Stock Market Cross-Sectional Skewness and Business Cycle Fluctuations¹

Thiago Ferreira* *Federal Reserve Board

Ninth BIS CCA Research Conference

Rio de Janeiro

June 2018

¹ Previously presented as "Cross-Section Skewness, Business Cycle Fluctuations and the Financial Accelerator Channel". The views expressed in this paper are solely my responsibility and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of any other person associated with the Federal Reserve System."

Thiago Ferreira*

Stock Market Cross-Sectional Skewness and Business Cycle Fluctuations

* Federal Reserve Board

Business Cycles: Prediction and Explanation

Fluctuations in economic uncertainty and business cycles

focus on 2nd moments and aggregate (negative) tail risks

I want to shift the discussion to skewness. Too nerdy?

- captures the comparison of tail risks: upside X downside
- often used in FOMC and ECB comunications

More specifically, can cross-section skewness of asset prices help us predict and understand business cycle fluctuations?

Cross-Sectional Distribution of Stock Returns of Financial Firms

Financial Skewness Tracks Business Cycles

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ● ● ● ●

* Federal Reserve Board

Thiago Ferreira*

3 main results:

- 1) Financial skewness is a powerful predictor of economic activity
 - better than many well-known indicators
- 2) Financial skewness seem to signal future economic performance of financial firms' borrowers
- 3) Financial skewness shocks are important cyclical drivers, with transmission channel consistent with financial frictions models

Literature Review X Results

Business cycles drivers: cross-sectional skewness is important.

- Idiosyncratic firms' behavior is important driver of BC. Focus on 2nd moments: Bloom et al (2012), Arellano et al (2012), Christiano et al (2014), Chugh (2016), Schaal (2015), Panousi and Papanikolaou (2012), Gabaix (2011); Acemoglu et al (2011).
- Tail risks are important for BC. Most focus on aggregate downside risks: Barro (2006), Gabaix (2012), and Gorio (2012).

Asset prices predict business cycles: financial skewness does particularly well.

- Despite importance in BC theory, CS risk is not important in forecasting: Lit reviews: Stock and Watson (2003) and Ng and Wright (2013).
- Bond markets may signal better than stocks about economic fundamentals: Philippon (2009), Gilchrist and Zakrajsek (2012), and Lopez-Salido et al. (2017).

Image: A math a math

Data Evidence	DSGE Model	Conclusion

Data Evidence

Thiago Ferreira*

* Federal Reserve Board

1st: Financial Skewness Predicts Economic Activity

- better than: well-known bond spreads (e.g., GZ (2012)) measures of uncertainty (e.g., Jurado et al (2015)) other cross-section moments (fin + nfin)
- both in expansions and recessions
- using in-sample and out-of-sample regressions
- several measures of economic activity

< □ > < 同 >

Financial Skewness Predicts Economic Activity, In-Sample Dependent Variable: Mean 4Q Ahead GDP Growth Sample: 1973Q1 - 2015Q2

					R	egressior	ns Specifi	cations	;			
Variable	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Mean ⁺		1.19***									0.73*	
$Dispersion^+$			-0.15*								1.07**	
$Skewness^+$				1.20***							1.60**	1.00***
Left Kurtosis ⁺					0.71**						0.26	
Right Kurtosis ⁺						0.46**					-1.06***	
Uncertainty	- 1						-0.46**					0.24
Real Fed Funds								-0.44				0.18
Term Spread									0.92***			1.03***
GZ Spread										-0.55**		-0.49
R ²	0.08	0.29	0.11	0.28	0.17	0.11	0.19	0.12	0.28	0.23	0.40	0.54

⁺Moments of the cross-section distribution of returns are for returns from financial firms

All regressors are standardized, so we can compare the magnitude of their coefficients. For each regressor, I include its current and one-period lagged value, with reported coefficients being the sum of current and lagged effect. Coefficients measure the effect in GDP-growth (in percentage) of a sustained increase of 1 std in the regressor.

