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Abstract

I develop a structural model with nested CES preferences to obtain optimal markups
for heterogeneous retailers when the prices of all their inputs are exogenous. The model
predicts that if the taste parameters are constant over time, the markups are more
flexible when retailer market shares increase. This implies that the elasticities of the
input price on final goods prices are estimated with attenuation bias when the store
type is not used as a control in the estimation. There would be no attenuation bias if all
retailers were measure zero or if preferences for store types were Cobb-Douglas. This
means that the exchange rate pass-through (ERPT) is underestimated in most models
that use micro data because some prices most likely are collected in non-measure zero
stores and store types compete for market share. I then use all the price changes
of tradeable merchandise in the Mexican Consumer Price Index (CPI) data between
June 2009 and June 2018 as well as the changes in the USD/MXN exchange rate to
test the model and find the ERPT underestimation. I am able to obtain the average
ERPT levied onto consumers by the different types of retailers in Mexico. I find that
prices in supermarkets and department stores are less volatile than public markets,
convenience, and specialized stores. This is interpreted as higher elasticity of markups
in the supermarket and department store sectors, which in turn implies those are more
concentrated sectors than the rest. The ERPT by type of retailer is low for supermarkets
and department stores, and positive or statistically not different from zero for the other
types of retailers. I find that not taking into consideration the store type underestimates
the ERPT by a statistically significant amount.
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1 Introduction

The recent long episode of constant depreciation of the Mexican peso against the U.S.

dollar has lead policymakers to reanalyze the effect of the exchange rate on prices.

Even though there is a vast and growing literature that has arrived to a consensus

that for the case of Mexico, starting in 2002 the exchange rate pass-through (ERPT)

has been low,1/ there are growing concerns about the fact that these episodes of

volatile exchange rates imply a larger volatility in prices.2/ The immediate question

arising from a sudden increase in volatility is if price volatility of all the goods

increases by the same amount, and what can explain any differences, if any.

While seminal literature (see Burstein, Neves, and Rebelo (2003)) predicts that price

changes coming from the exchange rate are lower for cities located away from the

border, the evidence in Mexico shows, however, that this elasticity depends not only

on the distance to the border, but on the type of store where products are sold. For

this paper, I had access to the retailer names and their store types (convenience store,

supermarket, department store, etc.) in the CPI micro data from INEGI and found

that in Mexico price volatility is heterogeneous by store type.3/ I did some tests to

check whether incorporating this information to the usual analysis conducted by

Central Banks could be enriched or even modified. I find that between 2009 and

2018, the prices of the same generic tradeable goods in Mexican convenience stores

were on average twice as volatile as the prices in Mexican supermarkets.4/ In the

same time period, informal markets were 1.6 times more volatile than supermarkets,

while department stores were 0.9 times as volatile. The data shows that price

changes that can be attributed to the exchange rate were much larger in Tijuana

(a border city with the U.S.) than in Mexico City (900km away from the border),

but marginally larger than San Luis Potosí (450km from the border).5/ Adjusting by

1/ See Chiquiar, Noriega, and Ramos-Francia (2010), Cortés Espada (2013), Aleem and Lahiani
(2014), Peón and Brindis (2014), Baharumshah, Sirag, and Soon (2017), Kochen and Sámano (2016),
Chávez and Alonso (2017), and Solorzano (2017) just to name a few examples.

2/ The Bank of Mexico’s quarterly report had an entire section studying exchange rate volatility, and
the subject was mentioned in a number of speeches by the members of the Board.

3/ To the best of my knowledge, this is the first time any published research has used this.
4/ INEGI is the Spanish acronym of Instituto Nacional de Estadística y Geografía, the public

institution in charge of statistical data in Mexico. One of their tasks is calculating inflation. Details on
which products constitute tradeable merchandise for the purposes of this paper are in section 3.

5/ Details of these calculations in section 4.
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retailer type gives the usual result that Mexico City has significantly less ERPT than

San Luis Potosí, which in turn has significantly less ERPT than Tijuana.

Using this evidence as motivation, I develop a structural model with nested CES

preferences where the outermost nest is the store type to obtain optimal markups

for heterogeneous multi product retailers when the prices of all their inputs are

exogenous. The model allows for non-zero measure retailers within their store type,

and non-zero measure store types. The resulting equilibrium pricing rule features

a variable markup of price over marginal cost that is common across all goods in

the same store, and different across stores. The model features that markups are

high for retailers with high market share within their store type, and also high for

stores within a store type with high expenditure share in the economy. Moreover, the

model predicts that if the taste parameters are constant over time, then the higher

markups are more flexible, with a negative coefficient. This means that the same

percentage change in marginal costs implies a lower percentage change in final price

in stores with high markup. This implies that the elasticities of the input price

on final goods prices are estimated with attenuation bias when the store type is

not used as a control in the estimation (because averaging out by store type has

zero mean). This Mexican evidence can immediately be contrasted with Cravino,

Lan, and Levchenko (2018), where they find that the prices of the goods consumed

by high-income households are less volatile than those of the goods consumed

by middle-income households. While my model has homothetic preferences and

has nothing to say about the consumption bundles of rich and poor households,

it is important to say that in Mexico in 2010, only 7 percent of the households

were located in high income neighborhoods, but 20 percent of department stores

and supermarkets (which exhibit low price volatility) were located in high income

neighborhoods.6/

In this paper, I assume that prices are flexible and that every retailer is a multi-final

goods producer of generic goods (for example, bottles of cold beer and dishwater

soap in a convenience store) and has access to the exogenous7/ prices from the

6/ This information was obtained using store locations (geographic coordinates) from DENUE
(2010) and from the Census of Population 2010 which also has geographic coordinates too. Both
data sets are from INEGI.

