## Import Prices and Invoice Currency: Evidence from Chile

By Giuliano and Luttini

Discussion by Joaquin Blaum (Brown)

## What They Do

• Interesting paper, with potentially important policy implications.

## What They Do

- Interesting paper, with potentially important policy implications.
- Document pattern of invoicing of Chilean imports:
  - Majority of import transactions invoiced in USD
  - Mismatch between trade from the US and trade invoiced in USD

## What They Do

- Interesting paper, with potentially important policy implications.
- Document pattern of invoicing of Chilean imports:
  - Majority of import transactions invoiced in USD
  - Mismatch between trade from the US and trade invoiced in USD
- Revisit measurement of ERPT into import prices:
  - Including both bilateral and invoice currency
  - Dynamic lag specifications:
    - ► For two quarters: invoice currency (usd) ERPT is higher
    - Afer two quarters: bilateral ERPT takes over
  - Specifications in annual differences with no lags (medium-term)
    - Both USD and bilateral ER seem to matter
    - Pattern is less clear and depend on origin country

### Main Finding

For imports invoiced in USD:

$$\Delta p_{gct} = \sum_{i=1}^{7} \beta_i^{ber} \Delta ber_{c,t-(i-1)} + \sum_{i=1}^{7} \beta_i^{usd} \Delta usd_{t-(i-1)} + \gamma' x_{ct} + \alpha_g + \alpha_c + \varepsilon_{cgt},$$

where g is 8-digit product, c is country of origin,  $ber_{ct}$  is bilateral ER with country c,  $usd_t$  is dollar ER,  $\Delta$  are quarterly changes and p is in domestic currency



(Standard errors? Levels?)

### #1 Connection to Literature

- Closely related paper: Casas et al (2017) henceforth CDGG
- ► GL state that their findings are somewhat contradictory
  - Intuitively, for CDGG the usd is important in the medium and long run, while for GL not.
- Are the two papers actually inconsistent? Not immediate since they run quite different specifications.
- CDGG run

$$\Delta p_t = \sum_{i=1}^{9} \beta_i^{usd} \Delta usd_{t-(i-1)} + \gamma' x_t + \alpha + \varepsilon_t$$

and distinguish by dollar vs non-dollar country of origin.

- ► Another key difference: CDGG work at the transaction level, with firm-industry-country FE
- For dollar origins, usd is both invoice and bilateral currency. For non-dollar origins, usd is only invoice currency.

# Connection to Literature (Ctd)

CDGG findings:



- Two regularities:
  - 1. ERPT is higher from dollar origins relative to non-dollar, at all horizons.
  - 2. ERPT falls faster with horizon from non-dollar relative dollar origins.
- This is broadly consistent with GL findings
  - Think of left plot above as the sum of two lines in GL, while right plot is just the GL line for usd.
  - As for level of right plot, the bilateral ER is omitted and likely correlated with usd ER.

#### #2: Medium-term ERPT

Run at the annual frequency:

$$\Delta p_{gcrt} = \beta_r^{ber} \Delta ber_{ct} + \beta_r^{usd} \Delta usd_t + \alpha + \gamma' x + \varepsilon_{cgrt},$$

where r is the curreny of invoicing (either exporter or usd).

Pooling Europe + Japan:

| Currency                   | Invoice USD | Invoice Exporter Currency |  |  |
|----------------------------|-------------|---------------------------|--|--|
| USD ( $\beta^{usd}$ )      | 0.456       | -0.285                    |  |  |
|                            | (0.241)     | (0.204)                   |  |  |
| Exporter ( $\beta^{ber}$ ) | 0.475*      | 0.910***                  |  |  |
|                            | (0.197)     | (0.148)                   |  |  |
| Observations               |             | 14512                     |  |  |

Result: Even with USD invoicing, the exporter currency ERPT dominates

## #2: Medium-term ERPT: By Country

Table : Medium-term ERPT and Invoice Currency: Europe + Japan.

