity (Assets)	0.423***	0.251*	0.277**	0.265**	
	(0.142)	(0.139)	(0.136)	(0.112)	
z_t^j/m : Deposits (Liabilities)	-1.135***	-0.485***	-0.443**	-0.610***	
	(0.346)	(0.168)	(0.175)	(0.167)	
Adjusted R^2	0.201	0.657	0.648	0.682	
PANEL B: Multipliers for Net USD-Debt Flows					
z_t^{net} : Net-Debt	0.818***	0.378**	0.367**	0.381**	
(Debt — Deposits)	(0.275)	(0.159)	(0.169)	(0.189)	
Adjusted R^2	0.069	0.573	0.557	0.570	
Macro Controls	No	Yes	Yes	Yes	
Bank Controls	No	No	Yes	Yes	
Components	No	No	No	5	

Notes: ***, **, * denote 1, 5 and 10% significance, using Newey-West standard errors with 12 lags.

Bippus, Lloyd and Ostry (BoE, Cambridge, CfM)

Granular Banking Flows and Exchange-Rate Dynamics

Dynamic Effects of Flows on USD/GBP FX Dynamics

$$e_{t+h} - e_{t-1} = \sum_{j=1}^{m} M_h^j \frac{z_t^j}{m} + \beta_h controls_t + u_{t+h}$$

Notes: 95% confidence bands from Newey-West s.e. with 12 lags

UK-Bank Demand and ROW Supply Elasticities for USD with 2SLS

USD SUPPLY FROM ROW: $\Delta q_{St}^{net} = \psi^{net} \Delta e_t + \beta_{\phi p}^{net} control s_t + u_t$					
and Stage					
Δe_t	0.821***	1.793**	1.804**	2.037**	
	(0.294)	(0.719)	(0.767)	(0.824)	
1st-Stage <i>F</i> -stat.	8.85	34.22	30.94	32.66	
USD DEMAND FROM UK-RESIDENT BANKS: $\Delta q^{net}_{E,t} = -\phi^{net}\Delta e_t + \beta^{net}_{\phi} controls_t + u_t$					
and Stage					
Δe_t	-0.402***	-0.854**	-0.888**	-0.538*	
	(0.138)	(0.377)	(0.368)	(0.321)	
1st-Stage <i>F</i> -stat.	8.85	34.22	27.81	33.71	
Macro Controls	No	Yes	Yes	Yes	
Bank Controls	No	No	Yes	Yes	
Components	No	No	No	5	

Notes: ***, **, * denote 1, 5 and 10% significance, using Newey-West standard errors with 12 lags.

Inelastic UK-Bank Demand and Elastic ROW-'Fund' Supply for USD

Estimated Supply and Demand Curves for USD

Notes: Shaded areas denote Newey-West one standard deviation error bands (12 lags).

- UK-Bank USD demand ϕ^{net} is price-inelastic while ROW USD supply ψ^{net} is price-elastic
- $\Rightarrow \ {\rm Decomposing} \ M^{net} = \frac{1}{\phi^{net} + \psi^{net}}, \ {\rm that} \\ \phi^{net} < \psi^{net} \ {\rm implies} \ {\rm that} \ {\rm banks} \ {\rm price} \\ {\rm most} \ {\rm of} \ {\rm FX} \ {\rm response}, \ {\rm i.e.}, \ {\rm are} \ {\rm marginal}$
- ⇒ US monetary policy + global financial cycle can weigh heavily on USD/GBP FX
- ⇒ At odds with micro-foundations underpinning the Gamma model
 - We propose alternative constraint $V_{i,t}^j \geq (\Gamma_i^j Q_{i,t}^j)^{\gamma_i^j} \cdot Q_{i,t}^j$, where γ_i^j mediates degree of moral hazard

Drivers of Inelastic Demand: The Role of Banks' Constraints

$$\Delta e_t = M z_t^{net} + \delta \left(z_t^{net} \times Cap_{S,t-1} \right) + \vartheta Cap_{S,t-1} + \beta_M^j C_t^j + u_t$$

	(1)	(2)	(3)	(4)
	DEP. VAR.: % change nominal USD/GBP, Δe_t			
z_t^{net}	0.760***	0.350**	0.337**	0.363**
	(0.219)	(0.144)	(0.145)	(0.167)
$z_t^{net} \times Cap_{S,t-1}$	-0.598*	-0.480**	-0.488**	-0.413**
	(0.319)	(0.207)	(0.212)	(0.188)
$Cap_{S,t-1}$	-0.001	-0.000	-0.005	-0.004
	(0.004)	(0.003)	(0.005)	(0.004)
Macro Controls	No	Yes	Yes	Yes
Bank Controls	No	No	Yes	Yes
Components	No	No	No	5

Notes: ***, **, * denote 1, 5 and 10% significance, using Newey-West standard errors with 12 lags.

Conclusion

- * Document **granularity** in banks' gross and net cross-border currency positions
- * Reflect this in new model, where large banks play biggest role in FX determination
- * Use model to derive novel **granular financial shocks**—GIVs for USD capital flows
- $\star\,$ GIVs reveal that (net) flows have **significant and persistent causal effects** on exchange rates
 - 1% \uparrow cross-border USD net flow by UK banks $\Rightarrow \sim 2\%$ USD/GBP appreciation
- * UK-resident banks' USD-demand is **inelastic**...
 - ... while banks' counterparties' average USD-supply is elastic
 - \Rightarrow Suggests UK-resident banks have marginal role in USD/GBP market
- \star ...in part linked to banks' **risk-bearing capacity**
 - Effects of (net) flows twice as large when banks' capital ratios are 1 s.d. below average
 - $\Rightarrow\,$ Role for domestic prudential policy in contributing to stable FX

Appendix

Decomposing UK-Based Banks' Cross-Border Claims and Liabilities

Notes: Total USD-denominated cross-border claims by asset class (debt and equity) and total liabilities. Currency.

Details on Controls

Macro Controls:

► VIX

- 3-month UK and US interbank interest rates
- 6-month and 10-year UK and US government bond yields
- 3-month UK and US realised equity returns
- UK and US corporate bond index yields
- Survey forecasts for 3-month-ahead USD/GBP exchange rate

Bank-Level Controls:

- log(Total Assets)
- Capital Ratio
- Liquid-Asset Ratio
- Core Deposits Ratio
- Commitment share
- International share

Proxies for Unobserved Common Factors via PCA

Panel Regression: of flows on time fixed effects and controls to extract residuals $\hat{\zeta}_{i,t}^{j}$.

$$\Delta q_{i,t}^j = \theta_t^j + \theta^j C_{i,t-1}^j + \zeta_{i,t}^j$$

Factor Analysis: Proxy common factors $\hat{\eta}_{k,t}^j$ for k = 1, ..., K by performing principle-component analysis on the residuals $\hat{\zeta}_{i,t}^j$ across banks *i*.

Intuition: Principle component captures the common variation across banks' flows in period t that banks load on heterogeneously—since include time fixed effects—and are not related to observable controls.

Back

GIV Uncorrelated with Global Financial Cycle

Dep. Var.: Δz_t^{net}				
vix_t	-0.000			-0.000
	(0.000)			(0.000)
GFC_t		0.001		0.001
		(0.001)		(0.002)
$r^{us}_{6M,t}$			-0.000	-0.000
			(0.001)	(0.001)
Observations	88	86	88	86
Adjusted R^2	-0.01	-0.01	-0.01	-0.03

. ◀ Ba<u>ck</u>