7/ This can be thought of as the producer not taking into consideration the location, type of store, or
even name of the store to set prices.
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producers of every generic product (for example, bottles of beer and dishwater soap)

as well as exogenous input prices (wages, electricity, etc.). I build a model with

nested CES preferences to obtain optimal markups for retailers and find that for

every retailer, the optimal price for each of the products they sell involves setting

a constant markup in every good in the store, that depends on the market share of

the retailer in its own store type and of the store type in the whole economy. The

markup is constant because their own retailer cannibalization effect is exactly offset

with between retailer substitution; and this markup does not depend on the elasticity

of substitution between the goods sold in the store (which is a standard result in

Atkeson and Burstein (2008) and Hottman, Redding, and Weinstein (2016) from the

producer point of view, and more recently studied by Eaton, Jinkins, Tybout, and

Xu (2016) and Atkin, Faber, and Gonzalez-Navarro (2018) from the retailer point of

view). My framework only uses CPI data and hence is widely applicable, because

the CPI weights (given) allow to construct price indices of categories of products by

city, and the CPI price observations allow to do this also by store type. Moreover,

most data sets with quantities and prices at the household level (where the shares

can be observed over time) hardly capture more than 30 percent of the CPI goods.

The model predicts that there are two dimensions along which markups vary

between stores. First, they vary in levels. The markup is larger for retailers within

a store type with large market share (i.e. retailers in the supermarket store type, no

matter what is the market share of the retailer within the supermarkets), but can

be larger or lower for retailers with a large market share within their store type

(i.e. retailers with a large share in the supermarket store type, no matter what

is the share of supermarkets overall) depending if retailer within store types are

better substitutes than store types or the other way around, respectively. The second

dimension is in the elasticities of the markups. Higher markups are more flexible,

meaning that the same variation in costs implies that the observed percentage

change in price in the higher markup retailers is lower. Since retailers with large

shares in their own type of store are the ones with the highest markups, this means

that these retailers will have the most flexible markups. For the same increase in

marginal costs in every store (for example, a generalized increase in the cost of

beer), the model predicts that retailers with the largest market share will increase

the price of the final good (cold beer), in percentage terms, the least. This result
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of heterogeneous markups which result in a wide distribution of prices of the same

good also contributes to the results found in DellaVigna and Gentzkow (2017), where

the data for the United States shows that department stores, pharmacies and food

stores impose (almost) uniform pricing across locations, and the authors even give

an estimate of the potential gains of spatial pricing. This paper shows that retailers

set uniform markups by city, not uniform prices. Also, the uniform markups are

set by city, not across the whole country because there are variations in the market

share of the stores in the cities, even if the costs are identical for all cities. I test the

model using CPI and Census data from Mexico. I find that department stores and

supermarkets are the two most concentrated markets among store types of the CPI.

As mentioned before, they also have the least volatile prices and higher markups.

The aim of this paper is to fit and enrich two rapidly growing areas in the

literature. The first area is the one that studies flexible markups (see Burstein

and Gopinath (2014) for an extensive literature review on this topic) by taking

the producer prices as exogenous and adding the dimension that retailers have

flexible markups. Usually, nested CES models and other international economics

papers give the producers of the goods all the pricing decision, and assume that

once this decision is taken, retailers pass-through 100 percent of this decision onto

consumers via an inflexible markup. For example, Gopinath and Itskhoki (2010),

Amiti, Itskhoki, and Konings (2014), Auer and Schoenle (2016), and many others

have pricing-to-market decisions and strategic complementarity which then retailers

just levy onto consumers. This paper shows that the market share of the retailer is an

important determinant of the markup. In fact, a non-negligible market share implies

that the markups are flexible. There is substantial evidence that some retailers have

large shares within their store types. While in this paper I study producer prices

as being exogenous, this analysis can be extended to Stackelberg games where multi

product (or any other dimension of non-zero market share) producers know how the

retailers will flexibly markup their prices and strategically set the producer prices to

maximize profits. Also, the paper has something to say about the trade-off between

a scenario with higher but less volatile prices versus another one with lower but

more volatile prices. In the international trade literature, higher but less volatile

prices are associated with autarky, and lower but volatile prices are associated with

international trade. The latter always dominates in terms of welfare, and for the case
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of this paper, the discussion would be analogous if large retailers and small retailers

had the same marginal costs. However,

The second area in the literature that this paper points at is the ERPT literature,

where the consensus is that it is small (see Goldberg and Campa (2010) for a 21

industrialized economies study on the ERPT into the CPI, where they find that most

of the ERPT comes from imported inputs of production and not imported final

goods). I build a model where one of the implications is that if every retailer is

zero-measure then the estimating equations collapse to the usual ERPT estimations.

However, I find that if retailers are non-zero-measure then there is a correction

term that has mean zero that acts like classic measurement error and thus biases

downwards the estimates of the elasticities of the input prices on final prices. This

means that the elasticity of the final price on exchange rates, or ERPT is most likely

underestimated.

The paper is organized as follows. Section 2 sets up the model and shows that if

the preference parameters do not change over time, then the elasticity of the final

goods price with respect to input prices (including the exchange rate). Section 3 lists

and explains the data sets used for estimation and briefly describes how the spatial

competition measures were built and section 4 shows the different estimations of

the ERPT conditional and unconditional on retailer information. Finally section 5

summarizes the results and concludes.

2 Model Structure and Identification Strategy

Given the price data of the product-store over time, and given that it is not possible

to know the producer’s pricing decision from the CPI data, I model the local

retailer’s price setting decision taking the producer price as given. Furthermore, for

identification purposes, I assume that producers to not incur in pricing-to-market

strategies between or within cities in Mexico. This way I modify the common

assumption in the literature of using CPI data assuming that all the markups

are rigid once the product has left the factory. The model is explicitly simple,

and its main objective is to give loglinearized expressions for the data generating

process of price changes, without an explicit model for internationally strategic
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producer decisions. The model allows an extensive family of seminal monopolistic

competition, ricardian technology, or pricing-to-market models to be tested if, for

example, producer price data was available. Also, if data on quantities purchased

was available, then elasticities of substitution would be feasible to estimate too. The

aim of this paper is not to deepen the estimation strategy of flexible markup models,

but to highlight that ignoring that there are flexible markups can potentially lead to

underestimation of the ERPT.