| Currency                   | Germany | Spain   | France  | Italy   | Japan   | UK      | Sweden  |  |
|----------------------------|---------|---------|---------|---------|---------|---------|---------|--|
| Panel A: Invoice USD.      |         |         |         |         |         |         |         |  |
| USD ( $\beta^{usd}$ )      | -0.211  | -0.282  | 0.840   | -0.411  | 0.0795  | 0.525   | 1.087   |  |
|                            | (0.497) | (0.711) | (0.708) | (0.700) | (1.256) | (1.046) | (0.794) |  |
| Exporter ( $\beta^{ber}$ ) | 1.089** | 1.030*  | -0.326  | 1.684** | -0.468  | 0.478   | -0.225  |  |
|                            | (0.381) | (0.495) | (0.503) | (0.547) | (0.767) | (0.967) | (0.616) |  |

Pooled results driven by 3 euro countries (GER, ITA, SPA)

- But FRA, JPN, UK, SWE look different,
- JPN: 60% invoicing in USD & 40% in Yen, so statistical power should be ok
- Explore what explains country heterogeneity.

# #2: Medium-term ERPT: Country Variation (Ctd)

|                                     | Germany  | Spain    | France  | Italy    | Japan   | UK      | Sweden  |  |
|-------------------------------------|----------|----------|---------|----------|---------|---------|---------|--|
| Panel B: Invoice Exporter Currency. |          |          |         |          |         |         |         |  |
| USD ( $\beta^{usd}$ )               | -1.158** | -0.0841  | -0.439  | -0.892   | -0.370  | -0.356  | 1.329   |  |
|                                     | (0.428)  | (0.575)  | (0.644) | (0.574)  | (1.309) | (0.979) | (0.876) |  |
| Exporter ( $\beta^{ber}$ )          | 1.427*** | 1.254*** | 0.761*  | 1.385*** | -0.107  | 1.462   | -0.941  |  |
|                                     | (0.279)  | (0.312)  | (0.370) | (0.419)  | (0.793) | (0.876) | (0.682) |  |
| Observations                        | 4434     | 2804     | 2423    | 1873     | 1271    | 896     | 811     |  |

Similar picture for transactions invoiced in exporter currency

- Pooled results driven by 3 euro countries (GER, SPA, ITA)
- For UK, SWE and JPN exporter currency not significant, sometimes even negative coefficient.
- Similar picture for pooled vs country-level results for LATAM.

- 1. Elaborate on how aggregation helps with bias from using unit values to proxy prices.
  - 1.1 Wouldn't firm-level analysis help with bias from changes in product mix?

- 1. Elaborate on how aggregation helps with bias from using unit values to proxy prices.
  - 1.1 Wouldn't firm-level analysis help with bias from changes in product mix?
- 2. Why restrict to CPI goods and exclude inputs?
  - 2.1 Inputs affect the CPI via the price of locally produced goods

- 1. Elaborate on how aggregation helps with bias from using unit values to proxy prices.
  - 1.1 Wouldn't firm-level analysis help with bias from changes in product mix?
- 2. Why restrict to CPI goods and exclude inputs?
  - 2.1 Inputs affect the CPI via the price of locally produced goods
- 3. What about export prices? Similar forces could apply.

- 1. Elaborate on how aggregation helps with bias from using unit values to proxy prices.
  - 1.1 Wouldn't firm-level analysis help with bias from changes in product mix?
- 2. Why restrict to CPI goods and exclude inputs?
  - 2.1 Inputs affect the CPI via the price of locally produced goods
- 3. What about export prices? Similar forces could apply.
- 4. One way to address all of above: apply methodology of Amiti, Itskhoki, Konings

$$\Delta p_{Xigct} = \left(\beta^{ber} + \delta^{ber}s_i\right)\Delta ber_{ct} + \left(\beta^{usd} + \delta^{usd}s_i\right)\Delta usd_t + \alpha + \gamma'x + \varepsilon_{igct}$$

where  $p_X$  are export prices, *i* denotes a firm and  $s_i$  is the import share.