THE GLOBAL NETWORK OF FINANCIAL INTERMEDIATION AND EXCHANGE RATES*

Saleem Bahaj

University College London & BoE

Daniele Massacci

King's College London

Pasquale Della Corte

Imperial College London & CEPR

Eduard Seyde

Imperial College London

5th BIS workshop on "Research on global financial stability: the use of BIS international banking and financial statistics" Basel, 14–15 December 2023

*The views are those of the authors and are not necessarily those of the Bank of England.

(日) (日) (日) (日) (日) (日)

INTRODUCTION

Fluctuations in the balance sheet of financial intermediaries can affect exchange rates

- Theoretically (e.g., Gabaix and Maggiori, 2015),
- Empirically (e.g., Correa & DeeMarco, 2019; Du, Hebert and Wang, 2021; Fang, 2021).

Financial intermediaries operate through a complex network of cross-border interactions

• It is key for credit intermediation and the propagation of global shocks (e.g., Bruno & Shin, 2014; Hale, Kapan & Minoiu, 2020; Correa, Paligorova, Sapriza & Zlate, 2021).

Does the network structure of financial intermediation matter for exchange rates?

- The current literature focuses on first-order connections,
- But higher-order effects might also be relevant for exchange rates.

THIS PAPER

What we have done ...

- A simple model based on Gabaix and Maggiori (2015) that relates higher-order financial connections to future exchange rate returns,
- We use cross-border banking claims and liabilities from restricted version of the Locational Banking Statistics database for our empirical investigation.
- We construct the network centrality using eigenvector centrality, before isolating direct and indirect network effects.

What we have found...

- Higher-order strengths can mitigate/amplify future exchange rate returns in response to trade shocks (domestic or foreign),
- The <u>relevant network</u> is denominated in the currencies of the counterparty currencies (ad not a in vehicle currency).

(日)

OUR THEORY

OUR THEORY

We study the role of financial network effects for exchange rate determination.

- A multi-country version of Gabaix & Maggiori (2015),
- Multiple open economies of different size that consume tradable and non-tradable goods,
- Each household can only invest/borrow through the domestic risk-free bond,
- Global imbalances are intermediated by financiers with limited balance sheet capacity.

Two important features of the model

- Segmentation,
- Limited intermediation capacity.

A SIMPLE VERSION

A world consisting of three countries - <u>US</u>, <u>Eurozone</u>, and <u>Japan</u> - where all countries have Balances external accounts to Begin with.

MODEL'S SETUP

A US trade surplus requires a <u>depreciation today</u> coupled with an <u>appreciation</u> <u>tomorrow</u> of both euro and yen to attract Global financiers.

Eurozone's perspective: <u>Higher-order connections mitigate</u> the future appreciation of the euro in response to a large negative import demand shock abroad at time t.

A Eurozone trade deficit requires a <u>depreciation today</u> coupled with an <u>appreciation tomorrow</u> of the euro to attract global financiers.

Eurozone's perspective: <u>higher-order connections amplify</u> the future appreciation of the euro in response to a large positive import demand shock at home at time t.

THREE EMPIRICAL PREDICTIONS

- 1. An increase in a country's higher-order financial connections mitigates the impact of large import demand shocks abroad on its future exchange rate return.
- 2. An increase in a country's higher-order financial connections amplifies the impact of large import demand shocks at home on its future exchange rate return. This effect goes to zero as the country becomes small.
- 3. The <u>relevant network of financial intermediation</u> is the one denominated in the currencies of the counterparty countries and not the one denominated in a vehicle currency like the dollar.

Our Data

DATA SOURCES

Cross-border Banking Activity

- Restricted version of the Locational Banking Statistics by residence from the BIS.
- Aggregate cross-border financial claims and liabilities of internationally active banks located in 45 reporting countries against counterparties in more than 200 countries.
- Quarterly claims and liabilities disaggregated by currency of denomination: major (USD, EUR, JPY, GBP, and CHF) and local currencies from December 1983 and December 2019.

Exchange Rate Data

- Daily spot and forward exchange rates for 71 countries sourced from Datastream,
- Exchange rates are defined as units of dollars per unit of foreign currency,
- We sample end-of-month rates between December 2019 and January 2020.

DATA SOURCES

Other Data

- Quarterly bilateral merchandise exports and imports from the Direction of Trade Statistics,
- Yearly data on gross domestic product from the World Bank database,
- Yearly data on financial openness index of Chinn & Ito (2006),
- Monthly data on the exchange rate classification index of Ilzetzki, Reinhart & Rogoff (2019).

Combined Data

- When monthly data are not available, we retrieve monthly observations by forward filling.
- The final dataset will run between December 1983 and January 2020.

