Retailer Markup and Exchange Rate Pass-Through: Evidence from the Mexican CPI Micro Data

Discussion

David Argente

Federal Reserve of Minneapolis and Penn State
Inflation and Exchange Rate in Mexico

Shaded areas indicate U.S. recessions

Sources: Board of Governors, World Bank

myf.red/g/kMBc
Overall: Nice and relevant paper!

Plan for the discussion:

- Summary of the paper
- Relation to the literature
- Assumptions of the model
- Validating the hypothesis
- Few additional exercises
Model with nested CES preferences to obtain markups for retailers

- Assume fixed taste parameters and flexible prices
- Markups are more flexible when retailers share increase

Attenuation bias in ERPT when the store type is not used as control
Model with nested CES preferences to obtain markups for retailers
- Assume fixed taste parameters and flexible prices
- Markups are more flexible when retailers share increase

Attenuation bias in ERPT when the store type is not used as control

\[d \log p_{gr,\tau} = d \log c_{gr,\tau} + \frac{\partial \log M_{r,\tau}}{\partial \left(\frac{p_{r,\tau}}{p_{\tau}} \right)} d \log \left(\frac{p_{r,\tau}}{p_{\tau}} \right) + \frac{\partial \log M_{r,\tau}}{\partial \left(\frac{p_{\tau}}{p} \right)} d \log \left(\frac{p_{\tau}}{p} \right) \]

\[< 0 \]

\[< 0 \]
Model with nested CES preferences to obtain markups for retailers

- Assume fixed taste parameterers and flexible prices
- Markups are more flexible when retailers share increase

Attenuation bias in ERPT when the store type is not used as control

\[d \log p_{gr\tau} = d \log c_{gr\tau} + \frac{\partial \log M_{r\tau}}{\partial \left(\frac{p_{r\tau}}{p}\right)} d \log \left(\frac{p_{r\tau}}{p}\right) + \frac{\partial \log M_{r\tau}}{\partial \left(\frac{p}{p}\right)} d \log \left(\frac{p}{p}\right) \]

\[<0 \]

Then, estimate:

\[\Delta \tilde{p} = \theta \Delta \tilde{e}_t + \beta_{r\tau} + \alpha_t + \epsilon_{gr\tau t} \]
Comment 1: Benchmark results to previous literature

- Reproduce previous estimates and compare:
 - Current estimates are larger than those in the literature even after the correction (Kochen-Samano report 0.1% to a 1% increase in ER)

- Why not estimate MRPT?
 - Current specification: $d \log p_{grTt} = dp_{grTt} - d \log p_{grTt-h}$
 - Harder to compare to previous estimates/literature
 - Response to ER depends on each individual product price-setting
Comment 2: Controlling for the frequency of price adjustment (FPA)

- Partially proxies for changes in the importance of price-spell censoring, which can in turn potentially affect measures of ERPT

- Potential way of validating the hypothesis of the paper. From Gopinath-Itshoki we know:
 - Higher mark-up elasticity both lowers pass-through and FPA (reductions in curvature of profit function)
Comment 3: Estimating the impact of markups on ERPT without observing them

- Are the implied markups/shares of your estimation reasonable?
 - Report statistics and/or a plot of the distribution of the estimated fixed effects.
 - Approximate the retail concentration in a given city using DENUE. Report the correlation of estimated fixed effects for a given city with those approximated using DENUE.
HHI for retailers: Nielsen Data Mexico (Argente-Hsieh-Lee)

Supermarkets

Kernel = epanechnikov, bandwidth = 0.0335

Density vs. Herfindahl of Retailers
Retailers within store type have market power

Pharmacy

Herfindahl of Retailers

Density

kernel = epanechnikov, bandwidth = 0.0574
For some types of store, high concentration in small cities

Price Club

Density

Herfindahl of Retailers

kernel = epanechnikov, bandwidth = 0.0781
Comment 4: Other exercises

- Compute time varying ERPT (Berger-Vavra), does it change when Wallmart entered Mexico?

- During this period, and given your estimated pass-through, what does a change in ER implies for aggregate inflation?