Thiago Ferreira*

* Federal Reserve Board

Financial Skewness Predicts Economic Activity, In-Sample

1) is one of the variables that single-handedly most explain future GDP growth

- Comparing R²'s and columns (2)-(10)
- 2) has predictive power robust to the inclusion of many other variables.
 - Such as other moments, financial uncertainty, GZ spread: columns (11)-(12)
 - In all regressions, financial skewness is stat-sig and has intuitive effects.
- 3) is specially informative about the cycle
 - ▶ In regressions (11)-(12) for un/weighted measures: one of largest coefficients
 - ▶ 1 std \downarrow in financial skewness: \downarrow of 1%-1.6% in mean GDP growth over next 4Q's
- 4) is powerful predictor of many other variables: not shown (Consumption, Investment, Hours, U-rate)

A B > A B >

Financial Skewness Predicts $GDP_{t+h|t-1}$, Out-of-Sample Sample: 1973Q1 - [1986Q1...2015Q2]

For each variable X_t , I forecast GDP growth using regressions:

$$GDP_{t+h|t-1}^{X_t} = \alpha + \sum_{i=1}^{p} \rho_i GDP_{t-i|t-i-1} + \sum_{j=0}^{q} \theta_j X_{t-j} + u_{t+h}.$$

Performance of financial skewness relative to variable X_t is:

R-RMSFE of Variable
$$X_t = \frac{\text{RMSFE of Financial Skewness}}{\text{RMSGE of Variable } X_t}$$
 (in decimals)

Thiago Ferreira*

Stock Market Cross-Sectional Skewness and Business Cycle Fluctuations

* Federal Reserve Board

Financial Skewness Predicts $GDP_{t+h|t-1}$, Out-of-Sample

Thiago Ferreira*

* Federal Reserve Board

Financial Skewness Predicts $GDP_{t+h|t-1}$, Out-of-Sample

Financial skewness has highest predictive power for GDP growth

- Lowest RMSEs with most results stat. significant
- ▶ Differences economically significant: up to 38% of improvement
- Also, better than other distribution measures

< 冊

Data Evidence	DSGE Model	Conclusion

Rolling RMSE Ratios: financial skewness predicts well most of the time

Other Rolling RMSE ratios tell similar story.

Thiago Ferreira*

* Federal Reserve Board

Data Evidence	Interpretation	DSGE Model	Conclusion

Interpreting

Financial Skewness

Thiago Ferreira*

* Federal Reserve Board

2nd: Financial Skewness is informative because...

...reflects future economic performance of financial firms' borrowers

Financial firms focus on specific loan markets, diversifying some

 CS distributions of returns of financial firms have less dispersion and thinner tails than those of nonfinancial firms.

Stock markets price future economic performance of borrowers

- Data on asset quality (ROA and LSSF) explain about 75% of financial skewness
- ROA and LSSF released between 1 and 1.5 months after the reference quarter

Financial skewness also lead credit conditions

especially loan growth

< □ > < 同 >

Financial sector holds smaller cross-section risks

	Sample 1927-2015			Sample 1947-2015		
	financial	nonfinancial	difference	financial	nonfinancial	difference
Mean	3.3	3.7	-0.5	2.9	3.4	-0.5
Dispersion	36.5	49.2	-12.7***	35.8	58.8	-23.0***
Skewness	-0.4	-0.1	-0.3	-1.1	-2.0	0.9**
Left kurtosis	-7.1	-9.0	1.9***	-7.9	-12.1	4.3***
Right kurtosis	7.2	9.1	-1.9***	7.0	11.0	-4.0***

	Mean:	stat the same	
	Dispersion:	smaller	
Financial 🗸	Skewness:	somewhat higher	than Nonfinancial
	Left tail:	thinner	
	Right tail:	thinner	

Thiago Ferreira*

* Federal Reserve Board

Data Evidence	Interpretation	DSGE Model	Conclusion

Financial skewness reflects future performance of borrowers

- Data on asset quality of financial firms (ROA and LSSF) explain 76% of financial skewness ...
 - ▶ ROA and LSSF released 1-1.5 months after the reference quarter
- ... while data measuring financial stresses and private sector GDP forecasts add little.