Reporting Countries 🚺 🕨 Counterparty Countries

FIRST-ORDER CONNECTIONS

^{16 / 29}

HIGHER-ORDER CONNECTIONS

For each country i, we compute eigenvector centrality at time t as follows

We can rewrite the system of equations as

FIRST-ORDER VS HIGHER-ORDER CONNECTIONS

Bonacich (1987) shows that eigenvector centrality converges to power centrality, i.e., the infinite sum of weighted paths activated directly and indirectly by each node in a network as

$${\mathcal C}_t = \sum_{\ell=0}^\infty \lambda_t^{-\ell} {\mathcal A}_{ij,t}^{\ell+1} \, \mathbb{1}_N$$
 ,

First-order connection is defined as

$$\mathcal{F}_t = \mathcal{A}_{ij,t} \, \mathbb{1}_N$$
,

Higher-order connection is computed as (truncated to $\overline{\ell}$)

$$\mathcal{H}_t = \lambda_t^{-1} \mathcal{A}_{ij,t}^2 \, \mathbf{1}_N \, + \, \lambda_t^{-2} \mathcal{A}_{ij,t}^3 \, \mathbf{1}_N \, + \, \ldots \, + \, \lambda_t^{\overline{\ell}} \mathcal{A}_{ij,t}^{\overline{\ell}} \, \mathbf{1}_N.$$

OUR EMPIRICAL EVIDENCE

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ <</p>

GROSS FINANCIAL INTERMEDIATION AND EXCHANGE RATES

GROSS FINANCIAL INTERMEDIATION AND EXCHANGE RATES

	(1)	(2)	(3)	(4)	(5)
\mathcal{F}_i	-0.391	-0.440			0.562
	(0.280)	(0.289)			(0.352)
$\mathcal{F}_i imes D_i$	-0.835***	-0.787***			-0.581**
	(0.316)	(0.295)			(0.278)
\mathcal{H}_i			-1.009***	-1.056***	-1.278***
			(0.260)	(0.273)	(0.334)
$\mathcal{H}_i imes D_i$			-0.666**	-0.734***	-0.510*
			(0.296)	(0.258)	(0.262)
# Observations	14,981	14,981	14,981	14,981	14,981
Other Regressors	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Time fe	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Controls		\checkmark		\checkmark	\checkmark

Standard errors (in parentheses) are clustered at the country level.

FINANCIAL CONNECTIONS AND EXCHANGE RATES

Higher-order connections times future exchange a large trade surplus shock abroad rate return $\Delta s_{i,t+1} = \beta \mathcal{H}_{i,t} I_{us,t} + \gamma \mathcal{H}_{i,t} I_{i,t} + \theta \mathcal{H}_{i,t} I_{i,t} L_{\alpha,t} + Controls_{i,t} + \frac{X_{i,t}}{X_{i,t}} + fe + \varepsilon_{t+1},$ Higher-order connections times a trade deficit shock at home Higher-order connections times a trade deficit shock at home

when country i is sufficiently large (top 5% of share of global trade)

Openness index of Chinn \$ Ito (2006), trade centrality of Richmond (2019), forward premia, share of world GDP, and first-order connections Other Regressors (and interactions)

FINANCIAL CONNECTIONS AND EXCHANGE RATES

	(1)	(2)	(3)	(4)	(5)
\mathcal{H}_i	-1.000***	-1.058***	-1.023***	-1.278***	-0.858**
	(0.275)	(0.299)	(0.298)	(0.352)	(0.361)
$\mathcal{H}_i imes I_{us}$	-0.631***	-0.643***	-0.651***	-0.648***	-0.650***
	(0.216)	(0.221)	(0.217)	(0.219)	(0.219)
$\mathcal{H}_i imes I_i$	-0.281	-0.419	-0.449	-0.445	-0.353
	(0.277)	(0.289)	(0.299)	(0.297)	(0.283)
$\mathcal{H}_i imes I_i imes L_{lpha}$		1.886***	1.843***	2.246***	2.051***
		(0.551)	(0.579)	(0.433)	(0.432)
# Observations	14,981	14,981	14,981	14,981	14,981
Other Regressors	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Time fe	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Country fe			\checkmark		\checkmark
Controls				\checkmark	\checkmark

Standard errors (in parentheses) are clustered at the country level.

