Industry Heterogeneity and Exchange Rate Pass-Through

by Camila Casas

Discussion by Javier Cravino

August 2018

Summary

- **Goal:** Estimate ERPT by industry, evaluating the role of:
 - Imported intermediate inputs
 - Strategic complementarities

Methodology:

- Unit values from customs data to measure ERPT
- Imported inputs share from industrial census
- De Loecker and Warzynski to estimate markups

Findings:

- Large differences in imported intermediate input share
- Smaller differences in markup variability
- Low correlation with ERPT

Theoretical framework: Export prices

Assumptions:

- Price in sector k: $p_{Ci}^{k} = \mu_{Ci}^{k} + mc_{C}^{k}$ • $mc_{C}^{k} = [1 - \alpha^{k}] w_{C} + \alpha^{k} \sum_{l=C,i,j} [\gamma_{l}^{k} p_{ln} + e_{l}]$
- Wages, productivities and foreign prices are constant

► CDGG '17:
$$\Delta p_{Ci}^{k} = \frac{1}{1+\Gamma^{k}} \left[\frac{\alpha^{k} \gamma_{i}^{k}}{1-\alpha^{k} \gamma_{H}^{k}} + \Gamma^{k} \right] \Delta e_{i} + \frac{1}{1+\Gamma^{k}} \frac{\alpha^{k} \gamma_{j}^{k}}{1-\alpha^{k} \gamma_{H}^{k}} \Delta e_{j}$$

 $\circ \Gamma^{k} \equiv \frac{\partial \mu_{ai}^{k}}{\partial \left[p_{ai}^{k} + e_{n} - p_{i}^{k} \right]}$: 'markup elasticity'

• If
$$\Delta e_i = \Delta e_j$$
: $\frac{\Delta p_{C_i}^k}{\Delta e} = 1 - \frac{1}{1 + \Gamma^k} \frac{1 - \alpha^k}{1 - \alpha^k \gamma_H^k}$

$$\circ \quad \frac{\Delta p_{Ci}^k}{\Delta e} = 0 \text{ when } \Gamma^k = 0 \& \gamma_H^k = 1$$

• Decreases with γ_H^k , increases with Γ^k

Theoretical framework: Export prices

Assumptions:

• Price in sector k:
$$p_{Ci}^{k} = \mu_{Ci}^{k} + mc_{C}^{k}$$

• $mc_{C}^{k} = [1 - \alpha^{k}] w_{C} + \alpha^{k} \sum_{l=C, i,j} [\gamma_{l}^{k} p_{ln} + e_{l}]$

• Wages, productivities and foreign prices are constant

► CDGG '17:
$$\Delta p_{Ci}^{k} = \frac{1}{1+\Gamma^{k}} \left[\frac{\alpha^{k} \gamma_{i}^{k}}{1-\alpha^{k} \gamma_{H}^{k}} + \Gamma^{k} \right] \Delta e_{i} + \frac{1}{1+\Gamma^{k}} \frac{\alpha^{k} \gamma_{j}^{k}}{1-\alpha^{k} \gamma_{H}^{k}} \Delta e_{j}$$

• $\Gamma^{k} \equiv \frac{\partial \mu_{ni}^{k}}{\partial \left[p_{ni}^{k} + e_{n} - p_{i}^{k} \right]}$: 'markup elasticity'

• If
$$\Delta e_i = \Delta e_j$$
: $\frac{\Delta p_{C_i}^{\kappa}}{\Delta e} = 1 - \frac{1}{1 + \Gamma^k} \frac{1 - \alpha^k}{1 - \alpha^k \gamma_H^k}$

$$\circ \quad \frac{\Delta p_{C_i}^k}{\Delta e} = 0 \text{ when } \Gamma^k = 0 \And \gamma_H^k = 1$$

• Decreases with γ_H^k , increases with Γ^k

Theoretical framework: Export prices

Assumptions:

• Price in sector k:
$$p_{Ci}^{k} = \mu_{Ci}^{k} + mc_{C}^{k}$$

• $mc_{C}^{k} = [1 - \alpha^{k}] w_{C} + \alpha^{k} \sum_{l=C, i, j} [\gamma_{l}^{k} p_{ln} + e_{l}]$