It is a nested CES demand structure with 3 nests, where the consumers in each

location (indexed with `, and in the data locations are cities) have preferences over

a fixed set of store types (indexed with τ), and within types of stores, preferences

over retailers (indexed with r), and within the retailers, they have preferences over

generic products (indexed with g). Generic products are purchased by retailers,

which are single-plant firms (i.e. make decisions in only one location where they

have some market power), from producers for the same price all over Mexico, and

then the retailers add value (transport the good from the factory/port to the location,

refrigerate it, hire workers to sell it, etc.), and decide a price for the generic product

in their store, where consumers go purchase the final goods.

Several papers that work with flexible markups have discussed that nested CES

preferences need that the outermost nest is Cobb-Douglass such that the expenditure

is constant and producers do not use their market power to affect aggregate

spending.8/ The model in this paper can be thought of as one of those, but where

the first nest is Cobb-Douglass between tradeable merchandise goods and the rest

of the goods in the economy, and in this paper I only care about the 3 remaining

nests, where a constant fraction of the total expenditure is spent in the tradeable

merchandise goods consumption bundle.9/

8/ See Hottman, Redding, and Weinstein (2016) for an extensive analysis of this particular issue.
9/ See Kochen and Sámano (2016) for an extensive description of the selection of the “tradeable

merchandise goods” bundle of the CPI. They are basically everything that is not a service, with minor
exceptions. For example, hotels are included as tradeable goods.
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2.1 Consumers

Each period, consumers in location ` can purchase their goods in any of the T types

of store (indexed with τ). Within each type of store (in the data, one type of store

is convenience store), consumers choose the retailer (indexed with r ∈ Rτ`) where

they will buy their goods (in Mexico, one retailer in the convenience store type of

store is Oxxo, and another one is 7-Eleven). And once the retailer of each type of store

is chosen, then the consumers choose the generic product (indexed with g ∈ Grτ`)

they want to purchase. The set of goods available in each retailer are not necessarily

disjoint.

As it is standard with nested CES preferences, consumers solve a three-stage

problem. In the first stage, given a fixed amount of composite goods to be purchased

on retailer r of type τ in location `, consumers choose how much of each generic

product to buy from each retailer. In the second stage, and given a fixed amount

of composite goods to be purchased on each type of retailer, they choose how to

allocate expenditure on each retailer of a certain type. In the final stage, for any

level of expenditure, consumers choose how much to allocate to every type of store.

Expenditure is fixed no matter what prices are faced by the consumers.

So, given a set of generic products Grτ` in retailer r of retailer type τ in location

`, the price pgrτ` of generic products g, and given a fixed amount of composite

purchases qrτ` in the retailer, consumers choose how much to buy of generic g by

CES aggregating their purchases:

qrτ` =

 ∑
g∈Grτ`

(
βgrτ`

) 1
σG
(
qgrτ`

) σG−1
σG


σG

σG−1

(1)

where βgrτ` is the preference parameter for generic good g and σG > 1 is the elasticity

of substitution among generic products. The demand for generic g in retailer r of

type τ in location ` has the standard form

qgrτ` = βgrτ`

( pgrτ`

prτ`

)−σG

qrτ` (2)
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where prτ` =
(∑

g∈Grτ`
βgrτ`

(
pgτ`

)1−σG
) 1

1−σG is the ideal price index for the

consumer when shopping in retailer r of type τ. In the second stage, they

take the price index of each retailer and decide how much to but from each

retailer of each type. From the perspective of the consumer, the retailers are

imperfect substitutes, either because they carry different generic products or because

of amenity considerations.10/ Once the first stage is solved, consumers buy (a

composite of) products from all the retailers of the same type and combine them

into a composite good of retailer type, qτ`. The aggregation is

qτ` =

∑
r∈Rτ`

(βrτ`)
1

σR (qrτ`)
σR−1

σR


σR

σR−1

(3)

where qrτ` measures the consumption in location ` of goods purchased in retailer r

of type τ. The elasticity of substitution between retailers is 1 < σR < σG and the

retailer amenity parameter is βrτ`. The demand products of retailer r of type τ in

location ` has the standard form

qrτ` = βrτ`

(
prτ`

pτ`

)−σR

qτ` (4)

where pτ` =
(∑

r∈Rτ`
βrτ` (prτ`)

1−σR
) 1

1−σR is the ideal price index for the consumer

when shopping in retailer type τ. In the final stage, consumers combine all the

bundles and derive utility from all the store types. The utility function is

U` = q` =

( T∑
τ=1

(βτ`)
1

σT (qτ`)
σT−1

σT

) σT
σT−1

(5)

where qτ` measures the consumption in location ` of goods purchased in store type

τ. The elasticity of substitution between store types is 1 < σT < σG and the store

type amenity parameter is βτ`. With retailer price index pτ` (in the next subsection

it will be possible to see how qτ` is itself a composite of generic goods, and pr` is the

10/ Amenity considerations are also not modeled in this paper, but include such things as the
proximity/access to the store and idiosyncratic preferences over types of stores (such as shopping
in supermarkets vs. convenience stores).
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ideal price index of that composite good), the budget constraint is simply

T∑
τ=1

pτ`qτ` ≤ E` (6)

where E` is the total expenditure in location `. Solving the consumer problem, I

get the standard result that the demand for products from store type τ is linear in

(nominal) expenditure.

qτ` = βτ`

(
pτ`

p`

)−σT E`

p`
(7)

where p` =
(∑T

τ=1 βτ` (pτ`)
1−σT

) 1
1−σT is the ideal price index. This three-stage

problem implies that the demand for any generic g in terms of generic prices (which

are retail specific meaning that a beer is an imperfect substitute of the same exact

beer if that same beer is sold in another retailer), retail price indices, retailer type

price indices and location level price indices is

qgrτ` = βgrτ`βrτ`βτ`

(
pgrτ`

)−σG (prτ`)
σG−σR (pτ`)

σR−σT (p`)
σT−1 E` (8)

Notice that nothing has been stated about the sign of σR − σT. This is not crucial

to show that ERPT is underestimated because markups are flexible independent of

the sign. I now briefly discuss the implications of different signs. Assume pgrτ`

to be unchanged. If σR > σT then an increase in the price index of supermarkets

makes more attractive to buy the generic product in a certain supermarket because

the relative price decreased. But if σR < σT then an increase in the price index of

supermarkets reduces the demand for the generic product because of the crowding

out effect that a reduction in the sales of supermarkets dominates the reduction of

the relative price.

