Ninth BIS CCA Research Conference

Banco Central | Rio de Janeiro
Unemployment Insurance as a Subsidy to Risky Firms

Bernardus van Doornik
Central Bank of Brazil

David Schoenherr
Princeton University

Dimas Fazio
London Business School

Janis Skrastins
Washington University in St. Louis

The views expressed in this work are those of the authors and do not necessarily reflect those of the Banco Central or its members.
Motivation:

- Risk-taking in pursuit for profitable investment opportunities is essential for growth
 - Macro view: firms' idiosyncratic risk is irrelevant in the aggregate
 - Risk-averse worker's view: firm-specific risk is highly relevant

- A wedge in optimal risk-level between the micro (risk-averse) and the macro (risk neutral) views
 - Extensive literature on the manager-shareholder conflict
 - Limited evidence on workers' risk tolerance (despite labor being a key input): One mechanism: unemployment insurance (UI)

- This paper: UI affects labor allocation between safe and risky firms
 - Risky firms hire fewer workers and pay a risk premium with weaker insurance (lower labor supply)
 - Risky firms do worse when UI coverage weakened (UI as a subsidy)
Empirical Challenge:

- **Endogeneity**: How to randomize a firm's risk for a sample of workers?
 - Firm-worker selection – risk preferences or risk compensation (supply vs demand)
- Ideal experiment: multiple firms, shock to a subset of workers (more unemployment risk)

Solution:

- Shock: unanticipated UI reform
 - A subset of workers less insured against unemployment risk
Data:

- Entire population of formal private employment contracts in Brazil – RAIS (Ministry of Labor)
- History of all UI benefit payments (Ministry of Labor)
- Credit registry data on all Brazilian firms (CBB)
- Firms’ cash inflows and outflows at the transaction-level (CBB)
- Natural disasters data (Ministry of Integration)
- Stock Exchange data (Bovespa)
UI System in Brazil

- **Financing**: payroll taxes + taxes on sales and profits (by industry)

- **Eligibility**: depends on the tenure

- **Duration**: 3 - 5 months, depending on the tenure

- **Value of payments**:
 - At least the minimum wage
 - Worker with average salary would receive 70% of the gross wage

- **Penalty**: 10-20% of expected benefits
 - 80% allocated to the worker
Unemployment Benefits Reform

• Sudden announcement: 30-Dec-2014 (Measure MP 665)
Unemployment Benefits Reform

- Important:
 - Nothing changed on the firm's side (taxes, penalties, etc.)
 - Benefit size did not change as well
Identification: Within-Firm:

- **Within-Firm variation**: Control for all firm level shocks
- **Identification**: compare insured vs less insured within the same firm and month
Employment and Wages

Employment

Total Employees

Month

Wages

Wage Growth

Month

- UI Unchanged
- UI Tightened
\[employment_{igt} = \delta \cdot Affected_{gt} \times Reform_t + \tau_{it} + \tau_{ig} + \epsilon_{igt} \]

Employment, Hiring, and Wages

<table>
<thead>
<tr>
<th>Dep. Var.:</th>
<th>Employed Workers</th>
<th>Hired Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EmployRate I</td>
<td>HiringRate III</td>
</tr>
<tr>
<td></td>
<td>ln(wage) II</td>
<td>ln(wage) IV</td>
</tr>
</tbody>
</table>

Panel A: Basic Tests

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Affected_{gt} \times Reform_t)</td>
<td>-0.0295*** (0.0006)</td>
<td>0.0143*** (0.0006)</td>
<td>-0.0046*** (0.0001)</td>
<td>0.0126*** (0.0008)</td>
<td>0.0054*** (0.0007)</td>
</tr>
<tr>
<td>Firm*Affected FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Firm*Month FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Clustered SE</td>
<td>firm</td>
<td>firm</td>
<td>firm</td>
<td>firm</td>
<td>firm</td>
</tr>
<tr>
<td>Observations</td>
<td>2,926,080</td>
<td>2,855,855</td>
<td>2,926,080</td>
<td>2,159,088</td>
<td>1,853,115</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.276</td>
<td>0.984</td>
<td>0.734</td>
<td>0.722</td>
<td>0.238</td>
</tr>
</tbody>
</table>
Firm Risk and Labor Supply