• Wages, productivities and foreign prices are constant

► CDGG '17:
$$\Delta p_{Ci}^{k} = \frac{1}{1+\Gamma^{k}} \left[\frac{\alpha^{k} \gamma_{i}^{k}}{1-\alpha^{k} \gamma_{H}^{k}} + \Gamma^{k} \right] \Delta e_{i} + \frac{1}{1+\Gamma^{k}} \frac{\alpha^{k} \gamma_{j}^{k}}{1-\alpha^{k} \gamma_{H}^{k}} \Delta e_{j}$$

• $\Gamma^{k} \equiv \frac{\partial \mu_{ni}^{k}}{\partial \left[\rho_{ni}^{k} + e_{n} - \rho_{i}^{k} \right]}$: 'markup elasticity'

• If
$$\Delta e_i = \Delta e_j$$
: $\frac{\Delta p_{C_i}^k}{\Delta e} = 1 - \frac{1}{1 + \Gamma^k} \frac{1 - \alpha^k}{1 - \alpha^k \gamma_H^k}$

$$\circ \quad \frac{\Delta p_{\mathcal{C}_i}^{\epsilon}}{\Delta e} = 0 \text{ when } \Gamma^k = 0 \And \gamma_H^k = 1$$

• Decreases with γ_H^k , increases with Γ^k

Comment I: Taking model to the data

• If
$$\Delta e_i = \Delta e$$
: $\frac{\Delta p_{C_i}^k}{\Delta e} = 1 - \frac{1}{1 + \Gamma^k} \frac{1 - \alpha^k}{1 - \alpha^k \gamma_H^k}$

• Decreases with γ_H^k . Increases with Γ^k

▶ In the data: $\Delta e_i \neq \Delta e_j$. Empirical implementation:

$$\Delta p_{Ci,t}^{k} = \beta_{i} \Delta e_{i,t} + \beta_{j} \Delta e_{j,t} + \varepsilon_{i,t}$$

$$\blacktriangleright \ \beta_i = \frac{1}{1 + \Gamma^k} \left[\frac{\alpha^k \gamma_i^k}{1 - \alpha^k \gamma_H^k} + \Gamma^k \right]$$

• Increases with γ_H^k (keeping γ_i^k constant). Increases with Γ^k

$$\blacktriangleright \quad \beta_j = \frac{1}{1 + \Gamma^k} \frac{\alpha^k \gamma_j^k}{1 - \alpha^k \gamma_H^k}$$

• Increases with γ_H^k (keeping γ_j^k constant). Decreases with Γ^k !

Comment I: Taking model to the data

• If
$$\Delta e_i = \Delta e$$
: $\frac{\Delta p_{C_i}^k}{\Delta e} = 1 - \frac{1}{1 + \Gamma^k} \frac{1 - \alpha^k}{1 - \alpha^k \gamma_H^k}$

• Decreases with γ_H^k . Increases with Γ^k

▶ In the data: $\Delta e_i \neq \Delta e_j$. Empirical implementation:

$$\Delta p_{Ci,t}^k = \beta_i \Delta e_{i,t} + \beta_j \Delta e_{j,t} + \varepsilon_{i,t}$$

•
$$\beta_i = \frac{1}{1+\Gamma^k} \left[\frac{\alpha^k \gamma_H^k}{1-\alpha^k \gamma_H^k} + \Gamma^k \right]$$

• Increases with γ_H^k (keeping γ_i^k constant). Increases with Γ^k
• $\beta_j = \frac{1}{1+\Gamma^k} \frac{\alpha^k \gamma_I^k}{1-\alpha^k \gamma_H^k}$

 \circ Increases with γ^k_H (keeping γ^k_j constant). Decreases with Γ^k !

Comment I: Taking model to the data

• If
$$\Delta e_i = \Delta e$$
: $\frac{\Delta p_{C_i}^k}{\Delta e} = 1 - \frac{1}{1 + \Gamma^k} \frac{1 - \alpha^k}{1 - \alpha^k \gamma_H^k}$

• Decreases with γ_H^k . Increases with Γ^k

▶ In the data: $\Delta e_i \neq \Delta e_j$. Empirical implementation:

$$\Delta p_{Ci,t}^k = \beta_i \Delta e_{i,t} + \beta_j \Delta e_{j,t} + \varepsilon_{i,t}$$

$$\beta_{i} = \frac{1}{1+\Gamma^{k}} \left[\frac{\alpha^{k} \gamma_{i}^{k}}{1-\alpha^{k} \gamma_{H}^{k}} + \Gamma^{k} \right]$$
o Increases with γ_{H}^{k} (keeping γ_{i}^{k} constant). Increases with Γ^{k}

$$\beta_{j} = \frac{1}{1+\Gamma^{k}} \frac{\alpha^{k} \gamma_{I}^{k}}{1-\alpha^{k} \gamma_{H}^{k}}$$
o Increases with γ_{H}^{k} (keeping γ_{j}^{k} constant). Decreases with Γ^{k} !