The generic own price elasticity within retailer is

d log qgrτ`

d log pgrτ`
= −σG + (σG − σR + (σR − σT + (σT − 1) sτ`) srτ`) sgrτ` (9)
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while the cross-price elasticity within store is

d log qg′rτ`

d log pgrτ`
= (σG − σR + (σR − σT + (σT − 1) sτ`) srτ`) sg′rτ` (10)

where sgrτ` is the expenditure share in generic g conditional on buying in retailer r of

type τ in location `, srτ` is the share of expenditure in retailer r of type τ in location

`, and sτ` is the expenditure share in store type τ in location `. Here the assumption

of having σT < σG and σR < σG becomes crucial. Since the products are substitutes,

the cross-price elasticity is positive for any value of sτ` and srτ` only if the following

condition is satisfied:

srτ` (sτ` + (1− sτ`) σT) + (1− srτ`) σR < σG (11)

which requires σT < σG and σR < σG. The own-price elasticity for any value of

sτ`, srτ`, sgrτ` only if the following condition is satisfied:

srτ` (sτ` + (1− sτ`) σT) + (1− srτ`) σR > 0 (12)

which is trivially true if σT, σR > 0 (and even more so for σT, σR > 1).

2.2 Retailers

Each period, the retailers of each type τ in location ` have a fixed menu Grτ` of final

goods to sell. Then, they solve a two-stage problem. First, the retailers of type τ

in location ` buy all their generic goods qogrτ` from the producers (for example, a

bottle of beer). For notation purposes, indexed with an o to separate it from when

the generic product is bought by consumers), then add value added using a series of

inputs qgrτ`i (indexed by i), so it becomes a final good Qgrτ` (a bottle of cold beer in a

convenience store). The value they add to the generic good generates costs, and the

technology to add value to the generic in order to sell it as a final good is

Qgrτ` =

 ∑
i∈Igrτ`

(
νgrτ`i

) 1
η
(
qgrτ`i

) η−1
η +

(
νogr`

) 1
η
(
qgrτ`o

) η−1
η


η

η−1

(13)
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where qigr` are the purchases of input i (electricity, labor, etc.) and qogr` are the

purchases of the generic g ∈ Grτ` itself. The elasticity of substitution is η < 1,

which means that the inputs are imperfect complements, and νigr` is the intensity

parameter in the value added. Imperfect complements implies that both a higher

intensity or a higher input price raise the share of the retailer cost on that input. The

minimum cost to be able to transform the generic into a final good gives the retailer

cost, cgrτ`, which solves

cgrτ` =

 ∑
i∈Igrτ`

νgrτ`i
(

pgrτ`i
)1−η

+ νgrτ`o
(

pgrτ`o
)1−η

 1
1−η

(14)

During the second step, since the retailer cannot instantaneously change the set of

generic products to sell, what the retailer does is to compete with the rest of the

retailers, taking both their own set of generics as fixed as well as the set of generics

of the other retailers (summarized by their price indices). The retailer chooses prices

in order to maximize profits, taking cgrc as given from the first stage:

max
pgrτ`

∑
g∈Grτ`

(
pgrτ` − cgrτ`

)
qgrτ` (15)

And the first order condition for the optimal price pgrτ` for each g implies

qgrτ` +
∑

g′∈Grτ`

(
pg′rτ` − cg′rτ`

) ∂qg′rτ`

∂pgrτ`
= 0 (16)

which can be rearranged to:

1 +
∑

g′∈Grτ`

(
pg′rτ` − cg′rτ`

pg′rτ`

)(
∂qg′rτ`

∂pgrτ`

pgrτ`

qg′rτ`

)(
pg′rτ`qg′rτ`

pgrτ`qgrτ`

)
= 0 (17)

Noticing that
pg′rτ`qg′rτ`

pgrτ`qgrτ`
=

sg′rτ`

sgrτ`
, define mgrτ` =

pgrτ`−cgrτ`

pgrτ`
and, without loss of

generality, assume |Grτ`| = G. Substituting with equation 9 and equation 10 this
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implies, in matrix form
−σG + γs1rτ` γs2rτ` · · · γsGrτ`

γs1rτ` −σG + γs2rτ` · · · γsGrτ`
...

... . . . ...

γs1rτ` γs2rτ` · · · −σG + γsGrτ`




m1rτ`

m2rτ`
...

mGrτ`

 =


−1

−1
...

−1


(18)

where γ = σG − srτ` (sτ` + (1− sτ`) σT)− (1− srτ`) σR. As all the rows of the matrix

add up to the same constant γ − σG, this means that the only solution for this

system of equations is mgrτ` = mrτ` = 1
εrτ`

where εrτ` = srτ` (sτ` + (1− sτ`) σT) +

(1− srτ`) σR.11/ This generalizes the standard result (see Atkeson and Burstein

(2008)) that within retailer cannibalization effect is exactly offset with between

retailer substitution, which means constant markup for every generic product within

a retailer, and this markup depends on the elasticity of substitution between retailers

and does not depend on the elasticity of substitution between generic products.

Mgrτ` =
pgrτ`

cgrτ`
= Mrτ` =

εrτ`

εrτ` − 1
(19)

Notice that εrτ` > 1 for any srτ`, sτ` the model requires σT, σR > 1. In international

trade literature, the term εrτ` is usually called perceived elasticity, and producers

exploit the fact that they operate in a market where their product has a lower

perceived elasticity to charge higher markups. In this setting, being a retailer from a

store type with a large market share implies lower perceived elasticity for any values

of σT and σR, but being a large retailer or small retailer within your store type does

not give any ex-ante predictions about the perceived elasticity without knowing the

values of σT and σR.

11/ Proof: Let A =

 −σG + γs1rτ` · · · γsGrτ`
...