		AFCI	EBP	VIX	Term Spread	$GDP^{Consensus}_{t t-1}$	$GDP^{Consensus}_{t+2 t-1}$
ROA	3.7***	3.5***	3.6***	3.5***	4.0***	3.4***	3.4***
LSSF	-2.1***	-1.6***	-1.6***	-1.4***	-1.9***	-1.8***	-1.8***
Variable		-0.8*	-0.7*	-1.3***	0.6**	0.8**	0.7*
R ²	0.76	0.76	0.76	0.79	0.76	0.76	0.76

▲口>▲圖>★ヨ>★ヨ> ヨーのへの

Thiago Ferreira*

* Federal Reserve Board

What explain financial skewness? Part ID

Thiago Ferreira*

* Federal Reserve Board

Data Evidence	DSGE Model	Conclusion

Structural Analysis: DSGE Model and BVARs

Thiago Ferreira*

* Federal Reserve Board

3nd: Structural Analysis - BVAR and DSGE Models

14 variables: macro, financial and stock market cross-sectional moments.

In both BVAR and DSGE model, financial skewness shocks:

- · have a transmission channel consistent with financial frictions models
- are important business cycle drivers and have sizable economic effects
- account for most of the fluctuations in financial skewness
- drive out other shocks, including dispersion ones

・ロト ・日下・ ・ ヨト・

NK-DSGE with financial accelerator channel

Similar to Christiano et al (2014) in its bells and whistles

Re-interpretation of the model:

Thiago Ferreira*

* Federal Reserve Board

Distribution of Returns and the Financial Accelerator

Define gross realized equity return of entrepreneur i at period t:

$$X_t^i = \begin{cases} \begin{array}{cc} \frac{\omega_t^i R_t^c Q_{t-1} \overline{K}_t^i - Z_t^i B_t^i}{N_t^i}, & \text{if } \omega_t^i R_t^c Q_{t-1} \overline{K}_t^i \ge Z_t^i B_t^i \\ 0, & \text{otherwise} \end{array} = \begin{cases} \begin{array}{cc} [\omega_t^i - \overline{\omega}_t] R_t^c L_t, & \text{if } \omega_t^i \ge \overline{\omega}_t \\ 0, & \text{otherwise.} \end{array} \end{cases}$$

• endogenous distribution of X_t^i : $\overline{\omega}_t$, R_t^c and L_t are endogenous variables

•
$$\omega_t^i$$
 follows a mixture of two log-normal distributions

• $\mathbb{E}(\omega_t^i) = 1$, $\mathsf{Std}(\omega_t^i) = \mathsf{sd}_t$ and m_t^1 proxies skewness

For instance, cross-section skewness of the model is: $(\widetilde{x}_t^{95} - \widetilde{x}_t^{50}) - (\widetilde{x}_t^{50} - \widetilde{x}_t^5)$, where $\widetilde{x}_t^v = \log(\widetilde{\omega}_t^v - \overline{\omega}_t)$ and $\widetilde{\omega}_t^v$ is the vth percentile of cdf $F_t(\cdot|\omega_t > \overline{\omega}_t)$.

Thiago Ferreira*

* Federal Reserve Board

Stock Market Cross-Sectional Skewness and Business Cycle Fluctuations

NK-DSGE with financial accelerator channel: 1964-2015

1st Step: 1964-2006, Taylor Rule;

2nd Step: 2002-2015, Taylor Rule with news; re-estimate shocks autocorr and std;

Observable variables	Shocks
GDP	permanent TFP-growth
Consumption	inter-temporal discount
Investment	capital adjustment cost (IS-shock)
Hours worked	transitory TFP
Real wage	price-markup
Fed Funds rate	monetary policy
OIS 1Y-ahead (2002-2015)	news on monetary policy
PCE core inflation	inflation trend/target
Relative price of Investment	investment price
Real credit	government/NX residual
Equity ($Mean_t^{nfin}$)	equity and meas-error
Baa - US_10y	
$Disp_t^{nfin}$ and $Skew_t^{fin}$	sd_t and m_t^1
	news about them up to 4Q in advance