Employment

Wages

Hiring

Hiring Wages

Month

Month

Month

Month

Total Employees

Wage Growth

Hired Workers/Total Workers

Hiring Wage Growth

-0.01

0.01

-0.02

0.00

-0.03

0.00

-0.04

0.00

-0.05

0.00

201401 201407 201501 201507

Month

-0.005

0.005

-0.01

0.015

-0.015

0.015

-0.025

0.025

-0.035

0.035

201401 201407 201501 201507

Month

-0.005

0.005

-0.01

0.01

-0.015

0.015

-0.02

0.02

-0.025

0.025

201401 201407 201501 201507

Month

Safe Firms
Risky Firms
\[\text{employment}_{igt} = \delta \cdot \text{Affected}_{gt} \cdot \text{Reform}_t + \mu \cdot \text{Risk}_i \cdot \text{Affected}_{gt} \cdot \text{Reform}_t + \tau_{it} + \tau_{ig} + \epsilon_{igt}, \]

Firm Risk and Labor Supply - Employment

<table>
<thead>
<tr>
<th>Risk Measure:</th>
<th>Credit Spread</th>
<th>Default Provisions</th>
<th>Layoff Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Var.:</td>
<td>EmployRate I</td>
<td>ln(wage) II</td>
<td>EmployRate III</td>
</tr>
<tr>
<td>Panel A: Main Tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\text{Affected}_{gt} \cdot \text{Reform}_t</td>
<td>-0.0143*** (0.0015)</td>
<td>0.0104*** (0.0013)</td>
<td>-0.0197*** (0.0016)</td>
</tr>
<tr>
<td>\text{Affected}_{gt} \cdot \text{Reform}_t \cdot \text{Risk}_i</td>
<td>-0.0032*** (0.0002)</td>
<td>0.0012*** (0.0002)</td>
<td>-0.0017*** (0.0003)</td>
</tr>
<tr>
<td>Firm*Affected FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Firm*Month FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Clustered SE</td>
<td>firm</td>
<td>firm</td>
<td>firm</td>
</tr>
<tr>
<td>Observations</td>
<td>2,274,624</td>
<td>2,238,801</td>
<td>2,274,624</td>
</tr>
<tr>
<td>R²</td>
<td>0.926</td>
<td>0.984</td>
<td>0.926</td>
</tr>
</tbody>
</table>
\[
\text{employment}_{igt} = \delta \cdot \text{Affected}_{gt} \cdot \text{Reform}_t + \mu \cdot \text{Shocked}_{it} \cdot \text{Affected}_{gt} \\
+ \gamma \cdot \text{Shocked}_{it} \cdot \text{Affected}_{gt} \cdot \text{Reform}_t + \tau_{it} + \tau_{ig} + \epsilon_{igt},
\]

Exogenous Shocks to Firm Risk

<table>
<thead>
<tr>
<th>Dep. Var.:</th>
<th>Employed Workers</th>
<th>Hired Workers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EmployRate</td>
<td>ln(wage)</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Panel A: Worker Age Groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Affected}_{gt} \cdot \text{Reform}_t)</td>
<td>-0.0044***</td>
<td>0.0067***</td>
</tr>
<tr>
<td></td>
<td>(0.0001)</td>
<td>(0.0007)</td>
</tr>
<tr>
<td>(\text{Affected}{gt} \cdot \text{Shocked}{it})</td>
<td>0.0006***</td>
<td>-0.0030***</td>
</tr>
<tr>
<td></td>
<td>(0.0001)</td>
<td>(0.0011)</td>
</tr>
<tr>
<td>(\text{Affected}_{gt} \cdot \text{Reform}t \cdot \text{Shocked}{it})</td>
<td>-0.0021***</td>
<td>0.0093***</td>
</tr>
<tr>
<td></td>
<td>(0.0002)</td>
<td>(0.0017)</td>
</tr>
<tr>
<td>Firm*Affected FE</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Firm*Month FE</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Age Group*Month FE</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Clustered SE</td>
<td>firm</td>
<td>firm</td>
</tr>
<tr>
<td>Observations</td>
<td>17,556,480</td>
<td>14,013,251</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.520</td>
<td>0.772</td>
</tr>
</tbody>
</table>
\[\Delta \text{firm risk}_{jt} = \delta \cdot \text{Affected}_{jt} \cdot \text{Reform}_t + \tau_{it} + \tau_{ig} + \epsilon_{jt} \]