. . .
...

γs1rτ` · · · −σG + γsGrτ`

. It is trivial to show that A (1, 1, ..., 1)T =

(γ− σG, γ− σG, ..., γ− σG)
T . This means that γ− σG is an eigenvalue of the matrix A, and (1, 1, ..., 1)T

is an eigenvector of the matrix A. Solving for mgrτ` the system of equations in (18) implies
finding a vector x that solves Ax = (−1,−1, ...,−1)T . Multiplying both sides by σG − γ implies

A ((σG − γ) x) = (γ− σG, γ− σG, ..., γ− σG)
T which means that x = (1,1,...,1)T

σG−γ
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2.3 Producers

For simplicity, I will assume that at each location, retailers purchase the generic

goods from a continuum of producers at a price that does not depend on the location

nor the store type nor on the retailer identity, pgrτ`o = pgo. There is no strategic

interaction between producers and retailers. From the point of view of the retailers,

input prices are completely exogenous.

For estimation purposes, I will assume that all input prices can be expressed

as price indices of known prices for the econometrician, multiplied by some

non-parametrized constant. This means that all the retailer log cost changes can

be expressed as a weighted sum of all the value added log price index changes

(exchange rate, foreign and local wages, transport costs, foreign and local electricity

tariffs, foreign and local land rent, tariffs, etc):

d log cgrτ` = sgrτ`o log pgo +
∑

i∈Igrτ`

sgrτ`i log pgrτ`i

= sgrτ`o

 ∑
j∈Jgrτ`o

ωjgrτ`o log pjgrτ`

+
∑

i∈Igrτ`

sgrτ`i

 ∑
j∈Jgrτ`i

ωjgrτ`i log pjgrτ`


=

∑
j∈J

θjgrτ` log pjgrτ` (20)

where J is the set of inputs whose value added is imputed in the price, pjrτ` is the

price of value added inputs, and θjgrτ` is the value added share.

2.4 Comparative statics and elasticity of markups

The model derives a set of predictions that can be tested in the data. In this paper

I will assume that νgrτ`i, βgrτ`, βrτ`, βτ`, σG, σR, σT, η are constant over time. This

means that in equilibrium the only sources of variation of market shares, markups,

etc. are the input prices in the retail production function of generic final goods,

the number of products sold at each retailer, and the number of inputs in the value

added by retailers. The elasticity of the markup with respect to the generic input

price is positive and equal to the share of the generic as an input in the total cost of

14



the retailer to produce one unit of generic as final good

∂ log Mrτ`

∂ log pgo
= νgrτ`o

(
pgo

cgrτ`

)1−η

= sgrτ`o (21)

This share is independent of both the market share of the retailer in its store type, as

well as the market share of the store type in the economy. It also does not depend

on any elasticity of substitution. Notice that Mrτ`
pgo

also measures the value added by

the retailer, because it is exactly the ratio between the price at which consumers will

buy the generic and the price at which retailers bought the generic. For the same

reason, the elasticity of the markup with respect to any input in the production of a

final generic has the same form too

∂ log Mrτ`

∂ log pgrτ`i
= νgrτ`i

(
pgrτ`i

cgrτ`

)1−η

= sgrτ`i (22)

Substituting input prices with value added price indices the analogous expression

holds:

∂ log Mrτ`

∂ log pjgrτ`
= θjgrτ`

Using only prices and the CPI weights, the model also predicts that the elasticity of

the markup with respect to the store-type relative price with respect to other types

of stores pτ`
p`

is negative

∂ log Mrτ`

∂ log
(

pτ`
p`

) = − (σT − 1)2 srτ`sτ`

(εrτ` − 1) εrτ`
(23)

Notice that the markup would be inflexible to the retailer type relative price index

if preferences were Cobb-Douglas for retail types. This becomes important when,

for example, one of the sources of variation of the relative price pτ`
p`

is that store type

τ increased the number of products they sell. This can immediately change price

indices even without having any input price changes. The elasticity of the markup

with respect to their own price index relative to the same store type price index prτ`
pτ`

is

15



negative if retailers are better substitutes within store types than store types between

themselves or positive if store types are better substitutes than retailers but the store

type has a small share of the market.

∂ log Mrτ`

∂ log
(

prτ`
pτ`

) = − (σR − 1) srτ`

(εrτ` − 1) εrτ`
(σR − (sτ` + (1− sτ`) σT)) (24)

Also notice that this markup would be inflexible if preferences over retailers within

store types was Cobb-Douglas. If the retailer is infinitesimal within store types,

srτ` = 0, and preferences are not Cobb-Douglas, then the markup is inelastic (the

markup equals σR
σR−1 ), and if the store type is infinitesimal with respect to the rest of

the stores, sτ` = 0, then the markup equals srτ`σT+(1−srτ`)σR
srτ`(σT−1)+(1−srτ`)(σR−1) and is inelastic to

the store type price index (relative to the overall price index), but elastic to the store

price index relative to the store type price index. The markup and the elasticity of

the markup does not depend on the generic product and does not depend on the

elasticity between generic products.

2.5 Calculating the exchange rate pass-through

The previous subsection of this document highlights an important issue that must

be considered to estimate the elasticities of markups with respect to input prices: a

larger share of the store type and share of the retailer within the store type increases

the markup but increases its flexibility. Taking this model as the true data generating

process, and holding all preference parameters constant, this markup flexibility

implies that the time series variations of the retailer prices can be expressed as

d log pgrτ` = d log cgrτ`

− (σT − 1)2 srτ`sτ`

(εrτ` − 1) εrτ`
d log

(
pτ`

p`

)
− (σR − 1) srτ`

(εrτ` − 1) εrτ`
(σR − (sτ` + (1− sτ`) σT)) d log

(
prτ`

pτ`

)
(25)

