Industry Heterogeneity and Exchange Rate Pass-Through

by Camila Casas

Discussion by Javier Cravino

August 2018
Summary

Goal: Estimate ERPT by industry, evaluating the role of:

- Imported intermediate inputs
- Strategic complementarities

Methodology:

- Unit values from customs data to measure ERPT
- Imported inputs share from industrial census
- De Loecker and Warzynski to estimate markups

Findings:

- Large differences in imported intermediate input share
- Smaller differences in markup variability
- Low correlation with ERPT
Theoretical framework: Export prices

Assumptions:

- Price in sector k: $p_{C_i}^k = \mu_{C_i}^k + mc_C^k$
- $mc_C^k = [1 - \alpha^k] w_C + \alpha^k \sum_{l=C, i, j} \gamma_l^k p_{ln} + e_l$
- Wages, productivities and foreign prices are constant

CDGG '17: $\Delta p_{C_i}^k = \frac{1}{1+\Gamma^k} \left[\frac{\alpha^k \gamma_i^k}{1-\alpha^k \gamma_H^k} + \Gamma^k \right] \Delta e_i + \frac{1}{1+\Gamma^k} \frac{\alpha^k \gamma_j^k}{1-\alpha^k \gamma_H^k} \Delta e_j$

- $\Gamma^k \equiv \frac{\partial \mu_{ni}^k}{\partial [p_{ni}^k + e_n - p_i^k]}$: ‘markup elasticity’

If $\Delta e_i = \Delta e_j$: $\frac{\Delta p_{C_i}^k}{\Delta e} = 1 - \frac{1}{1+\Gamma^k} \frac{1-\alpha^k}{1-\alpha^k \gamma_H^k}$

- $\frac{\Delta p_{C_i}^k}{\Delta e} = 0$ when $\Gamma^k = 0$ & $\gamma_H^k = 1$
- Decreases with γ_H^k, increases with Γ^k
Theoretical framework: Export prices

Assumptions:

- Price in sector k: $p_{Ci}^k = \mu_{Ci}^k + mc_C^k$
- $mc_C^k = [1 - \alpha^k] w_C + \alpha^k \sum_{l=C,i,j} [\gamma_l^k p_{ln} + e_l]$
- Wages, productivities and foreign prices are constant

CDGG '17: $\Delta p_{Ci}^k = \frac{1}{1+\Gamma^k} \left[\frac{\alpha^k \gamma_i^k}{1-\alpha^k \gamma_H^k} + \Gamma^k \right] \Delta e_i + \frac{1}{1+\Gamma^k} \frac{\alpha^k \gamma_i^k}{1-\alpha^k \gamma_H^k} \Delta e_j$

- $\Gamma^k \equiv \frac{\partial \mu_{ni}^k}{\partial [p_{ni}^k + e_n - p_i^k]}$: ‘markup elasticity’

If $\Delta e_i = \Delta e_j$: $\frac{\Delta p_{Ci}^k}{\Delta e} = 1 - \frac{1}{1+\Gamma^k} \frac{1-\alpha^k}{1-\alpha^k \gamma_H^k}$

- $\frac{\Delta p_{Ci}^k}{\Delta e} = 0$ when $\Gamma^k = 0$ & $\gamma_H^k = 1$
- Decreases with γ_H^k, increases with Γ^k
Theoretical framework: Export prices

Assumptions:
- Price in sector k: $p^k_{Ci} = \mu^k_{Ci} + mc^k_C$
- $mc^k_C = [1 - \alpha^k] w_C + \alpha^k \sum_i \gamma^k_i p_{ln} + e_l$
- Wages, productivities and foreign prices are constant

CDGG '17: $\Delta p^k_{Ci} = \frac{1}{1 + \Gamma^k} \left[\frac{\alpha^k \gamma^k_i}{1 - \alpha^k \gamma^k_H} + \Gamma^k \right] \Delta e_i + \frac{1}{1 + \Gamma^k} \frac{\alpha^k \gamma^k_i}{1 - \alpha^k \gamma^k_H} \Delta e_j$