Firm Risk and Labor Supply - Job Transitions

<table>
<thead>
<tr>
<th>Dep. Var.: (\Delta \text{firm risk})</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Measure:</td>
<td>Credit Spreads</td>
<td>Default Provisions</td>
<td>Layoff Risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Affected}_{jt} \cdot \text{Reform}_t)</td>
<td></td>
</tr>
<tr>
<td>(\text{Affected}_{jt} \cdot \text{Reform}_t \cdot \text{Risk}_i)</td>
<td></td>
</tr>
<tr>
<td>Firm*Treated FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Firm*Month FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Clustered SE</td>
<td>firm</td>
<td>firm</td>
<td>firm</td>
<td>firm</td>
<td>firm</td>
<td>firm</td>
</tr>
<tr>
<td>Observations</td>
<td>629,128</td>
<td>629,128</td>
<td>629,128</td>
<td>629,128</td>
<td>765,557</td>
<td>765,557</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.704</td>
<td>0.704</td>
<td>0.707</td>
<td>0.707</td>
<td>0.711</td>
<td>0.711</td>
</tr>
</tbody>
</table>
Cumulative Abnormal Returns by Firm Risk

Credit Spread

Default Provisions

Layoff Risk

\(CAR_i \)

- black: above median
- gray: below median
\[CAR_i = \alpha + \delta \cdot Risk_i + \epsilon_i \]

Unemployment Insurance and Firm Value

<table>
<thead>
<tr>
<th>Risk Measure:</th>
<th>I (Credit Spread)</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
<th>IX</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Risk_i)</td>
<td>-1.72*** (0.48)</td>
<td>-1.72** (0.54)</td>
<td>-2.02** (0.69)</td>
<td>-1.19 (0.93)</td>
<td>-1.23 (0.86)</td>
<td>-2.35** (0.95)</td>
<td>-1.83*** (0.52)</td>
<td>-2.07*** (0.62)</td>
<td>-2.38** (0.85)</td>
</tr>
<tr>
<td>Observations</td>
<td>140</td>
<td>127</td>
<td>111</td>
<td>140</td>
<td>127</td>
<td>111</td>
<td>155</td>
<td>140</td>
<td>121</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.031</td>
<td>0.031</td>
<td>0.042</td>
<td>0.012</td>
<td>0.013</td>
<td>0.044</td>
<td>0.028</td>
<td>0.036</td>
<td>0.046</td>
</tr>
</tbody>
</table>
Conclusion

In this paper we examine the role of unemployment insurance for the allocation of labor

• **UI and employment:**
 • Workers with weaker insurance are employed (hired) by 3 (.5) percent less
 • Salaries increase by roughly 1.5 percent for workers with less generous insurance

• **Firm Risk:** riskiest firms vs safest firms
 • Employ by 2.2 percent fewer workers and pay by 1.8 percent higher wages
 • Hire by 4.5 percent less and pay by 0.7 percent more in hiring wages

• **Real effects:** after the reform, riskier firms:
 • Have lower cash flows
 • Employ fewer workers
 • Have more delinquent debt

• **Policy implications:** safe firms subsidize risky firms through UI (experience rating mechanism?)