So, using the price data to estimate the cost functions of the retailers but without

correcting for the store type relative price (or controlling for store type) will
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downward bias the results, since the true prices are flexible to the store type shares

but have mean zero. The change in price as a proxy for change in costs, however,

perfectly estimate the ERPT (or any other elasticity with respect to input prices) in

two special cases: when the retailer market share is zero and/or when preferences

over store types and retailers are Cobb-Douglas. When this happens then the

elasticity of the markup is zero, meaning d log Mrτ` = 0 but most importantly all

price changes can be mapped to marginal cost changes

d log pgrτ` = d log cgrτ` (26)

Notice that equation 26 is the baseline expression for most of the ERPT estimation

equations in recent literature (see Gopinath and Itskhoki (2010), Kochen and Sámano

(2016), Baley, Kochen, and Sámano (2016), and Baharumshah, Sirag, and Soon

(2017)). Suppose that srτ` = 0 for every retailer and that you want to estimate the

input price elasticities:

d log pgrτ` = d log cgrτ`

= sgrτ`od log pgrτ`o + sgrτ`i · d log pgrτ`i + εgrτ`

= θjgrτ` · d log pjrτ` + εgrτ` (27)

Using all the data on prices from the CPI and on value added input prices (such as

the exchange rate, international commodity prices, etc.), a simple linear regression

gives the best estimate of θjgrτ`, assuming εgrτ` has mean zero and is uncorrelated

with d log pjrτ`. Relaxing that srτ` = 0, from equation 25 I get

d log pgrτ` = − (σR − 1) srτ`

(εrτ` − 1) εrτ`
(σR − (sτ` + (1− sτ`) σT)) d log

(
prτ`

pτ`

)
︸ ︷︷ ︸

mean zero

+θjgrτ` · d log pjrτ` −
(σT − 1)2 srτ`sτ`

(εrτ` − 1) εrτ`
d log

(
pτ`

p`

)
︸ ︷︷ ︸

mean zero

+εgrτ` (28)

and if εgrτ` is assumed to be mean zero and uncorrelated with

d log pjrτ`, d log
(

pτ`
p`

)
, d log

(
prτ`
pτ`

)
then it is possible to obtain consistent estimators
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of θjgrτ`. Notice that the population mean of d log
(

pτ`
p`

)
and d log

(
prτ`
pτ`

)
are both

zero. This means that in theory, equation 27 does not satisfy the Gauss-Markov

conditions, because εgrτ` is correlated with d log pjrτ` before observing d log
(

prτ`
pτ`

)
and d log

(
pτ`
p`

)
. This is a classic measurement error which implies that all the

estimates of θjgrτ` will be inconsistent and as the sample grows, converge to an

attenuated value. The rest of this paper will stop being a discussion on flexible

markups and only discuss the measurement error.

3 Data

In order to test this model I need to construct the time series of p`, pτ`, prτ`, pgrτ`.

I also need time series of the input prices pjrτ`. To estimate costs, I will use the

exchange rate and all the macroeconomic data for statistical cost-push analysis, which

were obtained from Banco de México. The main sources of data is the CPI data from

June 2009 to June 2018. There is a final exercise that uses producer data, in order to

test some implications of the Hottman, Redding, and Weinstein (2016) model, and

the producer data comes from IMPI, and it matches brand names with corporations

and country of origin.12/ I briefly describe the CPI data next.

I have access to very detailed confidential INEGI micro-data from the CPI from June

2009 to June 2018. The entire data set has 23 million price observations. Each

price observation has (coded) information on the store, the product, the generic,

the date, if it was on sale, and so on. Following Kochen and Sámano (2016), and

in order to have contemporaneous macroeconomic variables for the econometric

cost-push analysis, I restrict the complete sample to the last observation of the month,

which typically occurred the last week of the month. This leaves 10.88 million

observations for the analysis.13/ The Census of Population of 2010 indicates that the

population of the 476 municipalities that constitute the 46 “cities” where the CPI data

is collected add up to 85.4 million people, which was 75.67 percent of the population

12/ IMPI is the Spanish acronym of Instituto Mexicano de la Propiedad Industrial, a public institution
that promotes branding and fights piracy. One of their tasks is collecting and publishing data of every
brand of product that is sold in Mexico.
13/ The entire data set has bi-weekly (or weekly, for agricultural products) prices, so mechanically

more than half of the sample is dropped.
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and 88.06 percent of the total urban population of 2010. The same municipalities,

using CONEVAL14/ data for 2010, obtained 87.64 percent of the household income

in Mexico.

Then, and following Kochen and Sámano (2016), I restrict the monthly sample to the

tradeable merchandise goods of the CPI, which, among other things, is less sensitive

to taste shocks. The tradeable merchandise goods monthly subset has a total of 7.92

million price observations, and the variety of products amounts for 56.8 percent of

the weight of the CPI. I take note of the product, the date (month) the price was

collected, the city, and the type and name of the store where the product is sold.15/ I

then match every price of each product in every store with the price of the same

good in the same store in the past, and get the accumulated change in the price, but

also the change in the pesos/dollar exchange rate, average wages, electricity tariffs,

etc. In the estimation, I use various lengths of time intervals to test whether the data

start showing if fixing taste parameters over time is relevant, but I always remove all

the observations that had product price change equal to zero. They are all reported.

It turns out that only a very small set of price changes are dropped, because as part of

their constitutional task of measuring inflation in Mexico, INEGI’s methodology to

collect prices involves observing comparable products over time. This leads very

frequently to cases where the price of the same product is collected in the same

store for a long period of time. The Consumer Price Index (CPI) data set from

INEGI shows that between June of 2009 and June of 2018 the median product-store

combination of consecutive price observations was 13.5 months, and the average

was 36 months. Table 1 contains summary statistics of the data that was used in this

document, and compares it with the entire data set which includes non tradeable

goods and utility costs indices (the latter ones have governmental price controls).