* Federal Reserve Board

Stock Market Cross-Sectional Skewness and Business Cycle Fluctuations

Thiago Ferreira*

Thiago Ferreira*

* Federal Reserve Board

Data Evidence	DSGE Model	Conclus

Skewness shocks:

- FEVD: GDP = 5-20%
- IRF: GDP falls 0.3-0.75%
- FEVD: majority of FinSkew

Fin-friction transmission

- IRFs: general picture
- $\bullet \uparrow \mathsf{Baa-10y} \Rightarrow \mathsf{Larger} \; \mathsf{IRFs}$
- \bullet DSGE IRFs \approx BVAR IRFs

Thiago Ferreira*

* Federal Reserve Board

Dispersion shocks:

- FEVD of GDP = 0-3%
- IRF ≈ 0

BVAR Order-13: 16/84th guantiles BVAR Order-10: 16/84th quantiles BVAR Order-1: 16/84th guantiles BVAR-DSGE: 16/84th quantiles DSGE: unanticipated

Thiago Ferreira*

* Federal Reserve Board

Stock Market Cross-Sectional Skewness and Business Cycle Fluctuations

16

16

16

	Data Evidence	DSGE Model	Conclusion
Conclusio	n:		

- ► Financial skewness is a powerful predictor of economic activity
- Financial skewness seem to signal future economic performance of financial firms' borrowers
- Financial skewness shocks are important cyclical drivers

Cross-Section Skewness: Financial X Nonfinancial Back

Thiago Ferreira*

* Federal Reserve Board

Correlations Back

Sample	Financial Skewness	Nonfinancial Skewness
1926-2015	0.34	0.31
1985-2015	0.58	0.48

(a) Correlations with Expansion Indicator

Sample	Financial Skewness	Nonfinancial Skewness
1947-2015	0.40	0.36
1985-2015	0.69	0.41

(b) Correlations with GDP 4Q-growth

Thiago Ferreira*

< □ > < 同 >

1926-2015: Financial Skewness Tracks Business Cycles Logit Regression

Dependent Variable: NBER Expansion Indicator

	Regressions with Unweighted Distribution Measures								
Variables	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Constant	-1.26***	-1.55***	-1.11***	-1.36***	-1.24***	-1.35***	-1.22***	-1.73***	-1.77***
Expansion Lag	4.12	4.55	3.93	4.38	4.11	4.23	4.04	5.02	5.05
Mean ⁺		1.17***						1.33***	1.23**
$Dispersion^+$			-0.34					-0.44	-0.68
$Skewness^+$				1.17***				1.71**	1.68**
Left Kurtosis ⁺					0.43			-0.92*	-0.98*
Right Kurtosis ⁺						0.20		-0.69	-0.64
Baa-Aaa							-0.24**		0.23
Pseudo R ²	0.53	0.58	0.54	0.57	0.54	0.53	0.55	0.62	0.63

⁺Moments of the cross-section distribution of returns are for returns from financial firms

All regressors are standardized, so we can compare the magnitude of their coefficients. For each regressor, I include its current and one-period lagged value, with reported coefficients being the sum of current and lagged effect.

* Federal Reserve Board

1926-2015: Financial Skewness Tracks Business Cycles (Back

Financial Skewness:

- 1) is one of the variables that single-handedly most explain NBER-indicator.
 - Comparing R²'s of columns (2)-(7)
- 2) has explanatory power robust to the inclusion of many other variables.
 - Such as other moments and credit spreads in columns (8)-(10).
 - In all regressions, financial skewness is stat-sig and has intuitive effects.
- 3) is specially informative about the cycle
 - ▶ In regressions (9)-(10) for un/weighted measures: one of largest coefficients
 - 2 std decrease in financial skewness: 52% prob of recession

Image: A math a math

Financial Skewness Predicts $GDP_{t+h|t-1}$, Out-of-Sample Back Sample: 1973Q1 - [1986Q1...2015Q2]

Thiago Ferreira*

* Federal Reserve Board

What explain Financial skewness? Part II Back

Thiago Ferreira*

* Federal Reserve Board