Import prices

► If
$$\Delta e_i = \Delta e$$
: $\frac{\Delta p_{iC}^k}{\Delta e} = \frac{1}{1+\Gamma^k} + \frac{\Gamma^k}{1+\Gamma^k} \frac{1-\gamma_H^k}{1-\alpha^k \gamma_H^k}$
 $\circ \frac{\Delta p_{iC}^k}{\Delta e} = 1$ if $\Gamma^k = 0$
 \circ Increases with γ_H^k (if $\Gamma^k > 0$), Decreases with Γ^k

• If $\Delta e_i \neq \Delta e_j$:

$$\Delta p_{iC}^{k} = \beta_{i} \Delta e_{i} + \beta_{j} \Delta e_{j}$$

$$\begin{array}{l} \blacktriangleright \quad \beta_i = \frac{1}{1+\Gamma^k} \left[1 + \frac{\gamma_i^k \Gamma^k}{1-\alpha^k \gamma_H^k} \right] \\ \quad \circ \quad \text{Increases with } \gamma_H^k \text{ (keeping } \gamma_i^k \text{ constant), Decreases with } \Gamma^k \\ \ \blacklozenge \quad \beta_j = \frac{\Gamma^k}{1+\Gamma^k} \frac{\gamma_j^k}{1-\alpha^k \gamma_H^k} \\ \quad \circ \quad \text{Increases with } \gamma_H^k, \text{ Increases with } \Gamma^k \end{array}$$

Comment II: Measuring imported input shares

• Paper measures $1 - \gamma_H^k$

- but γ_i^k and γ_i^k enter separately in the model
- Suggestion: link import data to recover γ_i^k and γ_i^k ?

- α^k can also vary across sectors
 - Suggestion: measure from the Industrial survey

Comment III: Measuring complementarities

Paper measures markups by industry, computes CV across years

- $\circ~$ Larger CV may reflect more variable markups, or larger shocks
- Hard to map to Γ^k

A more direct approach:

$$p_{Ci,t}^{k} = \mu_{Ci,t}^{k} \left(p_{Ci,t}^{k} + e_{i,t} - p_{i,t} \right) + mc_{n,t}^{k}$$
$$\Delta p_{Ci,t}^{k} = \frac{-\Gamma^{k}}{1 + \Gamma^{k}} \Delta e_{i,t} + \frac{1}{1 + \Gamma^{k}} \Delta mc_{n,t}^{k}$$

• Estimate: $\Delta p_{Ci,t}^k = \beta_i \Delta e_{i,t} + \frac{1}{1+\Gamma^k} \Delta m c_{n,t}^k$

- Control for $\Delta m c_n^k$ with firm FE (so that Δe_i won't matter)
- Assumption: $\Delta m c_n^k$ common across destinations

Comment III: Measuring complementarities

Paper measures markups by industry, computes CV across years

- Larger CV may reflect more variable markups, or larger shocks
- Hard to map to Γ^k
- A more direct approach:

$$p_{Ci,t}^{k} = \mu_{Ci,t}^{k} \left(p_{Ci,t}^{k} + e_{i,t} - p_{i,t} \right) + mc_{n,t}^{k}$$
$$\Delta p_{Ci,t}^{k} = \frac{-\Gamma^{k}}{1 + \Gamma^{k}} \Delta e_{i,t} + \frac{1}{1 + \Gamma^{k}} \Delta mc_{n,t}^{k}$$

- Estimate: $\Delta p_{Ci,t}^k = \beta_i \Delta e_{i,t} + \frac{1}{1+\Gamma^k} \Delta m c_{n,t}^k$
 - Control for $\Delta m c_n^k$ with firm FE (so that Δe_i won't matter)
 - Assumption: $\Delta m c_n^k$ common across destinations

Summary

Interesting paper with lots of potential

- o Impressive data work, linking customs with industrial surveys
- Provides

Main comments:

- Tighten relation between theory and model
- o Alternative measurement of import shares and complementarities