14/ CONEVAL is the Spanish acronym of Consejo Nacional de Evaluación de la Política de Desarrollo
Social, the public institution in charge of generating information on social policies and poverty
measurements in Mexico. One of their tasks is calculating statistically significant municipal
household income data every 5 years.
15/ There are 8 types of stores in the CPI data set: supermarket, public market, specialized store,

tianguis, convenience store, department store, price club and subsystem (an internal INEGI type of
store used mostly for real estate and government controlled tariffs). There are no subsystem stores in
the tradeable merchandise subset of prices.
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Data set statistic All CPI products,
monthly

Tradeable Merchandise,
monthly

Observations that are price
change 20.08 percent 21.13 percent

Median product-store
combinations length 14 months 14 months

Average product-store
combinations length 35 months 38 months

Number of observations 10,883,342 7,923,526
Weight in CPI 100 percent 56.8 percent

Table 1: The entire monthly CPI data set compared with the one that is used in this
document

The CPI has T = 5 store types in the data set: specialized store, convenience store,

department store, informal market, and supermarket. The data set that I had access

to does not specify the address of the store, so if two products were price-quoted

in the same city, in the same store type and store name, I will consider it to be in

the same store (or in terms of the parameters of this model, a larger store). The data

shows there are 246 generic product categories (from a total of more than 291,000

different products). From a probabilistic point of view, since INEGI’s sample was

designed to match the expenditure shares from the ENIGH survey, more products

in the same store imply that the store has a larger share within product categories.

This, together with the generic expenditure shares, allows to have CPI weights at the

generic-store type-city level. To the best of my knowledge, this had never been done

before. Table 2 shows a summarized table of the data categories.

4 Estimation and Results

In this section I briefly describe the estimation equations to get the input price

elasticities, including the ERPT. First, I start from a series of reduced form

expressions where the store information becomes available and initially compare

the results with what can be called the “baseline case” which is without the

store information. The estimation for the elasticity of the value added inputs in
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equation 28 is

d log pgrτ`t = θj · d log pjt + αt + αd + αg + βrτ` + εgrτ`t (29)

where αt is a date dummy (month-year), αd indicate if the store offered the product

for a discount, αg indicates generic product fixed effects. These dummies are meant

to control for possible variations in the taste parameters over time. The coefficients

βrτ` identify the retailer (within its store type) at the city level. The model predicts

that βrτ` are non-zero (and the sign depending on whether the sector is more or less

concentrated), but more importantly, that the estimates for θj are smaller if there are

no dummies for the store type or retailers. The results are in table 3. I use 6 months as

a baseline time interval, and removed all the observations that had d log pgrτ`t = 0.

(1) (2) (3) (4)
Exchange Rate 0.285*** 0.339*** 0.319*** 0.371***

(0.038) (0.04) (0.037) (0.043)
Electricity Prices 0.572*** 0.582*** 0.581*** 0.671***

(0.067) (0.066) (0.066) (0.079)
IMF Commodities Index -1.783*** -1.818*** -1.811*** -1.861***

(0.197) (0.195) (0.195) (0.232)
Formal Wages 2.36*** 2.382*** 2.37*** 2.446***

(0.289) (0.286) (0.286) (0.341)
Cetes -0.136*** -0.139*** -0.139*** -0.134***

(0.018) (0.017) (0.017) (0.021)
Begin Sale -0.171*** -0.167*** -0.167*** -0.172***

(0.001) (0.001) (0.001) (0.001)
During Sale -0.036*** -0.03*** -0.031*** -0.042***

(0.001) (0.001) (0.001) (0.001)
End Sale 0.109*** 0.112*** 0.112*** 0.11***

(0.001) (0.001) (0.001) (0.001)
Date X X X X

Generic Product X X
Chain Indicator x Store Type x City X X

Number of Observations 3,827,545 3,827,545 3,827,545 3,827,545
R2 0.1122 0.1208 0.1211 0.1245

*** p<0.001, ** p<0.01, * p<0.05

Notes: The price change specification is given by dlogpgrτ`t = dpgrτ`t − dpgrτ`t−h
where h = 6 months

Table 3: ERPT with cost controls, product, city, and retailer type fixed effects.
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Then another exercise is done, where the store fixed effects are now interacted with

the exchange rate. To simplify the analysis, I just let the retailers to vary in one

dimension: if they belong to a chain or not.16/ The reduced form expression is

d log pgrτ`t =
(
θj + βrτ`

)
· d log pjt + αt + αd + αg + εgrτ`t (30)

and the average results (weighted by city population) are found in table 4, where it

is possible to see that in general public markets and convenience stores pass through

a larger share of the exchange rate onto their consumers, and in every case the

store types that belonged to a chain had lower pass-through than the store types

that did not belong to a chain. This is interpreted as chains having larger market

power, either for reasons that cannot be tested with the available data, like preference

parameters or for other reasons that can be tested in further work, like lower prices

of the same products in the same city, or less increases in their marginal costs.

Store Type Chain E`[βrτ`]
Price Club Yes 2.09%

Specialized Store Yes 2.37%
Supermarket Yes 2.61%

Specialized Store No 2.93%
Supermarket No 3.37%

Department Store Yes 3.61%
Convenience store Yes 3.67%
Convenience store No 5.15%

Public Market No 8.61%

Table 4: Average additional ERPT by store type, where the store type is interacted
with the exchange rate.

4.1 Incorporating the model structure: infinitesimal stores

Next, I incorporate the model structure to test whether assuming that the taste

parameters are constant can give insight to ERPT estimations. First, I calculate the

ERPT for the stores that do not seem to be chains or franchises in the data.17/ The
16/ Retailers that do not belong to a chain are classified as such because the name of the store only

appears once per month in each city-store type pair.
17/ I am implicitly assuming that the retailers within a store type that do not belong to a chain have

zero market share.
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model predicts that if there are no controls for store type, the ERPT is larger in those

firms (because it is estimated without measurement error), and more importantly,

that controlling for store type should not affect the estimations. So, for every retailer

in the sample that does not belong to a chain or franchise, the estimation equation

is identical to 29 and the results are in table 5. The results suggest that the model is

correct in two dimensions. First, that controlling for store type does not affect the

ERPT estimations, and second, that the ERPT is similar to the general ERPT (in the

previous table) after controlling for store type.