- $\Gamma^k \equiv \frac{\partial \mu^k_{ni}}{\partial [p^k_{ni} + e_n - p^k_i]}$: ‘markup elasticity’

If $\Delta e_i = \Delta e_j$: $\frac{\Delta p^k_{Ci}}{\Delta e} = 1 - \frac{1}{1 + \Gamma^k} \frac{1 - \alpha^k}{1 - \alpha^k \gamma^k_H}$

- $\frac{\Delta p^k_{Ci}}{\Delta e} = 0$ when $\Gamma^k = 0$ & $\gamma^k_H = 1$
- Decreases with γ^k_H, increases with Γ^k
Comment I: Taking model to the data

- If $\Delta e_i = \Delta e$:
 $$\frac{\Delta p^k_{Ci}}{\Delta e} = 1 - \frac{1}{1+\Gamma^k} \frac{1-\alpha^k}{1-\alpha^k \gamma^k_H}$$
 - Decreases with γ^k_H. Increases with Γ^k

- In the data: $\Delta e_i \neq \Delta e_j$. Empirical implementation:
 $$\Delta p^k_{Ci,t} = \beta_i \Delta e_{i,t} + \beta_j \Delta e_{j,t} + \varepsilon_{i,t}$$

 - $\beta_i = \frac{1}{1+\Gamma^k} \left[\frac{\alpha^k \gamma^k_i}{1-\alpha^k \gamma^k_H} + \Gamma^k \right]$
 - Increases with γ^k_H (keeping γ^k_i constant). Increases with Γ^k

 - $\beta_j = \frac{1}{1+\Gamma^k} \frac{\alpha^k \gamma^k_j}{1-\alpha^k \gamma^k_H}$
 - Increases with γ^k_H (keeping γ^k_j constant). Decreases with Γ^k!
Comment I: Taking model to the data

- If $\Delta e_i = \Delta e$:
 \[
 \frac{\Delta p^k_{Ci}}{\Delta e} = 1 - \frac{1}{1+\Gamma^k} \frac{1-\alpha^k}{1-\alpha^k \gamma^k_H}
 \]
 - Decreases with γ^k_H. Increases with Γ^k

- In the data: $\Delta e_i \neq \Delta e_j$. Empirical implementation:
 \[
 \Delta p^k_{Ci, t} = \beta_i \Delta e_{i, t} + \beta_j \Delta e_{j, t} + \varepsilon_{i, t}
 \]

- $\beta_i = \frac{1}{1+\Gamma^k} \left[\frac{\alpha^k \gamma^k_i}{1-\alpha^k \gamma^k_H} + \Gamma^k \right]$
 - Increases with γ^k_H (keeping γ^k_i constant). Increases with Γ^k

- $\beta_j = \frac{1}{1+\Gamma^k} \frac{\alpha^k \gamma^k_j}{1-\alpha^k \gamma^k_H}$
 - Increases with γ^k_H (keeping γ^k_j constant). Decreases with Γ^k!
Comment I: Taking model to the data

- If $\Delta e_i = \Delta e$:

 $$\frac{\Delta p_{Ci}^k}{\Delta e} = 1 - \frac{1}{1+\Gamma^k} \frac{1-\alpha^k}{1-\alpha^k \gamma_H^k}$$

 - Decreases with γ_H^k. Increases with Γ^k

- In the data: $\Delta e_i \neq \Delta e_j$. Empirical implementation:

 $$\Delta p_{Ci,t}^k = \beta_i \Delta e_{i,t} + \beta_j \Delta e_{j,t} + \epsilon_{i,t}$$

 - $\beta_i = \frac{1}{1+\Gamma^k} \left[\frac{\alpha^k \gamma_i^k}{1-\alpha^k \gamma_H^k} + \Gamma^k \right]$
 - Increases with γ_H^k (keeping γ_i^k constant). Increases with Γ^k