DIFFERENT THRESHOLDS α

CONTROLLING FOR DOLLAR NETWORK EFFECTS

	(1)	(2)	(3)	(4)
$\mathcal{H}^{us}_i imes \mathit{I}_{us}$	-0.409	-0.354	-0.397	-0.340
	(0.272)	(0.277)	(0.282)	(0.286)
$\mathcal{H}_i imes I_{us}$	-0.474**	-0.465**	-0.486**	-0.426**
	(0.211)	(0.217)	(0.206)	(0.211)
$\mathcal{H}_i^{us} imes I_i imes L_{lpha}$	2.206*	2.132*	2.421**	2.152*
	(1.129)	(1.153)	(1.191)	(1.196)
$\mathcal{H}_i imes I_{i,t} imes L_{lpha}$	1.945***	1.953***	2.040***	1.946***
	(0.601)	(0.610)	(0.645)	(0.638)
# Observations	14,957	14,957	14,957	14,957
Other Regressors	\checkmark	\checkmark	\checkmark	\checkmark
Time fe	/	./	.(.(
	v	v	v	v
Country fe	v	\checkmark	v	∨ √

Standard errors (in parentheses) are clustered at the country level.

CONTROLLING FOR PEGGED CURRENCIES

	(1)	(2)	(3)	(4)	(5)
\mathcal{H}_i	-1.000***	-1.058***	-1.023***	-2.446***	-2.078***
	(0.275)	(0.299)	(0.298)	(0.649)	(0.644)
$\mathcal{H}_i imes I_{us}$	-0.631***	-0.643***	-0.651***	-1.182***	-1.208***
	(0.216)	(0.221)	(0.217)	(0.452)	(0.449)
$\mathcal{H}_i imes I_i$	-0.281	-0.419	-0.449	-0.780	-0.641
	(0.277)	(0.289)	(0.299)	(0.551)	(0.511)
$\mathcal{H}_{i,t} imes I_{i,t} imes L_{lpha}$		1.886***	1.843***	2.627***	2.494***
		(0.551)	(0.579)	(0.715)	(0.726)
# Observations	14,981	14,981	14,981	14,981	14,981
Other Regressors	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Time fe	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Country fe			\checkmark		\checkmark
Controls				\checkmark	\checkmark

Standard errors (in parentheses) are clustered at the country level.

CONCLUSIONS

We study the role of financial network effects on the determination of exchange rates.

We build on the model of Gabaix & Maggiori (2015) and extend it to a multi-country set-up with heterogeneous intermediation capacity and country size.

We shed light on economic quantities that capture cross-sectional and time-series variation in intermediation capacity: *gross banking intermediation*.

We find evidence of higher-order network effects matters for determination of exchange rates.

APPENDIX

REPORTING COUNTRIES

- 1983 Austria, Bahamas, Belgium, Canada, Cayman Islands, Denmark, Finland, France, Germany, Hong Kong, Ireland, Italy, Japan, Luxembourg, Netherlands, Netherlands Antilles, Spain, Sweden, Switzerland, UK, US
- 1997 Australia, Portugal
- 2000 Taiwan, Turkey
- 2001 Guernsey, India, Isle of Man, Jersey
- 2002 Bermuda, Brazil, Chile, Panama
- 2003 Greece, Macau, Mexico
- 2005 South Korea
- 2007 Malaysia
- 2008 Cyprus
- 2009 South Africa
- 2010 Curacao, Indonesia
- 2014 Norway
- 2015 China
- 2016 Philippines
- 2017 Saudi Arabia

Go back

COUNTERPARTY COUNTRIES

- 1984 Austria, Australia, Belgium, Canada, Denmark, Germany, Hong Kong, Ireland, Italy, Japan, Liechtenstein, Netherlands, Norway, Nauru, New Zealand, Portugal, Singapore, Spain, South Africa, Sweden, Switzerland, UK, US
- 1990 Kuwait, Saudi Arabia, Tuvalu
- 1992 Kiribati
- 1995 United Arab Emirates
- 1996 Czech Republic, France, Greece, Indonesia, Malaysia, Mexico, Poland, Taiwan
- 1997 Hungary, India
- 1998 Andorra, Finland, Greenland, Thailand, Vatican City
- 1999 Euro Area, San Marino
- 2000 Bahrain, Philippines, Turkey
- 2001 Guernsey, Isle of Man, Jersey
- 2002 South Korea, Slovakia
- 2004 Argentina, Bulgaria, Brazil, Chile, Colombia, Croatia, Egypt, Iceland, Israel, Jordan, Kazakhstan, Kenya, Lithuania, Latvia, Malta, Morocco, Oman, Peru, Pakistan, Palestinian Authority, Qatar, Russia, Slovenia, Tunisia
- 2005 China, Romania
- 2006 Montenegro
- 2010 Ukraine
- 2011 Botswana, Serbia, Sri Lanka, Uganda, Vietnam, Zambia

FIRST-ORDER CONNECTIONS VS. TRADE CENTRALITY

HIGHER-ORDER CONNECTIONS VS. TRADE CENTRALITY