(1) (2)
Exchange Rate 0.375*** 0.374***

(0.042) (0.043)
Electricity Prices 0.69*** 0.681***

(0.078) (0.079)
IMF Commodities Index -1.894*** -1.858***

(0.228) (0.232)
Formal Wages 2.446*** 2.442***

(0.336) (0.341)
Cetes -0.137*** -0.134***

(0.021) (0.021)
Begin Sale -0.165*** -0.172***

(0.001) (0.001)
During Sale -0.033*** -0.042***

(0.001) (0.001)
End Sale 0.107*** 0.1***

(0.001) (0.001)
Date X X

Store Type X
Number of Observations 2,355,212 2,355,212

R2 0.0992 0.1118

*** p<0.001, ** p<0.01, * p<0.05
Notes: The price change specification is given by dlogpgrτ`t = dpgrτ`t − dpgrτ`t−h
where h = 6 months

Table 5: ERPT with cost controls, product, city, and retailer type fixed effects. All
stores that were found to be store chains were removed from the sample

Next, I substitute the store type fixed effects and add the changes in the relative price

indices (store type relative to city, and retailer relative to store type). This helps to
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pin down if the assumption of fixing the preference parameters and only allowing

input prices, number of inputs, and number of products to vary, and how much

of the measurement error. The price indices need to be interacted with city fixed

effects, meaning that the heterogeneity in relative price index variations is explained

by local fixed factors (in the scope of the model, by local preference parameters) and

not by systematic improvements in store type productivity. The results are similar

in qualitative terms so they are not shown in this version.

I can make use of the fact that I know the conglomerate that produces each product

and also its nationality, in order to control for at least some proxies for the producer,

using the fact that Hottman, Redding, and Weinstein (2016) have documented that

there is quite significant variation in the ERPT to the retailers depending on the

producer share of the market. Some products have specifically no brand, being

agricultural products the most common example. Those products were labeled as

“generic conglomerate” and used as the base for the dummies of the conglomerate.

Around 80 percent of the brands of the products in the tradeable merchandise CPI

data set, including the generic conglomerate were found in IMPI’s data base, just

above 8 million prices. The products whose brand was not located in the data set

were dropped as it wasn’t evident that grouping them as coming from a single

unnamed producer or them being tens of thousands of individual producers would

give any meaningful result. The results, controlling for generic are also almost

identical quantitatively.

4.2 Different lengths of the time intervals

All the previous results are based on the fact that prices are observed every month

but all price changes are observed after 6 months, and dropped if there are no

changes. It is possible that all these results depend greatly on the length of the time

frame chosen. In this subsection I relax the assumption that the time interval is 6

months and allow it to be any number of months between 1 and 14. As the figure

shows, qualitatively the results are the same, although there are some differences.

Note that in the long run (14 months) the ERPT seems to converge for every type of

store, which means that eventually all the prices adjust and there is no measurement

error when calculating the pass-through, but in the short run it is always the case
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Figure 1: ERPT when changing the length of the time interval

that ERPT is lower when the estimation does not take into account the store type.

For the case of zero-measure stores, which for the data they are the ones that were

not found to be a chain, the results are equivalent but at different levels: it makes no

difference to control for store type. All the stores pass-through onto consumers the

exchange rate variations irrespective of the store type at the exact same rate, it’s just

that depending on the time frame, the rates vary over time.

4.3 Variable markups by spatial competition (advanced measures)

Since controlling by retailer type shows that the average ERPT in chains is lower,

it becomes important to understand why this is the case. So I make use of the

fact that I have the location of all the economic establishments in Mexico as well as

all the people in Mexico from both the Economic and the Population censuses and

construct the number of stores located at less than 1 kilometer away, to the average
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store of each store type. The results are in table 6. In this sense, the high volatility of

the exchange rate has been good for competition and avoiding search frictions (like

in Sorensen (2000)), and somehow the fact that these sectors were not competitive

helped to observe low inflation even in the context of high depreciation. This does

not imply that markups are small, which means that there still are potentially large

price distortions in the tradeable merchandise market and larger gains from making

not only supermarkets and department store sectors more competitive, but the rest

of the retailer types as well. Other effects as well can be studied, like in Jia (2008),

where the introduction of supermarkets reduced the number of convenience stores,

affecting competitive margins across sectors.

Retailer Type β_Supermarket β_Specialized β_Convenience β_Department
Supermarket 0.00147 0.00113*** -7.59e-05** 0.0137***
Specialized

Store -0.0585 -0.00482 0.000262 0.0806

Convenience
Store -0.00444 -0.00701 7.73e-05 -0.00774

Department
Store 0.00293 -0.00135** -5.73e-05* -0.00476

Table 6: Additional ERPT, as a function of the number of retailers less than 1km
away. This measure varies at the city level since the data of the address of the stores
is not available in this data set.

5 Summary of the Results and Conclusion

The section above allows to clearly see that the ERPT is underestimated when the

store type is not included in the estimation. Not even the generic product fixed

effects can change this result. The average ERPT is almost not affected when adding

city controls and for the products. This result holds controlling by CPI city too. This

implies that there must be something going on at the retail level that varies a lot by

city and by (observed) product. This turns out to be the store types market share

distribution, and in particular supermarkets and department stores seem to have a

small amount of big dominant players that dampen the ERPT. This paper assumes

that every retailer can buy from the producer at the same cost and analyzes the

variation in the ERPT in the Mexican economy by type of retailer by and quantifies
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that the spatial competition is an important determinant to explain the differences in

prices of tradeable merchandise between June 2009 and June 2018, a period of time

characterized by low ERPT but with high volatility in the exchange rate.

My estimates suggest that the ERPT into consumer prices in Mexico is on average

low because it is a weighted average of the ERPT of the different retailer types. I find

that public markets, convenience and specialized stores in Mexico have a high ERPT;

supermarkets and department stores have a significantly lower ERPT. Averaging out

these coefficients gives the usual low ERPT. The high volatility of the exchange rate

has been good for competition. The total effect is, however, ambiguous, because, as

Jia (2008) points out, it is possible that the current number of supermarkets allows

the existence of a large amount of convenience stores which keep prices low but with

a large ERPT. More supermarkets would imply less convenience stores, which has

ambiguous effect on the total level of ERPT but a positive effect on price levels.
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