 - $\beta_j = \frac{1}{1+\Gamma^k} \frac{\alpha^k \gamma_j^k}{1-\alpha^k \gamma_H^k}$
 - Increases with γ_H^k (keeping γ_j^k constant). Decreases with Γ^k!
Import prices

- If $\Delta e_i = \Delta e$:
 \[
 \frac{\Delta p_i^k}{\Delta e} = \frac{1}{1+\Gamma^k} + \frac{\Gamma^k}{1+\Gamma^k} \frac{1-\gamma_H^k}{1-\alpha^k \gamma_H^k}
 \]
 - $\frac{\Delta p_i^k}{\Delta e} = 1$ if $\Gamma^k = 0$
 - Increases with γ_H^k (if $\Gamma^k > 0$), Decreases with Γ^k

- If $\Delta e_i \neq \Delta e_j$:
 \[
 \Delta p_i^k = \beta_i \Delta e_i + \beta_j \Delta e_j
 \]

- $\beta_i = \frac{1}{1+\Gamma^k} \left[1 + \frac{\gamma_i^k \Gamma^k}{1-\alpha^k \gamma_H^k} \right]$
 - Increases with γ_H^k (keeping γ_i^k constant), Decreases with Γ^k

- $\beta_j = \frac{\Gamma^k}{1+\Gamma^k} \frac{\gamma_i^k}{1-\alpha^k \gamma_H^k}$
 - Increases with γ_H^k, Increases with Γ^k
Comment II: Measuring imported input shares

- Paper measures $1 - \gamma_{H}^k$
 - but γ_i^k and γ_j^k enter separately in the model
 - **Suggestion:** link import data to recover γ_i^k and γ_j^k?

- α^k can also vary across sectors
 - **Suggestion:** measure from the Industrial survey
Comment III: Measuring complementarities

- Paper measures markups by industry, computes CV across years
 - Larger CV may reflect more variable markups, or larger shocks
 - Hard to map to Γ^k

- A more direct approach:
 \[
p_{Ci,t}^k = \mu_{Ci,t}^k \left(p_{Ci,t}^k + e_{i,t} - p_{i,t} \right) + mc_{n,t}^k
 \]
 \[
 \Delta p_{Ci,t}^k = \frac{-\Gamma^k}{1 + \Gamma^k} \Delta e_{i,t} + \frac{1}{1 + \Gamma^k} \Delta mc_{n,t}^k
 \]

- Estimate: $\Delta p_{Ci,t}^k = \beta_i \Delta e_{i,t} + \frac{1}{1 + \Gamma^k} \Delta mc_{n,t}^k$
 - Control for $\Delta mc_{n,t}^k$ with firm FE (so that $\Delta e_{i,t}$ won’t matter)
 - Assumption: $\Delta mc_{n,t}^k$ common across destinations
Comment III: Measuring complementarities

- Paper measures markups by industry, computes CV across years
 - Larger CV may reflect more variable markups, or larger shocks
 - Hard to map to Γ^k

- A more direct approach:

$$p^{k}_{Ci,t} = \mu^{k}_{Ci,t} \left(p^{k}_{Ci,t} + e^{i,t} - p^{i,t} \right) + mc^{k}_{n,t}$$

$$\Delta p^{k}_{Ci,t} = \frac{-\Gamma^{k}}{1+\Gamma^{k}} \Delta e^{i,t} + \frac{1}{1+\Gamma^{k}} \Delta mc^{k}_{n,t}$$

- Estimate: $\Delta p^{k}_{Ci,t} = \beta_{i} \Delta e^{i,t} + \frac{1}{1+\Gamma^{k}} \Delta mc^{k}_{n,t}$
 - Control for Δmc^{k}_{n} with firm FE (so that Δe_{j} won’t matter)
 - Assumption: Δmc^{k}_{n} common across destinations
Summary

- Interesting paper with lots of potential
 - Impressive data work, linking customs with industrial surveys
 - Provides

- Main comments:
 - Tighten relation between theory and model
 - Alternative measurement of import shares and complementarities